Skip to main content

Electronic Band Structure in Porous Silicon

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Porous Silicon

Abstract

This updated review summarizes the main theoretical approaches to model porous silicon electronic band structure, comparing effective mass theory, semiempirical and first-principles methods. In order to model its complex porous morphology, supercell, nanowire, and nanocrystal approaches are widely used. In particular, calculations of strain, doping, and surface chemistry effects on the band structure are discussed. The combined use of ab initio and tight-binding approaches to predict the band structure and properties of electronic devices based on porous silicon is put forward. Finally, recent trends in pSi theoretical modeling are discussed, highlighting the emerging use of molecular dynamics calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alfaro P, Palavicini A, Wang C (2014) Hydrogen, oxygen and hydroxyl on porous silicon surface: a joint density-functional perturbation theory and infrared spectroscopy approach. Thin Solid Films 571:206

    Article  Google Scholar 

  • Arcos MR, Wang C (2016) Etching process in porous silicon: an ab-initio molecular dynamics study. Paper presented at Car-Parrinello molecular dynamics conference, University of Chicago, Chicago, May 18–20

    Google Scholar 

  • Baierle RJ, Caldas MJ, Molinari E, Ossicini S (1997) Optical emission from small Si particles. Solid State Commun 102(7):545–549

    Article  Google Scholar 

  • Bruno M, Palummo M, Marini A, del Sole R, Ossicini S (2007) From Si nano wires to porous silicon: the role of excitonic effects. Phys Rev Lett 98:036807

    Article  Google Scholar 

  • Buttard D, Bellet D, Dolino G, Baumbach T (1998) Thin layers and multilayers of porous silicon: X-ray diffraction investigation. J Appl Phys 83(11):5814–5822

    Article  Google Scholar 

  • Calcott PDJ (1997) Experimental estimates of porous silicon bandgap. In: Canham L (ed) Properties of porous silicon. INSPEC, London, p 202

    Google Scholar 

  • Calvino M, Trejo A, Crisóstomo MC, Iturrios MI, Carvajal E, Cruz-Irisson M (2016) Modeling the effects of Si-X (X = F, Cl) bonds on the chemical and electronic properties of Si-surface terminated porous 3C-SiC. Theor Chem Accounts 135:104

    Article  Google Scholar 

  • Cruz M, Wang C, Beltrán MR, Tagüeña-Martínez J (1996) Morphological effects on the electronic band structure of porous silicon. Phys Rev B 53(7):3827–3832

    Article  Google Scholar 

  • Cruz M, Wang C, Beltrán MR, Tagüeña-Martínez J, Rubo YG (1999) Supercell approach to the optical properties of porous silicon. Phys Rev B 59(23):15381–15387

    Article  Google Scholar 

  • Degoli E, Luppi M, Ossicini S (2000) From undulating Si quantum wires to Si quantum dots: a model for porous silicon. Phys Status Solidi A 182:301–306

    Article  Google Scholar 

  • Delerue C, Lannoo M, Alan G (1997) Porous silicon modeled as idealized quantum dots. In: Canham L (ed) Properties of porous silicon. INSPEC, London, p 212

    Google Scholar 

  • Delerue C, Lannoo M, Alan G (2001) Tight binding for complex semiconductor systems. Phys Status Solidi B 227(1):115–149

    Article  Google Scholar 

  • Fernández-Serra MV, Adessi C, Blasé X (2006) Surface segregation and backscattering in doped silicon nanowires. Phys Rev Lett 96:166805

    Article  Google Scholar 

  • Fujii M, Yamaguchi Y, Takase Y, Ninomiya K, Hayashi S (2004) Control of photoluminescence properties of Si nanocrystals by simultaneously doping n- and p-type impurities. Appl Phys Lett 85(7):1158–1160

    Article  Google Scholar 

  • Fujii M, Sugimoto H, Imakita K (2016) All inorganic colloidal silicon nanocrystals: surface modification by boron and phosphorus co-doping. Nanotechnology 27:262001

    Article  Google Scholar 

  • Geyer N, Wollschläger N, Tonkikh A, Berger A, Werner P, Jungmann M, Krause-Rehberg R, Leipner HS (2015) Influence of the doping level on the porosity of silicon nanowires prepared by metal-assisted chemical etching. Nanotechnology 26:245301

    Article  Google Scholar 

  • He R, Yang P (2006) Giant piezoresistance effect in silicon nanowires. Nat Nanotechnol 1:42–46

    Article  Google Scholar 

  • Hong K-H, Kim J, Lee S-H, Shin JK (2008) Strain-driven electronic band structure modulation of Si nanowires. Nano Lett 8(5):1335–1340

    Article  Google Scholar 

  • Jensen IJT, Ulyashin AG, Lovvik OM (2016) Direct-to-indirect bandgap transitions in <110> silicon nanowires. J Appl Phys 119:015702

    Article  Google Scholar 

  • Koga J, Nishio K, Yonezawa F, Yamaguchi T (2002) Theoretical study on the relation between structural and optical properties in Si nanostructures. Physica E 15:182–191

