Skip to main content

Propidium Monoazide Real-Time Quantitative Polymerase Chain Reaction for Sulfate Reducing Bacteria Viability Assay

  • Chapter
  • First Online:
Trends and Innovations in Energetic Sources, Functional Compounds and Biotechnology

Abstract

Sulfate-reducing bacteria are harmful organisms to the oil industry. They produce hydrogen sulfide that acidifies the reservoirs (souring), corrodes structures, increases the concentration of sulfur, and consequently reduces the quality of the extracted oil. Traditional cultivation methods to detect and quantify these organisms are laborious and time-consuming. A Real Time Quantitative PCR methodology associated with propidium monoazide (PMA) was developed to assess the viability of Desulfovibrio vulgaris, which was subjected to a lethal heat treatment. After optimizing the PMA-qPCR methodology for this species, it was possible to detect reductions of 3 Log10 in samples containing 4.8 Log10 target copies/µL submitted to heat treatment and PMA at 50 µM, which corresponds to a 99.9% reduction in bacteria present in the samples. The obtained results suggests that PMA-qPCR methodology is a fast method for quantifying microbial viability in low-concentrated samples of Desulfovibrio vulgaris.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almeida, P.F., Carvalho, E.B., Souza, E.R., Carvalho, A.S., Silva, C.H.T.P., Taft, C.A.: Overview of sulfate-reducing bacteria and strategies to control biosulfide generation in oil waters. In: Taft, C.A. (ed.) Modern Biotechnology in Medicinal Chemistry and Industry, p. 197. Research Signpost, Kerala (2006)

    Google Scholar 

  2. Alvarez, G., González, M., Isabal, S., Blanc, V., León, R.: Method to quantify live and dead cells in multi-species oral biofilm by real-time PCR with propidium monoazide. AMB Express 3, 1–8 (2013). https://doi.org/10.1186/2191-0855-3-1

    Article  CAS  Google Scholar 

  3. Bahadori, A., Nwaoha, C., Clark, M.W.: Produced water. In: Bahadori, A., Nwaoha, C., Clark, M.W. (eds.) Dictionary of Oil, Gas, and Petrochemical Processing, p. 335. CRC Press, Boca Raton, FL (2014)

    Google Scholar 

  4. Bennet, D.G.: Oilfield microbiology: detection techniques used in monitoring problematic microorganisms such as sulphate-reducing bacteria SRB. In: Offshore Technol. Conf. Asia 2016, OTCA 2016, pp 3087–3099. https://doi.org/10.4043/26788-ms

  5. Bernardez, L.A., de Andrade Lima, L.R.P., Ramos, C.L.S., Almeida, P.F.: Eine kinetische analyse mikrobieller Sulfatreduktion in einem aszendenten anaeroben Füllkörper-Bioreaktor. Mine Water Environ. 31, 62–68 (2012). https://doi.org/10.1007/s10230-012-0170-z

    Article  CAS  Google Scholar 

  6. Bonetta, S., Pignata, C., Bonetta, S., Meucci, L., Giacosa, D., Marino, E., Gorrasi, I., Gilli, G., Carraro, E.: Effectiveness of a neutral electrolysed oxidising water (NEOW) device in reducing Legionella pneumophila in a water distribution system: a comparison between culture, qPCR and PMA-qPCR detection methods. Chemosphere 210, 550–556 (2018). https://doi.org/10.1016/j.chemosphere.2018.07.053

    Article  CAS  Google Scholar 

  7. Chaiyanan, S., Chaiyanan, S., Huq, A, Maugel, T., Colwell, R.R.: Viability of the nonculturable Vibrio cholerae O1 and O139. Syst. Appl. Microbiol. 24, 331–341 (2001). https://doi.org/10.1078/0723-2020-00032

  8. Chang, B., Taguri, T., Sugiyama, K., Amemura-Maekawa, J., Kura, F., Watanabe, H.: Comparison of ethidium monoazide and propidium monoazide for the selective detection of viable Legionella cells. Jpn. J. Infect. Dis.. J. Infect. Dis. 63, 119–123 (2010)

