Skip to main content

Electronic Band Structure in Porous Silicon

Handbook of Porous Silicon

Abstract

This chapter summarizes the main theoretical approaches to model the porous silicon electronic band structure, comparing effective mass theory, semiempirical, and first-principles methods. In order to model its complex porous morphology, supercell, nanowire, and nanocrystal approaches are widely used. In particular, calculations of strain, doping, and surface chemistry effects on the band structure are discussed. Finally, the combined use of ab initio and tight-binding approaches to predict the band structure and properties of electronic devices based on porous silicon is put forward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Baierle RJ, Caldas MJ, Molinari E, Ossicini S (1997) Optical emission from small Si particles. Solid State Commun 102(7):545–549

    Article  Google Scholar 

  • Bruno M, Palummo M, Marini A, del Sole R, Ossicini S (2007) From Si nano wires to porous silicon: the role of excitonic effects. Phys Rev Lett 98:036807

    Article  Google Scholar 

  • Buttard D, Bellet D, Dolino G, Baumbach T (1998) Thin layers and multilayers of porous silicon: X-ray diffraction investigation. J Appl Phys 83(11):5814–5822

    Article  Google Scholar 

  • Calcott PDJ (1977) Experimental estimates of porous silicon bandgap. In: Canham L (ed) Properties of porous silicon. INSPEC, London, p 202

    Google Scholar 

  • Cruz M, Wang C, Beltrán MR, Tagüeña-Martínez J (1996) Morphological effects on the electronic band structure of porous silicon. Phys Rev B 53(7):3827–3832

    Article  Google Scholar 

  • Cruz M, Wang C, Beltrán MR, Tagüeña-Martínez J, Rubo YG (1999) Supercell approach to the optical properties of porous silicon. Phys Rev B 59(23):15381–15387

    Article  Google Scholar 

  • Degoli E, Luppi M, Ossicini S (2000) From undulating Si quantum wires to Si quantum dots: a model for porous silicon. Phys Stat Sol A 182:301–306

    Article  Google Scholar 

  • Delerue C, Lannoo M, Alan G (1997) Porous silicon modeled as idealized quantum dots. In: Canham L (ed) Properties of porous silicon. INSPEC, London, p 212

    Google Scholar 

  • Delerue C, Lannoo M, Alan G (2001) Tight binding for complex semiconductor systems. Phys Stat Sol B 227(1):115–149

    Article  Google Scholar 

  • Fernández-Serra MV, Adessi C, Blasé X (2006) Surface segregation and backscattering in doped silicon nanowires. Phys Rev Lett 96:166805

    Article  Google Scholar 

  • Fujii M, Yamaguchi Y, Takase Y, Ninomiya K, Hayashi S (2004) Control of photoluminescence properties of Si nanocrystals by simultaneously doping n- and p-type impurities. Appl Phys Lett 85(7):1158–1160

    Article  Google Scholar 

  • He R, Yang P (2006) Giant piezoresistance effect in silicon nanowires. Nat Nanotechnol 1:42–46

    Article  Google Scholar 

  • Hong K-H, Kim J, Lee S-H, Shin JK (2008) Strain-driven electronic band structure modulation of Si nanowires. Nano Lett 8(5):1335–1340

    Article  Google Scholar 

  • Koga J, Nishio K, Yonezawa F, Yamaguchi T (2002) Theoretical study on the relation between structural and optical properties in Si nanostructures. Physica E 15:182–191

    Article  Google Scholar 

  • Koskinen P, Mäkinen V (2009) Density-functional tight-binding for beginners. Comput Mater Sci 47:237–253

    Article  Google Scholar 

  • Leu PW, Svizhenko A, Cho K (2008) Ab-initio calculations of the mechanical and electronic properties of strained Si nanowires. Phys Rev B 77:235305

    Article  Google Scholar 

  • Miu M, Danila M, Kleps I, Bragaru A, Simion M (2011) Nanostructure and internal strain distribution in porous silicon. J Nanosci Nanotechnol 11:9136–9142

    Article  Google Scholar 

  • Niquet Y-M, Delerue C, Krzeminski C (2012) Effects of strain on the carrier mobility in silicon nanowires. Nano Lett 12:3545–3550

    Article  Google Scholar 

  • Nolan M, O’Callaghan S, Fagas G, Greer JC, Frauenheim T (2007) Silicon nanowire band gap modification. Nano Lett 7(1):34–38

    Article  Google Scholar 

  • Onida G, Reining L, Rubio A (2002) Electronic excitations: density-functional versus many-body Green’s function approaches. Rev Mod Phys 74:601–659

    Article  Google Scholar 

  • Ossicini S (1997) Porous silicon modeled as idealized quantum wires. In: Canham L (ed) Properties of porous silicon. INSPEC, London, p 207

    Google Scholar 

  • Ossicini S, Pavesi L, Priolo F (2003) Light emitting silicon for microphotonics. Springer, New York, p 43

