Skip to main content

Large Eddy Simulation of a Low Pressure Turbine Cascade with Turbulent End Wall Boundary Layers

  • Conference paper
  • First Online:
Direct and Large Eddy Simulation XIII (DLES 2023)

Part of the book series: ERCOFTAC Series ((ERCO,volume 31))

Included in the following conference series:

  • 214 Accesses

Abstract

We present first results of an implicit large eddy simulation of the MTU T161 low pressure turbine at a Reynolds number of 90,000 and Mach number of 0.6, both based on isentropic exit conditions, using a high order discontinuous Galerkin method. The aim is to validate the numerical setup with respect to available experimental data. We discuss the steps taken to create realistic inflow boundary conditions in terms of end wall boundary layer thickness and free stream turbulence intensity. This is achieved by tailoring the input distribution of Reynolds stresses and turbulent length scale to a Fourier series based synthetic turbulence generator. Both blade loading and total pressure losses at midspan show excellent agreement with the measurements. Following a short discussion of the secondary flow structures emerging due to the interaction of the incoming boundary layer and the turbine blade, we show that this simulation is also able to reproduce loss distribution behind the blade over the whole channel height.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Denton, J.D.: The 1993 IGTI scholar lecture: loss mechanisms in turbomachines. J. Turbomach. 115(4), 621–656 (1993)

    Article  Google Scholar 

  2. Pichler, R., et al.: Large-eddy simulation and RANS analysis of the end-wall flow in a linear low-pressure turbine cascade, Part I: flow and secondary vorticity fields under varying inlet condition. J. Turbomach. 141(12), 121005 (2019)

    Article  Google Scholar 

  3. Gier, J., et al.: Preparation of aero technology for new generation aircraft engine LP turbines. In: 1st CEAS European Air and Space Conference, Berlin, Germany (2007)

    Google Scholar 

  4. Martinstetter, M., Niehuis, R., Franke, M.: Passive boundary layer control on a highly loaded low pressure turbine cascade. Turbo Expo: Power Land Sea Air 7, 1315–1326 (2010)

    Google Scholar 

  5. Müller-Schindewolffs, C., Baier, R.-D., Seume, J.R., Herbst, F.: Direct numerical simulation based analysis of RANS predictions of a low-pressure turbine cascade. J. Turbomach. 139(8), 081006 (2017)

    Article  Google Scholar 

  6. Rasquin, M., et al.: Computational campaign on the MTU T161 cascade. In: Hirsch, C., et al. (eds.) TILDA: Towards Industrial LES/DNS in Aeronautics. NNFMMD, vol. 148, pp. 479–518. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-62048-6_18

    Chapter  Google Scholar 

  7. Iyer, A., et al.: High-order accurate direct numerical simulation of flow over a MTU-T161 low pressure turbine blade. Comput. Fluids 226, 104989 (2021)

    Article  MathSciNet  Google Scholar 

  8. Afshar, N.F., Deutsch, J., Henninger, S., Kožulović, D., Bechlars, P.: Turbulence anisotropy analysis at the middle section of a highly loaded 3D linear turbine cascade using large eddy simulation. In: Global Power & Propulsion Technical Conference, Chania, Greece (2022)

    Google Scholar 

  9. Bergmann, M., Morsbach, C., Ashcroft, G.: Assessment of split form nodal discontinuous Galerkin schemes for the LES of a low pressure turbine profile. In: García-Villalba, M., Kuerten, H., Salvetti, M.V. (eds.) DLES 2019. ES, vol. 27, pp. 365–371. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-42822-8_48

    Chapter  Google Scholar 

  10. Kennedy, C.A., Gruber, A.: Reduced aliasing formulations of the convective terms within the Navier-Stokes equations for a compressible fluid. J. Comput. Phys. 227(3), 1676–1700 (2008)

    Article  MathSciNet  Google Scholar 

  11. Gassner, G.J., Winters, A.R., Kopriva, D.A.: Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations. J. Comput. Phys. 327, 39–66 (2016)

    Article  MathSciNet  Google Scholar 

  12. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131(2), 267–279 (1997)

    Article  MathSciNet  Google Scholar 

  13. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)

    Article  MathSciNet  Google Scholar 

  14. Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: Synthetic turbulence generators for RANS-LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems. Flow Turbul. Combust. 93(1), 63–92 (2014). https://doi.org/10.1007/s10494-014-9534-8

    Article  Google Scholar 

  15. Leyh, S., Morsbach, C.: The coupling of a synthetic turbulence generator with turbomachinery boundary conditions. In: García-Villalba, M., Kuerten, H., Salvetti, M.V. (eds.) DLES 2019. ES, vol. 27, pp. 349–355. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-42822-8_46

    Chapter  Google Scholar 

  16. Schlatter, P., Örlü, R.: Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116–126 (2010)

    Article  Google Scholar 

  17. Bergmann, M., Morsbach, C., Ashcroft, G., Kügeler, E.: Statistical error estimation methods for engineering-relevant quantities from scale-resolving simulations. J. Turbomach. 144(3), 031005 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Morsbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Morsbach, C., Bergmann, M., Tosun, A., Kügeler, E., Franke, M. (2024). Large Eddy Simulation of a Low Pressure Turbine Cascade with Turbulent End Wall Boundary Layers. In: Marchioli, C., Salvetti, M.V., Garcia-Villalba, M., Schlatter, P. (eds) Direct and Large Eddy Simulation XIII. DLES 2023. ERCOFTAC Series, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-031-47028-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-47028-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-47027-1

  • Online ISBN: 978-3-031-47028-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics