Skip to main content

Advertisement

Log in

Rho-Kinase Inhibitor, Fasudil, Prevents Neuronal Apoptosis via the Akt Activation and PTEN Inactivation in the Ischemic Penumbra of Rat Brain

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Recently, some studies suggested that inhibition of Rho-kinase (ROCK) prevented cerebral ischemia injury through inhibiting inflammatory reaction, increasing cerebral blood flow, modulating the neuronal actin cytoskeleton polymerization, and preventing tau hyperphosphorylation and p25/CDK5 increase. However, there is little information regarding the effects of ROCK inhibitor on the neuronal apoptosis in ischemic brain injury. In this study, we determined whether ROCK inhibitor, fasudil, inhibited ischemic neuronal apoptosis through phosphatase and tensin homolog deleted on chromosome10 (PTEN)/Akt/signal pathway in vivo. Adult male Sprague–Dawley rats were subjected to permanent middle cerebral artery occlusion. Rats received ROCK inhibitor, fasudil (10 mg/kg), at 30 min before middle cerebral artery occlusion. The infarct area, neuronal apoptosis and caspase-3 activity was significantly decreased by fasudil with improvement of neurological deterioration. However, the beneficial effects of fasudil were attenuated by the co-application of LY294002 (PI3K inhibitor). Fasudil maintained postischemic Akt activity at relatively proper level and decreased the augmentation of PTEN and ROCK activity in the penumbra area. Furthermore, fasudil inhibited attenuation of GSK-β and Bad phosphorylation in the penumbra area. In conclusion, the findings provide another consideration that fasudil protects the brain against ischemia injury through decreasing neuronal apoptosis and reveals the link between the ROCK inhibition and the PTEN/Akt pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Bad:

Bcl-2 associated death protein

CBF:

Cerebral blood flow

HRP:

Horseradish peroxidase

MCAO:

Middle cerebral artery occlusion

MYPT:

Myosin-binding subunit of myosin light chain phosphatase

PI3K:

Phosphatidylinositol 3 kinase

PIP3:

Phosphatidylinositol (PI)-3,4,5-triphosphate

GSK-3:

Glycogen synthase kinase-3

PTEN:

Phosphatase and tensin homolog deleted on chromosome 10

RGCs:

Retinal ganglion cells

ROCK:

Rho-kinase

TBST:

Tris-buffered saline Tween-20

TTC:

2,3,5-Triphenyltetrazolium chloride

TUNEL:

Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling

References

  • Amano M, Fukata Y, Kaibuchi K (2000) Regulation and functions of Rho-associated kinase. Exp Cell Res 261:44–51

    Article  PubMed  CAS  Google Scholar 

  • Broughton BR, Reutens DC, Sobey CG (2009) Apoptotic mechanisms after cerebral ischemia. Stroke 40:e331–e339

    Article  PubMed  Google Scholar 

  • Castro-Alvarez JF, Gutierrez-Vargas J, Darnaudery M, Cardona-Gomez GP (2011) ROCK inhibition prevents tau hyperphosphorylation and p25/CDK5 increase after global cerebral ischemia. Behav Neurosci 125:465–472

    Article  PubMed  CAS  Google Scholar 

  • Chan PH (2004) Future targets and cascades for neuroprotective strategies. Stroke 35:2748–2750

    Article  PubMed  CAS  Google Scholar 

  • Chang J, Xie M, Shah VR, Schneider MD, Entman ML, Wei L, Schwartz RJ (2006) Activation of Rho-associated coiled-coil protein kinase 1 (ROCK-1) by caspase-3 cleavage plays an essential role in cardiac myocyte apoptosis. Proc Natl Acad Sci USA 103:14495–14500

    Article  PubMed  CAS  Google Scholar 

  • Croft DR, Coleman ML, Li S, Robertson D, Sullivan T, Stewart CL, Olson MF (2005) Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration. J Cell Biol 168:245–255

    Article  PubMed  CAS  Google Scholar 

  • Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241

    Article  PubMed  CAS  Google Scholar 

  • Endo H, Nito C, Kamada H, Nishi T, Chan PH (2006) Activation of the Akt/GSK3beta signaling pathway mediates survival of vulnerable hippocampal neurons after transient global cerebral ischemia in rats. J Cereb Blood Flow Metab 26:1479–1489