    Book  Google Scholar 

  • Ossicini S, Bisi O, Degoli E, Marri I, Iori F, Luppi E, Magri R, Poli R, Cantele G, Ninno D, Trani F, Marsili M, Pulci O, Olevano V, Gatti M, Gaal-Nagy K, Incze A, Onida G (2008) First-principles study of silicon nanocrystals: structural and electronic properties, absorption, emission, and doping. J Nanosci Nanotechnol 8:479–492

    Article  Google Scholar 

  • Petretto G, Debernardi A, Fanciulli M (2012) Electronic properties of pristine and Se doped [001] silicon nanowires: an ab initio study. J Nanosci Nanotechnol 12:8704–8709

    Article  Google Scholar 

  • Puzder A, Williamson AJ, Grossman JC, Galli G (2002a) Surface chemistry of silicon nanoclusters. Phys Rev Lett 88(9):097401

    Article  Google Scholar 

  • Puzder A, Williamson AJ, Grossman JC, Galli G (2002b) Surface control of optical properties in silicon nanoclusters. J Chem Phys 117:6721–6729

    Article  Google Scholar 

  • Ren SY, Dow JD (1992) Hydrogenated Si clusters: band formation with increasing size. Phys Rev B 45(12):6492–6496

    Article  Google Scholar 

  • Shiri D, Kong Y, Buin A, Anantram MP (2008) Strain induced change of bandgap and effective mass in silicon nanowires. Appl Phys Lett 93:073114

    Article  Google Scholar 

  • Shiri D, Verma A, Selvakumar CR, Anantram MP (2012) Reversible modulation of spontaneous emission by strain in silicon nanowires. Sci Rep 2:461. doi:10.1038/srep00461

    Article  Google Scholar 

  • Stanojevic Z, Baumgartner O, Sverdlov V, Kosina H (2010) Electronic band structure modeling in strained Si-nanowires: two band k · p versus tight binding. In: IEEE proceedings of the 14th international workshop on computational electronics, p 5–8. doi:10.1109/IWCE.2010.5677927

    Google Scholar 

  • Vasiliev I, Öğüt S, Chelikowsky JR (2001) Ab Initio absorption spectra and optical gaps in nanocrystalline silicon. Phys Rev Lett 86(9):1813–1816

    Article  Google Scholar 

  • Vázquez E, Tagüeña-Martínez J, Sansores LE, Wang C (2002) Surface relaxation effects on the properties of porous silicon. J Appl Phys 91(5):3085–3089

    Article  Google Scholar 

  • Williamson AJ, Crossman JC, Hood RQ, Puzder A, Galli G (2002) Quantum Monte Carlo calculations of nanostructure optical gaps: application to silicon quantum dots. Phys Rev Lett 89(19):196803

    Article  Google Scholar 

  • Wolkin MV, Jorne J, Fauchet PM, Allan G, Delerue C (1999) Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Phys Rev Lett 82(1):197–200

    Article  Google Scholar 

  • Wu Z, Neaton JB, Grossman JC (2009) Charge separation via strain in silicon nanowires. Nano Lett 9(6):2418–2422

    Article  Google Scholar 

  • Yao D, Zhang G, Li B (2008) A universal expression of band gap for silicon nanowires of different cross-section geometries. Nano Lett 8(12):4557–4561

    Article  Google Scholar 

  • Yorikawa H, Sato T, Muramatsu S (2004) Theoretical study of band edges in porous silicon. J Appl Phys 95(7):3569–3572

    Article  Google Scholar 

  • Zhao X, Wei CM, Yang L, Chou MY (2004) Quantum confinement and electronic properties of silicon nanowires. Phys Rev Lett 92:236805

    Article  Google Scholar 

  • Zheng Y, Rivas C, Lake R, Alam K, Boykin TB (2005) Electronic properties of silicon nanowires. IEEE Trans Electron Devices 52:1097–1103

    Article  Google Scholar 

  • Zhou Z, Brus L, Friesner R (2003) Electronic structure and luminescence of 1.1 and 1.4 nm silicon nanocrystals: oxide shell versus hydrogen passivation. Nano Lett 3(2):163–167

    Article  Google Scholar 

  • Zhuo K, Chou MY (2013) Surface passivation and orientation dependence in the electronic properties of silicon nanowires. J Phys Condens Matter 25:145501

    Article  Google Scholar 

  • Zonias N, Lagoudakis P, Skylaris C-K (2010) Large-scale first principles and tight-binding density functional theory calculations on hydrogen-passivated silicon nanorods. J Phys Condens Matter 22:025303

    Article  Google Scholar 

  • Zunger A, Wang L-W (1996) Theory of silicon nanostructures. Appl Surf Sci 102:350–359

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Tagüeña-Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Tagüeña-Martínez, J., Wang, C. (2014). Electronic Band Structure in Porous Silicon. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-04508-5_51-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04508-5_51-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-04508-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Electronic Band Structure in Porous Silicon
    Published:
    16 February 2017

    DOI: https://doi.org/10.1007/978-3-319-04508-5_51-2

  2. Original

    Electronic Band Structure in Porous Silicon
    Published:
    06 May 2014

    DOI: https://doi.org/10.1007/978-3-319-04508-5_51-1