    Article  CAS  Google Scholar 

  9. Chang, C., Hung, N., Chen, N.: Optimization and application of propidium monoazide-quantitative PCR method for viable bacterial bioaerosols. J. Aerosol Sci. 104, 90–99 (2017). https://doi.org/10.1016/j.jaerosci.2016.11.002

    Article  CAS  Google Scholar 

  10. Contreras, P.J., Urrutia, H., Sossa, K., Nocker, A.: Effect of PCR amplicon length on suppressing signals from membrane-compromised cells by propidium monoazide treatment. J. Microbiol. MethodsMicrobiol. Methods 87, 89–95 (2011). https://doi.org/10.1016/j.mimet.2011.07.016

    Article  CAS  Google Scholar 

  11. Das, T., Sehar, S., Manefield, M.: The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development. Environ. Microbiol. Rep. 5, 778–786 (2013). https://doi.org/10.1111/1758-2229.12085

    Article  CAS  Google Scholar 

  12. Forghani, F., Langaee, T., Eskandari, M., Seo, K.-H., Chung, M.-J., Oh, D.-H.: Rapid detection of viable Bacillus cereus emetic and enterotoxic strains in food by coupling propidium monoazide and multiplex PCR (PMA-mPCR). Food Control 55, 151–157 (2015). https://doi.org/10.1016/j.foodcont.2015.02.049

    Article  CAS  Google Scholar 

  13. Hall-Stoodley, L., Lappin-Scott, H.: Biofilm formation by the rapidly growing mycobacterial species Mycobacterium fortuitum. FEMS Microbiol. Lett.Microbiol. Lett. 168, 77–84 (1998). https://doi.org/10.1016/S0378-1097(98)00422-4

    Article  CAS  Google Scholar 

  14. Heise, J., Nega, M., Alawi, M., Wagner, D.: Propidium monoazide treatment to distinguish between live and dead methanogens in pure cultures and environmental samples. J. Microbiol. MethodsMicrobiol. Methods 121, 11–23 (2016). https://doi.org/10.1016/j.mimet.2015.12.002

    Article  CAS  Google Scholar 

  15. Irfan, M., Siddiqui, M., Bashir, F., Butt, M.T., Abbas, N.: Efficient removal of hydrogen sulfide from wastewater using waste-tire-derived rubber particles. Int. J. Environ. Sci. Technol. 17, 3515–3524 (2020). https://doi.org/10.1007/s13762-020-02724-x

    Article  CAS  Google Scholar 

  16. Kalendar, R., Muterko, A., Shamekova, M., Zhambakin, K.: In silico PCR tools for a fast primer, probe, and advanced searching, pp. 1–31 (2017). https://doi.org/10.1007/978-1-4939-7060-5_1

  17. Kayigire, X.A., Friedrich, S.O., Karinja, M.N., van der Merwe, L., Martinson, N.A., Diacon, A.H.: Propidium monoazide and Xpert MTB/RIF to quantify Mycobacterium tuberculosis cells. Tuberculosis 101, 79–84 (2016). https://doi.org/10.1016/j.tube.2016.08.006

    Article  CAS  Google Scholar 

  18. Koga, Y.: Thermal adaptation of the archaeal and bacterial lipid membranes. Archaea (2012). https://doi.org/10.1155/2012/789652

  19. Kralik, P., Nocker, A., Pavlik, I.: Mycobacterium avium subsp paratuberculosis viability determination using F57 quantitative PCR in combination with propidium monoazide treatment. Int. J. Food Microbiol.Microbiol. 141, S80–S86 (2010). https://doi.org/10.1016/j.ijfoodmicro.2010.03.018

    Article  CAS  Google Scholar 

  20. Kramer, M., Obermajer, N., Bogovič Matijašić, B., Rogelj, I., Kmetec, V.: Quantification of live and dead probiotic bacteria in lyophilised product by real-time PCR and by flow cytometry. Appl. Microbiol. Biotechnol.Microbiol. Biotechnol. 84, 1137–1147 (2009). https://doi.org/10.1007/s00253-009-2068-7

