Skip to main content
Log in

CXCL12/CXCR4 Axis Improves Migration of Neuroblasts Along Corpus Callosum by Stimulating MMP-2 Secretion After Traumatic Brain Injury in Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

To investigate the effect of CXCL12 on migration of neural precursor cells after traumatic brain injury (TBI). We randomly divided 48 rats into four groups: (1) the sham group, rats were performed craniotomy only, (2) the control group, saline were injected into the ipsilateral cortex after TBI, (3) the CXCL12 group, CXCL12 were injected into the ipsilateral cortex after TBI, and (4) the CXCL12 + AMD3100 group, CXCL12 and AMD3100 were mixed together and injected into the ipsilateral cortex after TBI. At 7 days after TBI, the brain tissues were subjected to immunofluorescent double-labeled staining with the antibodies of CXCR4/DCX, MMP-2/DCX, MMP-2/GFAP, MMP-2/NeuN. Western blot assay was used to measure the protein levels of MMP-2. Compared with the control group, the number of CXCR4/DCX and MMP-2 positive cells around the injured corpus callosum area were significantly increased in the CXCL12 treatment group. The area occupied by these cells expanded and the shape changed from chain distribution to radial. CXCL12 + AMD3100 treatment significantly decreased the number and distribution area of CXCR4/DCX and MMP-2 positive cells compared with the CXCL12 treatment and control group. The DCX positive cells could not form chain or radial distribution. The protein expressions of MMP-2 had the similar change trends as the results of immunofluorescent staining. MMP-2 could be secreted by DCX, GFAP and NeuN positive cells. CXCL12/CXCR4 axis can improve the migration of the neuroblasts along the corpus callosum by stimulating the MMP-2 secretion of different types of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132(4):645–660. doi:10.1016/j.cell.2008.01.033

    Article  CAS  PubMed  Google Scholar 

  2. Martoncikova M, Fabianova K, Schreiberova A, Blasko J, Almasiova V, Racekova E (2014) Astrocytic and vascular scaffolding for neuroblast migration in the rostral migratory stream. Curr Neurovasc Res 11(4):321–329. doi:10.2174/1567202611666140903121253

    Article  CAS  PubMed  Google Scholar 

  3. Ramaswamy S, Goings GE, Soderstrom KE, Szele FG, Kozlowski DA (2005) Cellular proliferation and migration following a controlled cortical impact in the mouse. Brain Res 1053(1–2):38–53. doi:10.1016/j.brainres.2005.06.042

    Article  CAS  PubMed  Google Scholar 

  4. Salman H, Ghosh P, Kernie SG (2004) Subventricular zone neural stem cells remodel the brain following traumatic injury in adult mice. J Neurotrauma 21(3):283–292. doi:10.1089/089771504322972077

    Article  PubMed  Google Scholar 

  5. Jin K, Sun Y, Xie L, Peel A, Mao XO, Batteur S, Greenberg DA (2003) Directed migration of neuronal precursors into the ischemic cerebral cortex and striatum. Mol Cell Neurosci 24(1):171–189. doi:10.1016/S1044-7431(03)00159-3

    Article  CAS  PubMed  Google Scholar 

  6. Ohab JJ, Fleming S, Blesch A, Carmichael ST (2006) A neurovascular niche for neurogenesis after stroke. J Neurosci 26(50):13007–13016. doi:10.1523/JNEUROSCI.4323-06.2006

    Article  CAS  PubMed  Google Scholar 

  7. Parent JM (2003) Injury-induced neurogenesis in the adult mammalian brain. Neuroscientist 9(4):261–272. doi:10.1177/1073858403252680

    Article  PubMed  Google Scholar 

  8. Parent JM, Vexler ZS, Gong C, Derugin N, Ferriero DM (2002) Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol 52(6):802–813. doi:10.1002/ana.10393

    Article  PubMed  Google Scholar 

  9. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8(9):963–970. doi:10.1038/nm747

    Article  CAS  PubMed  Google Scholar 

  10. Kojima T, Hirota Y, Ema M, Takahashi S, Miyoshi I, Okano H, Sawamoto K (2010) Subventricular zone-derived neural progenitor cells migrate along a blood vessel scaffold toward the post-stroke striatum. Stem Cells 28(3):545–554. doi:10.1002/stem.306

    PubMed  Google Scholar 

  11. Picard-Riera N, Nait-Oumesmar B, Baron-Van Evercooren A (2004) Endogenous adult neural stem cells: limits and potential to repair the injured central nervous system. J Neurosci Res 76(2):223–231. doi:10.1002/jnr.20040