    Article  PubMed  CAS  Google Scholar 

  • Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C (2003) PI3K/Akt and apoptosis: size matters. Oncogene 22:8983–8998

    Article  PubMed  CAS  Google Scholar 

  • Gisselsson L, Toresson H, Ruscher K, Wieloch T (2010) Rho kinase inhibition protects CA1 cells in organotypic hippocampal slices during in vitro ischemia. Brain Res 1316:92–100

    Article  PubMed  CAS  Google Scholar 

  • Hamid SA, Bower HS, Baxter GF (2007) Rho kinase activation plays a major role as a mediator of irreversible injury in reperfused myocardium. Am J Physiol Heart Circ Physiol 292:H2598–H2606

    Article  PubMed  CAS  Google Scholar 

  • Kelly S, Zhao H, Hua Sun G, Cheng D, Qiao Y, Luo J, Martin K, Steinberg GK, Harrison SD, Yenari MA (2004) Glycogen synthase kinase-3 beta inhibitor Chir025 reduces neuronal death resulting from oxygen–glucose deprivation, glutamate excitotoxicity, and cerebral ischemia. Exp Neurol 188:378–386

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Dong X, Wang Z, Liu W, Deng N, Ding Y, Tang L, Hla T, Zeng R, Li L, Wu D (2005) Regulation of PTEN by Rho small GTPases. Nat Cell Biol 7:399–404

    Article  PubMed  CAS  Google Scholar 

  • Li L, Peng L, Zuo Z (2008) Isoflurane preconditioning increases B-cell lymphoma-2 expression and reduces cytochrome c release from the mitochondria in the ischemic penumbra of rat brain. Eur J Pharmacol 586:106–113

    Article  PubMed  CAS  Google Scholar 

  • Lingor P, Tonges L, Pieper N, Bermel C, Barski E, Planchamp V, Bahr M (2008) ROCK inhibition and CNTF interact on intrinsic signalling pathways and differentially regulate survival and regeneration in retinal ganglion cells. Brain 131:250–263

    PubMed  Google Scholar 

  • Ning K, Pei L, Liao M, Liu B, Zhang Y, Jiang W, Mielke JG, Li L, Chen Y, El-Hayek YH, Fehlings MG, Zhang X, Liu F, Eubanks J, Wan Q (2004) Dual neuroprotective signaling mediated by downregulating two distinct phosphatase activities of PTEN. J Neurosci 24:4052–4060

    Article  PubMed  CAS  Google Scholar 

  • Noshita N, Lewen A, Sugawara T, Chan PH (2001) Evidence of phosphorylation of Akt and neuronal survival after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab 21:1442–1450

    Article  PubMed  CAS  Google Scholar 

  • Rikitake Y, Kim HH, Huang Z, Seto M, Yano K, Asano T, Moskowitz MA, Liao JK (2005) Inhibition of Rho kinase (ROCK) leads to increased cerebral blood flow and stroke protection. Stroke 36:2251–2257

    Article  PubMed  CAS  Google Scholar 

  • Sanchez T, Skoura A, Wu MT, Casserly B, Harrington EO, Hla T (2007) Induction of vascular permeability by the sphingosine-1-phosphate receptor-2 (S1P2R) and its downstream effectors ROCK and PTEN. Arterioscler Thromb Vasc Biol 27:1312–1318

    Article  PubMed  CAS  Google Scholar 

  • Satoh S, Utsunomiya T, Tsurui K, Kobayashi T, Ikegaki I, Sasaki Y, Asano T (2001) Pharmacological profile of hydroxy fasudil as a selective rho kinase inhibitor on ischemic brain damage. Life Sci 69:1441–1453

    Article  PubMed  CAS  Google Scholar 

  • Satoh S, Toshima Y, Ikegaki I, Iwasaki M, Asano T (2007) Wide therapeutic time window for fasudil neuroprotection against ischemia-induced delayed neuronal death in gerbils. Brain Res 1128:175–180

    Article  PubMed  CAS  Google Scholar 

  • Satoh S, Toshima Y, Hitomi A, Ikegaki I, Seto M, Asano T (2008) Wide therapeutic time window for Rho-kinase inhibition therapy in ischemic brain damage in a rat cerebral thrombosis model. Brain Res 1193:102–108

    Article  PubMed  CAS  Google Scholar 

  • Schwartzbauer G, Robbins J (2001) The tumor suppressor gene PTEN can regulate cardiac hypertrophy and survival. J Biol Chem 276:35786–35793

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Wei L (2007) Rho kinase in the regulation of cell death and survival. Arch Immunol Ther Exp (Warsz) 55:61–75

    Article  Google Scholar 

  • Shin HK, Salomone S, Potts EM, Lee SW, Millican E, Noma K, Huang PL, Boas DA, Liao JK, Moskowitz MA, Ayata C (2007) Rho-kinase inhibition acutely augments blood flow in focal cerebral ischemia via endothelial mechanisms. J Cereb Blood Flow Metab 27:998–1009

    PubMed  CAS  Google Scholar 

  • van der Heijden M, Versteilen AM, Sipkema P, van Nieuw Amerongen GP, Musters RJ, Groeneveld AB (2008) Rho-kinase-dependent F-actin rearrangement is involved in the inhibition of PI3-kinase/Akt during ischemia-reperfusion-induced endothelial cell apoptosis. Apoptosis 13:404–412

    Article  PubMed  CAS  Google Scholar 

  • Vazquez F, Sellers WR (2000) The PTEN tumor suppressor protein: an antagonist of phosphoinositide 3-kinase signaling. Biochim Biophys Acta 1470:M21–M35

    PubMed  CAS  Google Scholar 

  • Yamashita K, Kotani Y, Nakajima Y, Shimazawa M, Yoshimura S, Nakashima S, Iwama T, Hara H (2007) Fasudil, a Rho kinase (ROCK) inhibitor, protects against ischemic neuronal damage in vitro and in vivo by acting directly on neurons. Brain Res 1154:215–224

    Article  PubMed  CAS  Google Scholar 

  • Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ (1995) Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80:285–291

    Article  PubMed  CAS  Google Scholar 

  • Yano K, Kawasaki K, Hattori T, Tawara S, Toshima Y, Ikegaki I, Sasaki Y, Satoh S, Asano T, Seto M (2008) Demonstration of elevation and localization of Rho-kinase activity in the brain of a rat model of cerebral infarction. Eur J Pharmacol 594:77–83

    Article  PubMed  CAS  Google Scholar 

  • Yao H, Takasawa R, Fukuda K, Shiokawa D, Sadanaga-Akiyoshi F, Ibayashi S, Tanuma S, Uchimura H (2001) DNA fragmentation in ischemic core and penumbra in focal cerebral ischemia in rats. Brain Res Mol Brain Res 91:112–118

    Article  PubMed  CAS  Google Scholar 

  • Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ (1996) Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 87:619–628

    Article  PubMed  CAS  Google Scholar 

  • Zhang QG, Wu DN, Han D, Zhang GY (2007) Critical role of PTEN in the coupling between PI3 K/Akt and JNK1/2 signaling in ischemic brain injury. FEBS Lett 581:495–505

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Shimohata T, Wang JQ, Sun G, Schaal DW, Sapolsky RM, Steinberg GK (2005) Akt contributes to neuroprotection by hypothermia against cerebral ischemia in rats. J Neurosci 25:9794–9806

    Article  PubMed  CAS  Google Scholar 

  • Zihni C, Mitsopoulos C, Tavares IA, Ridley AJ, Morris JD (2006) Prostate-derived sterile 20-like kinase 2 (PSK2) regulates apoptotic morphology via C-Jun N-terminal kinase and Rho kinase-1. J Biol Chem 281:7317–7323

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China [30672457 to Y. X.F. and 30971428 to D.F.W.].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongfang Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Li, J., Hu, H. et al. Rho-Kinase Inhibitor, Fasudil, Prevents Neuronal Apoptosis via the Akt Activation and PTEN Inactivation in the Ischemic Penumbra of Rat Brain. Cell Mol Neurobiol 32, 1187–1197 (2012). https://doi.org/10.1007/s10571-012-9845-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-012-9845-z

Keywords

Navigation