    Article  Google Scholar 

  • Kolasinski KW (2013) The mechanism of photohydrosilylation on silicon and porous silicon surfaces. J Am Chem Soc 135:11408

    Article  Google Scholar 

  • Koskinen P, Mäkinen V (2009) Density-functional tight-binding for beginners. Comput Mater Sci 47:237–253

    Article  Google Scholar 

  • Lane JMD, Thompson AP, Vogler TJ (2014) Enhanced densification under shock compression in porous silicon. Phys Rev B 90:134311

    Article  Google Scholar 

  • Lee BG, Luo JW, Neale NR, Beard MC, Hiller D, Zacharias M, Stradins P, Zunger A (2016) Quasi-direct optical transitions in silicon nanocrystals with intensity exceeding the bulk. Nano Lett 16(3):1583–1589

    Article  Google Scholar 

  • Leu PW, Svizhenko A, Cho K (2008) Ab-initio calculations of the mechanical and electronic properties of strained Si nanowires. Phys Rev B 77:235305

    Article  Google Scholar 

  • Monastyrskii LS, Boyko YV, Sokolovskii BS, Potashnyk VY (2016) Electronic structure of silicon nanowires matrix from ab initio calculations. Nano Res Lett 11:25

    Article  Google Scholar 

  • Marx D, Hutter J (2009) Ab initio molecular dynamics: basic theory and advanced methods. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Miu M, Danila M, Kleps I, Bragaru A, Simion M (2011) Nanostructure and internal strain distribution in porous silicon. J Nanosci Nanotechnol 11:9136–9142

    Article  Google Scholar 

  • Nazemi S, Pourfath M, Soleimani EA, Kosina H (2016) The effect of oxide shell thickness on the structural, electronic and optical properties of Si-SiO2 core-shell nanocrystals: a (time-dependent) density functional theory study. J Appl Phys 119:144302

    Article  Google Scholar 

  • Niaz S, Zdetsis AD (2016) Comprehensive ab initio study of electronic, optical and cohesive properties of silicon quantum dots of various morphologies and sizes up to infinity. J Phys Chem C 120(20):11288–11298

    Article  Google Scholar 

  • Niaz S, Koukaras EN, Katsougrakis NP, Kourelis TG, Kougias DK, Zdetis AD (2013) Size dependence of the optical gap of “small” silicon quantum dots: ab initio and empirical correlation schemes. Microelectron Eng 112:231–234

    Article  Google Scholar 

  • Niquet Y-M, Delerue C, Krzeminski C (2012) Effects of strain on the carrier mobility in silicon nanowires. Nano Lett 12:3545–3550

    Article  Google Scholar 

  • Nolan M, O’Callaghan S, Fagas G, Greer JC, Frauenheim T (2007) Silicon nanowire band gap modification. Nano Lett 7(1):34–38

    Article  Google Scholar 

  • Nurbawono A, Liu S, Zhang C (2015) Modeling optical properties of silicon clusters by first principles: from a few atoms to large nanocrystals. J Chem Phys 142:154705

    Article  Google Scholar 

  • Onida G, Reining L, Rubio A (2002) Electronic excitations: density-functional versus many-body Green’s function approaches. Rev Mod Phys 74:601–659

    Article  Google Scholar 

  • Ossicini S (1997) Porous silicon modeled as idealized quantum wires. In: Canham L (ed) Properties of porous silicon. INSPEC, London, p 207

    Google Scholar 

  • Ossicini S, Pavesi L, Priolo F (2003) Light emitting silicon for microphotonics. Springer, New York, p 43

    Book  Google Scholar 

  • Ossicini S, Bisi O, Degoli E, Marri I, Iori F, Luppi E, Magri R, Poli R, Cantele G, Ninno D, Trani F, Marsili M, Pulci O, Olevano V, Gatti M, Gaal-Nagy K, Incze A, Onida G (2008) First-principles study of silicon nanocrystals: structural and electronic properties, absorption, emission, and doping. J Nanosci Nanotechnol 8:479–492

    Article  Google Scholar 

  • Petretto G, Debernardi A, Fanciulli M (2012) Electronic properties of pristine and Se doped [001] silicon nanowires: an ab initio study. J Nanosci Nanotechnol 12:8704–8709

    Article  Google Scholar 

  • Poddubny AN, Dohnalova K (2014) Direct bandgap silicon quantum dots achieved via electronegative capping. Phys Rev B 90(24):245439

    Article  Google Scholar 

  • Puzder A, Williamson AJ, Grossman JC, Galli G (2002a) Surface chemistry of silicon nanoclusters. Phys Rev Lett 88(9):097401

    Article  Google Scholar 

  • Puzder A, Williamson AJ, Grossman JC, Galli G (2002b) Surface control of optical properties in silicon nanoclusters. J Chem Phys 117:6721–6729

    Article  Google Scholar 

  • Qu BY, Li DD, Wang L, Wu JL, Zhou RL, Zhang B, Zeng XC (2016) Mechanistic study of pressure and temperature dependent structural changes in reactive formation of silicon carbonate. RSC Adv 6:26650