    Article  CAS  PubMed  Google Scholar 

  12. Christie KJ, Turbic A, Turnley AM (2013) Adult hippocampal neurogenesis, Rho kinase inhibition and enhancement of neuronal survival. Neuroscience 247:75–83. doi:10.1016/j.neuroscience.2013.05.019

    Article  CAS  PubMed  Google Scholar 

  13. Machado VM, Morte MI, Carreira BP, Azevedo MM, Takano J, Iwata N, Saido TC, Asmussen H, Horwitz AR, Carvalho CM, Araujo IM (2015) Involvement of calpains in adult neurogenesis: implications for stroke. Front Cell Neurosci 9:22. doi:10.3389/fncel.2015.00022

    Article  PubMed  PubMed Central  Google Scholar 

  14. Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, Frenkel D, Li J, Sidman RL, Walsh CA, Snyder EY, Khoury SJ (2004) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci USA 101(52):18117–18122. doi:10.1073/pnas.0408258102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yin W, Ma L, Zhang J, Huang K, Yang Q, Guo YY, Liu SB, Liu YH, Wu YM (2013) The migration of neural progenitor cell mediated by SDF-1 is NF-kappaB/HIF-1alpha dependent upon hypoxia. CNS Neurosci Ther 19(3):145–153. doi:10.1111/cns.12049

    Article  CAS  PubMed  Google Scholar 

  16. Addington CP, Pauken CM, Caplan MR, Stabenfeldt SE (2014) The role of SDF-1alpha-ECM crosstalk in determining neural stem cell fate. Biomaterials 35(10):3263–3272. doi:10.1016/j.biomaterials.2013.12.102

    Article  CAS  PubMed  Google Scholar 

  17. Cayre M, Canoll P, Goldman JE (2009) Cell migration in the normal and pathological postnatal mammalian brain. Prog Neurobiol 88(1):41–63. doi:10.1016/j.pneurobio.2009.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang L, Zhang ZG, Zhang RL, Gregg SR, Hozeska-Solgot A, LeTourneau Y, Wang Y, Chopp M (2006) Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin-activated endothelial cells promote neural progenitor cell migration. J Neurosci 26(22):5996–6003. doi:10.1523/JNEUROSCI.5380-05.2006

    Article  CAS  PubMed  Google Scholar 

  19. Singh S, Singh UP, Grizzle WE, Lillard JW Jr (2004) CXCL12-CXCR4 interactions modulate prostate cancer cell migration, metalloproteinase expression and invasion. Lab Invest 84(12):1666–1676. doi:10.1038/labinvest.3700181

    Article  CAS  PubMed  Google Scholar 

  20. Lee SR, Kim HY, Rogowska J, Zhao BQ, Bhide P, Parent JM, Lo EH (2006) Involvement of matrix metalloproteinase in neuroblast cell migration from the subventricular zone after stroke. J Neurosci 26(13):3491–3495. doi:10.1523/JNEUROSCI.4085-05.2006

    Article  CAS  PubMed  Google Scholar 

  21. Barkho BZ, Munoz AE, Li X, Li L, Cunningham LA, Zhao X (2008) Endogenous matrix metalloproteinase (MMP)-3 and MMP-9 promote the differentiation and migration of adult neural progenitor cells in response to chemokines. Stem Cells 26(12):3139–3149. doi:10.1634/stemcells.2008-0519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang RL, LeTourneau Y, Gregg SR, Wang Y, Toh Y, Robin AM, Zhang ZG, Chopp M (2007) Neuroblast division during migration toward the ischemic striatum: a study of dynamic migratory and proliferative characteristics of neuroblasts from the subventricular zone. J Neurosci 27(12):3157–3162. doi:10.1523/JNEUROSCI.4969-06.2007

    Article  CAS  PubMed  Google Scholar 

  23. Saha B, Jaber M, Gaillard A (2012) Potentials of endogenous neural stem cells in cortical repair. Front Cell Neurosci 6:14. doi:10.3389/fncel.2012.00014

    PubMed  PubMed Central  Google Scholar 

  24. Saha B, Peron S, Murray K, Jaber M, Gaillard A (2013) Cortical lesion stimulates adult subventricular zone neural progenitor cell proliferation and migration to the site of injury. Stem Cell Res 11(3):965–977. doi:10.1016/j.scr.2013.06.006

    Article  PubMed  Google Scholar 

  25. Yi X, Jin G, Zhang X, Mao W, Li H, Qin J, Shi J, Dai K, Zhang F (2013) Cortical endogenic neural regeneration of adult rat after traumatic brain injury. PLoS One 8(7):e70306. doi:10.1371/journal.pone.0070306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Reaux-Le Goazigo A, Van Steenwinckel J, Rostene W, Melik Parsadaniantz S (2013) Current status of chemokines in the adult CNS. Prog Neurobiol 104:67–92. doi:10.1016/j.pneurobio.2013.02.001