    Article  CAS  Google Scholar 

  21. Krüger, N.J., Buhler, C., Iwobi, A.N., Huber, I., Ellerbroek, L., Appel, B., Stingl, K.: “Limits of control”—crucial parameters for a reliable quantification of viable Campylobacter by real-time PCR. PLoS One 9. https://doi.org/10.1371/journal.pone.0088108

  22. Lai, C.-H., Wu, S.-R., Pang, J.-C., Ramireddy, L., Chiang, Y.-C., Lin, C.-K., Tsen, H.-Y.: Designing primers and evaluation of the efficiency of propidium monoazide—quantitative polymerase chain reaction for counting the viable cells of Lactobacillus gasseri and Lactobacillus salivarius. J. Food Drug Anal. 1–10 (2016). https://doi.org/10.1016/j.jfda.2016.10.004

  23. Lee, B., Park, J.-Y., Park, K.W., Harn, C.H., Kim, H.M., Kim, C.-G.: Evaluating the persistence of DNA from decomposing transgenic watermelon tissues in the field. J. Plant Biol. 53, 338–343 (2010). https://doi.org/10.1007/s12374-010-9121-z

    Article  CAS  Google Scholar 

  24. Lee, E.-S., Lee, M.-H., Kim, B.-S.: Evaluation of propidium monoazide-quantitative PCR to detect viable Mycobacterium fortuitum after chlorine, ozone, and ultraviolet disinfection. Int. J. Food Microbiol.Microbiol. 210, 143–148 (2015). https://doi.org/10.1016/j.ijfoodmicro.2015.06.019

    Article  CAS  Google Scholar 

  25. Li, B., Chen, J.-Q.: Development of a sensitive and specific qPCR assay in conjunction with propidium monoazide for enhanced detection of live Salmonella spp. in food. BMC Microbiol. 13, 273 (2013). https://doi.org/10.1186/1471-2180-13-273

  26. Lohithesh, M.D., Agnihotri, A.K., Lal, B.: Control of sulfate reducing bacteria in oil & gas pipelines. In: Soc. Pet. Eng.—13th Abu Dhabi Int. Pet. Exhib. Conf. ADIPEC 2008, vol. 3, pp. 1809–1819 (2008)

    Google Scholar 

  27. Lopes, M.P., Cruz, Á.A., Xavier, M.T., Stöcker, A., Carvalho-Filho, P., Miranda, P.M., Meyer, R.J., Soledade, K.R., Gomes-Filho, I.S., Trindade, S.C.: Prevotella intermedia and periodontitis are associated with severe asthma. J. Periodontol.Periodontol. 91, 46–54 (2020). https://doi.org/10.1002/JPER.19-0065

    Article  CAS  Google Scholar 

  28. Løvdal, T., Hovda, M.B., Björkblom, B., Møller, S.G.: Propidium monoazide combined with real-time quantitative PCR underestimates heat-killed Listeria innocua. J. Microbiol. MethodsMicrobiol. Methods 85, 164–169 (2011). https://doi.org/10.1016/j.mimet.2011.01.027

    Article  CAS  Google Scholar 

  29. Magot, M., Ollivier, B., Patel, B.K.C.: Microbiology of petroleum reservoirs. Antonie Van Leeuwenhoek 77, 103–116 (2000)

    Article  CAS  Google Scholar 

  30. McKillip, J.L., Jaykus, L.-A., Drake, M.: Nucleic acid persistence in heat-killed Escherichia coli O157:H7 from contaminated skim milk. J. Food Prot. 8, 839–844 (1999)

    Article  Google Scholar 

  31. Nocker, A., Camper, A.K.: Selective removal of DNA from dead cells of mixed bacterial communities by use of ethidium monoazide. Appl. Environ. Microbiol.Microbiol. 72, 1997–2004 (2006). https://doi.org/10.1128/AEM.72.3.1997

    Article  CAS  Google Scholar 

  32. Nocker, A., Cheung, C.-Y., Camper, A.K.: Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J. Microbiol. MethodsMicrobiol. Methods 67, 310–320 (2006). https://doi.org/10.1016/j.mimet.2006.04.015