    Article  Google Scholar 

  • Ren SY, Dow JD (1992) Hydrogenated Si clusters: band formation with increasing size. Phys Rev B 45(12):6492–6496

    Article  Google Scholar 

  • Shi G, Kioupakis E (2015) Electronic and optical properties of nanoporous silicon for solar-cell applications. ACS Photon 2:208

    Article  Google Scholar 

  • Shiri D, Kong Y, Buin A, Anantram MP (2008) Strain induced change of bandgap and effective mass in silicon nanowires. Appl Phys Lett 93:073114

    Article  Google Scholar 

  • Shiri D, Verma A, Selvakumar CR, Anantram MP (2012) Reversible modulation of spontaneous emission by strain in silicon nanowires. Sci Rep 2:461. doi:10.1038/srep00461

    Article  Google Scholar 

  • Shu Y, Levine BG (2014) Do excited silicon-oxygen double bonds emit light? J Phys Chem 118:7669–7677

    Article  Google Scholar 

  • Stanojevic Z, Baumgartner O, Sverdlov V, Kosina H (2010) Electronic band structure modeling in strained Si-nanowires: two band k·p versus tight binding. In: IEEE Proceedings of the 14th international workshop on computational electronics, pp 5–8 doi:10.1109/IWCE.2010.5677927

    Google Scholar 

  • Vasiliev I, Öğüt S, Chelikowsky JR (2001) Ab initio absorption spectra and optical gaps in nanocrystalline silicon. Phys Rev Lett 86(9):1813–1816

    Article  Google Scholar 

  • Vázquez E, Tagüeña-Martínez J, Sansores LE, Wang C (2002) Surface relaxation effects on the properties of porous silicon. J Appl Phys 91(5):3085–3089

    Article  Google Scholar 

  • Verdier M, Termentzidis K, Lacroix D (2016) Crystalline-amorphous silicon nano-composites: nano-pores and nano-inclusions impact on the thermal conductivity. J Appl Phys 119:175104

    Article  Google Scholar 

  • Williamson AJ, Crossman JC, Hood RQ, Puzder A, Galli G (2002) Quantum Monte Carlo calculations of nanostructure optical gaps: application to silicon quantum dots. Phys Rev Lett 89(19):196803

    Article  Google Scholar 

  • Wilson HF, McKenzie-Sell L, Barnard AS (2014) Shape dependence of the band gaps in luminescent silicon quantum dots. J Mater Chem C 2:9451–9456

    Article  Google Scholar 

  • Wolkin MV, Jorne J, Fauchet PM, Allan G, Delerue C (1999) Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Phys Rev Lett 82(1):197–200

    Article  Google Scholar 

  • Wu Z, Neaton JB, Grossman JC (2009) Charge separation via strain in silicon nanowires. Nano Lett 9(6):2418–2422

    Article  Google Scholar 

  • Yao D, Zhang G, Li B (2008) A universal expression of band gap for silicon nanowires of different cross-section geometries. Nano Lett 8(12):4557–4561

    Article  Google Scholar 

  • Yorikawa H, Sato T, Muramatsu S (2004) Theoretical study of band edges in porous silicon. J Appl Phys 95(7):3569–3572

    Article  Google Scholar 

  • Zhao X, Wei CM, Yang L, Chou MY (2004) Quantum confinement and electronic properties of silicon nanowires. Phys Rev Lett 92:236805

    Article  Google Scholar 

  • Zheng Y, Rivas C, Lake R, Alam K, Boykin TB (2005) Electronic properties of silicon nanowires. IEEE Trans Electron Devices 52:1097–1103

    Article  Google Scholar 

  • Zhuo K, Chou MY (2013) Surface passivation and orientation dependence in the electronic properties of silicon nanowires. J Phys Condens Matter 25:145501

    Article  Google Scholar 

  • Zhou Z, Brus L, Friesner R (2003) Electronic structure and luminescence of 1.1 and 1.4 nm silicon nanocrystals: oxide shell versus hydrogen passivation. Nano Lett 3(2):163–167

    Article  Google Scholar 

  • Zonias N, Lagoudakis P, Skylaris C-K (2010) Large-scale first principles and tight-binding density functional theory calculations on hydrogen-passivated silicon nanorods. J Phys Condens Matter 22:025303

    Article  Google Scholar 

  • Zunger A, Wang L-W (1996) Theory of silicon nanostructures. Appl Surf Sci 102:350–359

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Tagüeña-Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Tagüeña-Martínez, J., Wang, C. (2017). Electronic Band Structure in Porous Silicon. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-04508-5_51-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04508-5_51-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04508-5

  • Online ISBN: 978-3-319-04508-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Electronic Band Structure in Porous Silicon
    Published:
    16 February 2017

    DOI: https://doi.org/10.1007/978-3-319-04508-5_51-2

  2. Original

    Electronic Band Structure in Porous Silicon
    Published:
    06 May 2014

    DOI: https://doi.org/10.1007/978-3-319-04508-5_51-1