Skip to main content
Log in

A Kinetic Analysis of Microbial Sulfate Reduction in an Upflow Packed-Bed Anaerobic Bioreactor

Eine kinetische Analyse mikrobieller Sulfatreduktion in einem aszendenten anaeroben Füllkörper-Bioreaktor

硫酸盐生物还原在厌氧型上流式填料床生物反应器中的反应动力学分析

Un análisis cinético de la reducción microbiana de sulfato en un biorreactor anaeróbico packed-bed con flujo ascendente

  • Technical Communication
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

The effects of initial sulfate concentration on anaerobic sulfate reduction and sulfide generation kinetics were investigated in an up-flow bioreactor, using a consortium of sulfate-reducing bacteria (SRB) from water produced from a Brazilian oil reservoir. Redox potential and sulfate concentration were measured to indicate the growth and activity of the SRB throughout the experimental runs. The results of the batch regime indicate that sulfate conversion and sulfide generation are both first-order processes for initial sulfate concentrations of 1,000 and 3,500 mg/L. The kinetic constants for the sulfate conversion indicate that the enhanced initial sulfate content was initially inhibiting, but that the sulfide generation reaction is almost independent of the initial sulfate concentration, likely due to the presence of at least two in-series processes that are faster than the microbial conversion of the sulfate.

Zusammenfassung

Die Auswirkungen unterschiedlicher Sulfatausgangskonzentrationen auf die anaerobe Sulfatreduktion und die Kenetik der Sulfidbildung wurden in einem aszendenten Bioreaktor untersucht. Dies geschah unter Verwendung sulfatredzierender Bakterien (SRB) aus Wasser einer brasilianischen Erdöllagerstätte. Um das Wachstum und die Aktivität der SRB während des Experiments festzustellen, wurden kontinuierlich Redoxpotential und Sulfatkonzentration gemessen. Aus dem Ergebnis des Batch-Tests ist ablesbar, dass beides, Sulfatumwandlung und Sulfidbildung, eine Funktion erster Ordnung der Ausgangssulfatkonzentration von 1000 und 3500 mg/L sind. Die kinetischen Konstanten für die Sulfatumwandlung zeigen, dass der erhöhte Sulfatausgangsgehalt zunächst verzögernd wirkte, die Reaktion der Sulfidbildung jedoch nahezu unabhängig von der anfänglichen Sulfatkonzentration ist. Dies ist wahrscheinlich auf zwei nacheinander ablaufende Reaktionsschritte zurückzuführen, die schneller ablaufen, als die mikrobielle Umwandlung des Sulfats.

摘要

利用巴西油田(Reconcavo Basin油田)水中的硫酸盐还原菌(SRB)在厌氧型上流式填料床生物反应器中进行硫酸盐微生物还原反应试验,研究硫酸盐起始反应浓度对硫酸盐厌氧菌还原和硫化物生成的反应动力学作用。研究通过测定反应装置中的氧化还原电位和硫酸盐浓度指示硫酸盐还原菌(SRB)在试验过程中的增殖和活性变化。批次处理试验结果表明:当硫酸盐起始浓度为1000 ~ 5000 mg/L 时,硫酸盐还原和硫化物生成均呈一阶反应过程。硫酸盐还原反应的反应动力常数说明:即使在提高硫酸盐起始反应浓度的条件下,硫酸盐微生物还原反应之初仍受抑制;而硫化物生成反应几乎与硫酸盐起始反应浓度无关。这种现象可能是由于反应装置中存在至少两个远比硫酸盐微生物转化快得多的反应过程造成的。

Resumen

Los efectos de la concentración inicial de sulfato sobre las cinéticas de reducción anaeróbica de sulfato y la generación de sulfuro, fueron investigados en un biorreactor de flujo ascendente utilizando un consorcio de bacterias sulfato-reductoras (SRB) proveniente del agua de un reservorio de combustible en Brasil. El potencial redox y la concentración de sulfato fueron medidos para indicar el crecimiento y la actividad de las SRB durante los experimentos. Los resultados del régimen en batch indican que la conversión de sulfato y la generación de sulfuro son procesos de primer orden para la concentración de sulfatos entre 1000 y 3500 mg/L. Las constantes cinéticas para la conversión de sulfato indican que ésta fue inicialmente inhibida al incrementar la concentración inicial de sulfato; en cambio, la reacción de generación de sulfuro es casi independiente de la concentración inicial de sulfato, debido a la presencia de al menos 2 procesos en serie que son más rápidos que la conversión microbiana del sulfato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Baskaran V, Nemati M (2006) Anaerobic reduction of sulfate in immobilized cell bioreactors, using a microbial culture originated from an oil reservoir. Biochem Eng J 31:148–159

    Article  Google Scholar 

  • Bernardez LA, Andrade Lima LRP, Almeida PF (2008) The hydrodynamics of an upflow packed-bed bioreactor at low Reynolds number. Braz J Pet Gas 2:114–121

    Google Scholar 

  • Chen CI, Mueller RF, Griebe T (1994) Kinetic analysis of microbial sulfate reduction by Desulfovibrio desulfuricans in an upflow porous media biofilm reactor. Biotechnol Bioeng 43:267–274