    Article  CAS  Google Scholar 

  33. Nocker, A., Sossa-Fernandez, P., Burr, M.D., Camper, A.K.: Use of propidium monoazide for live/dead distinction in microbial ecology. Appl. Environ. Microbiol.Microbiol. 73, 5111–5117 (2007). https://doi.org/10.1128/AEM.02987-06

    Article  CAS  Google Scholar 

  34. Nogva, H.K., Rudi, K.: Ethidium Monoazide for DNA-based differentiation of viable and dead bacteria by 5′-Nuclease PCR. Biotechniques 34, 804–813 (2003)

    Article  CAS  Google Scholar 

  35. Nwodo, U.U., Green, E., Okoh, A.I.: Bacterial exopolysaccharides: functionality and prospects. Int. J. Mol. Sci. 13, 14002–14015 (2012). https://doi.org/10.3390/ijms131114002

    Article  CAS  Google Scholar 

  36. Ogram, A., Sayler, G.S., Barkay, T.: The extraction and purification of microbial DNA from sediments. J. Microbiol.Microbiol. M7, 57–66 (1987)

    Google Scholar 

  37. Pan, Y., Breidt, F.: Enumeration of viable Listeria monocytogenes cells by real-time PCR with propidium monoazide and ethidium monoazide in the presence of dead cells. Appl. Environ. Microbiol.Microbiol. 73, 8028–8031 (2007). https://doi.org/10.1128/AEM.01198-07

    Article  CAS  Google Scholar 

  38. Peccia, J., Hernandez, M.: Incorporating polymerase chain reaction-based identification, population characterization, and quantification of microorganisms into aerosol science: a review. Atmos. Environ. 40, 3941–3961 (2006). https://doi.org/10.1016/j.atmosenv.2006.02.029

    Article  CAS  Google Scholar 

  39. Postgate, J.: Sulphate reduction by bacteria. Annu. Rev. Microbiol. 505–520 (1959)

    Google Scholar 

  40. Radulović, Z., Mirković, N., Bogović-Matijašič, B., Petrušić, M., Petrović, T., Manojlović, V., Nedović, V.: Quantification of viable spray-dried potential probiotic lactobacilli using real-time PCR. Arch. Biol. Sci. 64, 1465–1472 (2012). https://doi.org/10.2298/ABS1204465R

    Article  Google Scholar 

  41. Schirmack, J., Mangelsdorf, K., Ganzert, L., Sand, W., Hillebrand-Voiculescu, A., Wagner, D.: Methanobacterium movilense sp. nov., a hydrogenotrophic, secondary-alcohol-utilizing methanogen from the anoxic sediment of a subsurface lake. Int. J. Syst. Evol. Microbiol.Evol. Microbiol. 64, 522–527 (2014). https://doi.org/10.1099/ijs.0.057224-0

    Article  CAS  Google Scholar 

  42. Slimani, S., Robyns, A., Jarraud, S., Molmeret, M., Dusserre, E., Mazure, C., Facon, J.P., Lina, G., Etienne, J., Ginevra, C.: Evaluation of propidium monoazide (PMA) treatment directly on membrane filter for the enumeration of viable but non cultivable Legionella by qPCR. J. Microbiol. MethodsMicrobiol. Methods 88, 319–321 (2012). https://doi.org/10.1016/j.mimet.2011.12.010

    Article  CAS  Google Scholar 

  43. Soejima, T., Iida, K.I., Qin, T., Taniai, H., Seki, M., Yoshida, S.I.: Method to detect only live bacteria during PCR amplification. J. Clin. Microbiol.Microbiol. 46, 2305–2313 (2008). https://doi.org/10.1128/JCM.02171-07

    Article  CAS  Google Scholar 

  44. Stoddard, S.F., Smith, B.J., Hein, R., Roller, B.R.K., Schmidt, T.M.: RrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res. 43, D593–D598 (2015). https://doi.org/10.1093/nar/gku1201

    Article  CAS  Google Scholar 

  45. Takahashi, H., Gao, Y., Miya, S., Kuda, T., Kimura, B.: Discrimination of live and dead cells of Escherichia coli using propidium monoazide after sodium dodecyl sulfate treatment. Food Control 71, 79–82 (2017). https://doi.org/10.1016/j.foodcont.2016.06.022