    Article  CAS  PubMed  Google Scholar 

  27. Turbic A, Leong SY, Turnley AM (2011) Chemokines and inflammatory mediators interact to regulate adult murine neural precursor cell proliferation, survival and differentiation. PLoS One 6(9):e25406. doi:10.1371/journal.pone.0025406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ozawa PM, Ariza CB, Ishibashi CM, Fujita TC, Banin-Hirata BK, Oda JM, Watanabe MA (2014) Role of CXCL12 and CXCR4 in normal cerebellar development and medulloblastoma. Int J Cancer. doi:10.1002/ijc.29333

    PubMed  Google Scholar 

  29. Belmadani A, Ren D, Bhattacharyya BJ, Hope TJ, Perlman H, Miller RJ (2015) Identification of a sustained neurogenic zone at the dorsal surface of the adult mouse hippocampus and its regulation by the chemokine SDF-1. Hippocampus. doi:10.1002/hipo.22428

    PubMed  PubMed Central  Google Scholar 

  30. Anstotz M, Cosgrove KE, Hack I, Mugnaini E, Maccaferri G, Lubke JH (2014) Morphology, input-output relations and synaptic connectivity of Cajal-Retzius cells in layer 1 of the developing neocortex of CXCR4-EGFP mice. Brain Struct Funct 219(6):2119–2139. doi:10.1007/s00429-013-0627-2

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lewellis SW, Knaut H (2012) Attractive guidance: how the chemokine SDF1/CXCL12 guides different cells to different locations. Semin Cell Dev Biol 23(3):333–340. doi:10.1016/j.semcdb.2012.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Itoh T, Satou T, Ishida H, Nishida S, Tsubaki M, Hashimoto S, Ito H (2009) The relationship between SDF-1alpha/CXCR4 and neural stem cells appearing in damaged area after traumatic brain injury in rats. Neurol Res 31(1):90–102. doi:10.1179/174313208X332995

    Article  CAS  PubMed  Google Scholar 

  33. Merino JJ, Bellver-Landete V, Oset-Gasque MJ, Cubelos B (2015) CXCR4/CXCR7 molecular involvement in neuronal and neural progenitor migration: focus in CNS repair. J Cell Physiol 230(1):27–42. doi:10.1002/jcp.24695

    Article  CAS  PubMed  Google Scholar 

  34. Leong SY, Turnley AM (2011) Regulation of adult neural precursor cell migration. Neurochem Int 59(3):382–393. doi:10.1016/j.neuint.2010.12.024

    Article  CAS  PubMed  Google Scholar 

  35. Bovetti S, Bovolin P, Perroteau I, Puche AC (2007) Subventricular zone-derived neuroblast migration to the olfactory bulb is modulated by matrix remodelling. Eur J Neurosci 25(7):2021–2033. doi:10.1111/j.1460-9568.2007.05441.x

    Article  PubMed  Google Scholar 

  36. Ra HJ, Parks WC (2007) Control of matrix metalloproteinase catalytic activity. Matrix Biol 26(8):587–596. doi:10.1016/j.matbio.2007.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Curran S, Murray GI (1999) Matrix metalloproteinases in tumour invasion and metastasis. J Pathol 189(3):300–308. doi:10.1002/(SICI)1096-9896(199911)189:3<300::AID-PATH456>3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  38. Kessenbrock K, Wang CY, Werb Z (2015) Matrix metalloproteinases in stem cell regulation and cancer. Matrix Biol 44–46C:184–190. doi:10.1016/j.matbio.2015.01.022

    Article  Google Scholar 

  39. Shen X, Wang S, Wang H, Liang M, Xiao L, Wang Z (2009) The role of SDF-1/CXCR4 axis in ovarian cancer metastasis. J Huazhong Univ Sci Technolog Med Sci 29(3):363–367. doi:10.1007/s11596-009-0320-0

    Article  PubMed  Google Scholar 

  40. Filippo TR, Galindo LT, Barnabe GF, Ariza CB, Mello LE, Juliano MA, Juliano L, Porcionatto MA (2013) CXCL12 N-terminal end is sufficient to induce chemotaxis and proliferation of neural stem/progenitor cells. Stem Cell Res 11(2):913–925. doi:10.1016/j.scr.2013.06.003

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Jin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, W., Yi, X., Qin, J. et al. CXCL12/CXCR4 Axis Improves Migration of Neuroblasts Along Corpus Callosum by Stimulating MMP-2 Secretion After Traumatic Brain Injury in Rats. Neurochem Res 41, 1315–1322 (2016). https://doi.org/10.1007/s11064-016-1831-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1831-2

Keywords

Navigation