    Article  Google Scholar 

  • Cord-Ruwish R (1985) A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Meth 4:33–36

    Article  Google Scholar 

  • Elliott P, Ragusa S, Catcheside D (1998) Growth of sulfate-reducing bacteria under acidic conditions in an upflow anaerobic bioreactor as a treatment system for acid mine drainage. Water Res 32:3724–3730

    Article  Google Scholar 

  • Hammack RW, de Vegt AL, Schoeneman AL (1998) The removal of sulfate and metals from mine waters using bacterial sulfate reduction: pilot plant results. Mine Water Environ 17(1):8–27

    Article  Google Scholar 

  • Jong T, Parry DL (2003) Removal of sulfate and heavy metals by sulfate reducing bacteria in a bench scale upflow anaerobic packed bed reactor. Water Res 37:3379–3389

    Article  Google Scholar 

  • Kolmert Å, Wikström P, Hallberg KB (2000) A fast and simple turbidimetric method for the determination of sulfate in sulfate-reducing bacterial cultures. J Microbiol Meth 41:179–184

    Article  Google Scholar 

  • Lenz P, Massone A, Rozzi A, Verstraete W (1995) Effect of sulfate concentration and scraping on aerobic fixed biofilm reactors. Water Res 3:857–870

    Article  Google Scholar 

  • Lenz P, Vallero M, Esposito G, Zandvoort M (2002) Perspectives of sulfate reducing bioreactors in environmental biotechnology. Rev Environ Sci Biotechnol 1:311–325

    Article  Google Scholar 

  • Luo Q, Tsukamoto T, Zamzow K, Miller G (2008) Arsenic, selenium, and sulfate removal using an ethanol-enhanced sulfate-reducing bioreactor. Mine Water Environ 27(2):100–108

    Article  Google Scholar 

  • Millero FJ (1986) The thermodynamics and kinetics of the hydrogen sulfide systems in natural waters. Mar Chem 18:121–147

    Article  Google Scholar 

  • Moosa S, Harrison STL (2006) Product inhibition by sulphide species on biological sulphate reduction for the treatment of acid mine drainage. Hydrometallurgy 83:214–222

    Article  Google Scholar 

  • Moosa S, Nemati M, Harrison STL (2002) A kinetic study on anaerobic reduction of sulfate. Part I. Effect of sulfate concentration. Chem Eng Sci 57:2773–2780

    Article  Google Scholar 

  • Moosa S, Nemati M, Harrison STL (2005) A kinetic study on anaerobic reduction of sulfate. Part II. Incorporation of temperature effects in the kinetic model. Chem Eng Sci 60:3517–3524

    Article  Google Scholar 

  • Nagpal S, Chuichulcherm S, Peeva L, Livingston A (2000) Microbial sulfate reduction in a liquid-solid fluidized bed reactor. Biotechnol Bioeng 70:370–380

    Article  Google Scholar 

  • Nemati M, Jenneman GE, Voordouw G (2001) Mechanistic study of microbial control of hydrogen sulfide production in oil reservoirs. Biotechnol Bioeng 74:424–434

    Article  Google Scholar 

  • Okabe S, Nielsen PH, Characklis WG (1992) Factors affecting microbial sulfate reduction by Desulfovibrio desulfuricans in continuous culture: limiting nutrients and sulfide concentration. Biotechnol Bioeng 40:725–734

    Article  Google Scholar 

  • Okabe S, Nielsen PH, Jones WL, Characklis WG (1995) Sulfate product inhibition of Desulfovibrio desulfuricans in batch and continuous cultures. Water Res 2:571–578

    Article  Google Scholar 

  • Oyekola OO, van Hille R, Harrison STL (2010) Kinetic analysis of biological sulphate reduction using lactate as carbon source and electron donor: effect of sulphate concentration. Chem Eng Sci 65:4771–4781

    Article  Google Scholar 

  • Ros M, Mejac B (1991) Treatment of wastewater in an upflow packed-bed reactor. Water Sci Technol 24:81–88

    Google Scholar 

  • Tsukamoto TK, Killion HA, Miller GC (2004) Column experiments for microbial treatment of acid mine drainage: low-temperature, low-pH and matrix investigations. Water Res 38:1405–1418

    Article  Google Scholar 

  • Zamzow KL, Tsukamoto TK, Miller GC (2006) Waste from biodiesel manufacturing as an inexpensive carbon source for bioreactors treating acid mine drainage. Mine Water Environ 25:163–170

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) (Project numbers 475810/2008-2 and 476344/2009-5) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-Brazil) (Project number PNPD 014/089). C.L.S. Ramos thanks the FAPESB-Brazil for a MS scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. P. de Andrade Lima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernardez, L.A., de Andrade Lima, L.R.P., Ramos, C.L.S. et al. A Kinetic Analysis of Microbial Sulfate Reduction in an Upflow Packed-Bed Anaerobic Bioreactor. Mine Water Environ 31, 62–68 (2012). https://doi.org/10.1007/s10230-012-0170-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-012-0170-z

Keywords

Navigation