    Article  CAS  Google Scholar 

  46. Van der Vliet, G.M.E., Schepers, P., Schukkink, R.A.F., Van Gemen, B., Klatser, P.R.: Assessment of mycobacterial viability by RNA amplification. Antimicrob. Agents Chemother.. Agents Chemother. 38, 1959–1965 (1994). https://doi.org/10.1128/AAC.38.9.1959

    Article  Google Scholar 

  47. Vendrame, M., Iacumin, L., Manzano, M., Comi, G.: Use of propidium monoazide for the enumeration of viable Oenococcus oeni in must and wine by quantitative PCR. Food Microbiol.Microbiol. 35, 48–57 (2013). https://doi.org/10.1016/j.fm.2013.02.007

    Article  CAS  Google Scholar 

  48. Vendrame, M., Manzano, M., Comi, G., Bertrand, J., Iacumin, L.: Use of propidium monoazide for the enumeration of viable Brettanomyces bruxellensis in wine and beer by quantitative PCR. Food Microbiol.Microbiol. 42, 196–204 (2014). https://doi.org/10.1016/j.fm.2014.03.010

    Article  CAS  Google Scholar 

  49. Wagner, D., Schirmack, J., Ganzert, L., Morozova, D., Mangelsdorf, K.: Methanosarcina soligelidi sp. nov., a desiccation and freeze-thaw-resistant methanogenic archaeon from a Siberian permafrost-affected soil. Int. J. Syst. Evol. Microbiol.Evol. Microbiol. 63, 2986–2991 (2013). https://doi.org/10.1099/ijs.0.046565-0

    Article  CAS  Google Scholar 

  50. Yáñez, M.A., Nocker, A., Soria-Soria, E., Múrtula, R., Martínez, L., Catalán, V.: Quantification of viable Legionella pneumophila cells using propidium monoazide combined with quantitative PCR. J. Microbiol. MethodsMicrobiol. Methods 85, 124–130 (2011). https://doi.org/10.1016/j.mimet.2011.02.004

    Article  CAS  Google Scholar 

  51. Yang, X., Badoni, M., Gill, C.O.: Use of propidium monoazide and quantitative PCR for differentiation of viable Escherichia coli from E. coli killed by mild or pasteurizing heat treatments. Food Microbiol.Microbiol. 28, 1478–1482 (2011). https://doi.org/10.1016/j.fm.2011.08.013

    Article  CAS  Google Scholar 

  52. Zacharias, N., Kistemann, T., Schreiber, C.: Application of flow cytometry and PMA-qPCR to distinguish between membrane intact and membrane compromised bacteria cells in an aquatic milieu. Int. J. Hyg. Environ. HealthHyg. Environ. Health 218, 714–722 (2015). https://doi.org/10.1016/j.ijheh.2015.04.001

    Article  CAS  Google Scholar 

  53. Zhang, Z.H., Wang, L.J., Xu, H.Y., Aguilar, Z.P., Liu, C.W., Gan, B., Xiong, Y.H., Lai, W.H., Xu, F., Wei, H.: Detection of non-emetic and emetic Bacillus cereus by propidium monoazide multiplex PCR (PMA-mPCR) with internal amplification control. Food Control 35, 401–406 2014. https://doi.org/10.1016/j.foodcont.2013.07.035

Download references

Acknowledgements

The authors acknowledge the financial support by CAPES for Igor Carvalho Fontes Sampaio’s grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Fernando de Almeida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sampaio, I.C.F., Matos, J.B.T.L., Chinalia, F.A., Stöcker, A., de Almeida, P.F. (2024). Propidium Monoazide Real-Time Quantitative Polymerase Chain Reaction for Sulfate Reducing Bacteria Viability Assay. In: Taft, C.A., de Almeida, P.F. (eds) Trends and Innovations in Energetic Sources, Functional Compounds and Biotechnology. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-031-46545-1_9

Download citation

Publish with us

Policies and ethics