Keywords

3.1 Introduction

The Republic of Sakha (Yakutia) is located in the northeastern part of the Eurasian continent and is the largest region of the Russian Federation. The total area of the continental and insular territory of Yakutia, located in the basins of the rivers Lena, Yana, and Indigirka and the lower reaches of the Kolyma River, including the New Siberian Islands of the Arctic Ocean, is 3103.2 km2, i.e., 1/6 of the territory of Russia. More than 40% of Yakutia lies north of the Arctic Circle. Yakutia stretches 2500 km north-south and 2000 km east-west. The average thickness of the frozen layer reaches 300–400 m and, in the Vilyuy river basin, even 1500 m. The territory of the Yakutia is the largest reserve of the Earth’s biosphere, a global ecological reserve, and one of the climate regulators of the entire planet. Yakutia accounts for over 30% of the untouched nature of Russia and about 10% of the entire world (Popova et al., 2023). The territory of Yakutia is divided into four geographical zones: taiga forests (almost 80% of the area), tundra, forest tundra, and Arctic desert. The operational reserves of the Republic’s forest resources are estimated at 10.3 billion cubic meters.

Currently, the most pressing issues in the Yakutia herding industry are the disruptions of the snow cover, mining development, and predator population growth. The massive loss of reindeer due to predators exceeds the number of anomalies that the nomads can manage (Lavrillier & Gabyshev, 2018). This paper reviews the adaptive capacity in four reindeer herding regions in Yakutia (Fig. 3.1) using official statistical data and scientific literature.

Domesticated reindeer livestock is a vital resource for the traditional economy of the Indigenous peoples of the Russian Arctic. Klokov (2012, 2020) analyzed the variability of the reindeer population trends in different Arctic regions, the reasons why reindeer livestock increases in some areas and decreases in others, and how the population of domestic reindeer was affected by the collapse of the USSR. According to Golovnev et al., (2014), as cited by Klokov (2020), the dissolution of the Soviet Union caused a crisis in the social and political environment which Indigenous peoples had been adapting to for decades. In the crisis conditions, the peculiarities, which formerly would not be seen, played a decisive role: they helped some communities to overcome the crisis, while others were taken to the edge of catastrophe (Klokov, 2020).

3.2 The Homeland for Indigenous Peoples

Yakutia is home to five Indigenous reindeer herding peoples: Evenki, Even, Dolgan, Yukaghir, and Chukchi. Evenki and Even belong to the Tungus ethnolinguistic group, Dolgan is Turkic-speaking people, and Yukaghir forms an isolated language group.

In the north of the Republic, Yakut (Sakha) people also practice reindeer herding (Fig. 3.1). Reindeer husbandry in Yakutia covers a territory of 2.5 million km2 which is about 83% of the total area of the Republic (Oskal et al., 2009: 71). This section is focused on describing traditional reindeer herding practices of Evenki, Even, Dolgan, Yukaghir, and Chukchi peoples engaged in different types of herding: taiga and tundra reindeer herding. The changes brought by the Soviet power and later periods will be addressed separately.

Evenki inhabit a vast territory from the coast of the Sea of Okhotsk in the east of Russia to the Yenisei in the west, from the Arctic Ocean in the north to the Baikal region and the Amur in the south. They are also settled in Northern China. Traditionally, the Evenki led a nomadic lifestyle engaging in traditional economic activities such as reindeer herding, hunting, and seasonal fishing. According to the 2010 census, the number of Evenki in Yakutia is 21,008 people, or 55.5% of all Evenki living in Russia (Neustroeva & Semenova, 2018). Evenki reindeer herding belongs to the taiga type: reindeer herds were small and used for transportation purposes – Evenki would ride the animals – and milking. Domestic reindeer are slaughtered for meat only if fishing, a seasonal activity, is unsuccessful or when the family faces hunger.

Even live in five regions of the Russian Federation: the Republic of Sakha (Yakutia), Khabarovsk Krai, Magadan Oblast, Kamchatka Krai, and Chukotka Autonomous Okrug. In Russia, most Even live on the territory of Yakutia: 15,071 Even in 2010, or 67.3% of the total number of Even in Russia (Neustroeva & Semenova, 2018). The nomadic Even are reindeer herders and hunters, while fishing is secondary. Their reindeer herding belongs to the taiga mountain and tundra types. The Even used reindeer as transport for hunting and practiced riding and milking the animals. If hunting or fishing was unsuccessful, they slaughtered their reindeer for food. Their connection with the reindeer was very close, so the Even never killed them unless necessary.

Dolgan are nomadic Indigenous people. According to the 2010 census, 1906 Dolgan live in Yakutia, or 24.2% of all Dolgan in Russia (Neustroeva & Semenova, 2018). Their traditional occupations are reindeer herding, hunting, and fishing in some areas. The Dolgan lead a nomadic lifestyle without going beyond the forest tundra. Dolgan reindeer husbandry combines taiga-type reindeer herding and techniques of the Nenets sleigh herding. The Dolgan milked reindeer, used shepherd dogs, and hunted arctic foxes, geese, ducks, partridges, and wild reindeer.

Yukaghir inhabit three regions of the Russian Federation: the Republic of Sakha (Yakutia), Magadan Oblast, and Chukotka Autonomous Okrug. The Yukaghir are divided into two groups: tundra and taiga Yukaghir. According to the 2010 census, there were only 1603 Yukaghir in Russia – with 1281 people or 79.9% living in Yakutia (Neustroeva & Semenova, 2018). Traditionally, the Yukaghir have a nomadic and semi-nomadic lifestyle, which includes fishing and hunting. The tundra Yukaghir also herd reindeer, using them mainly for transportation.

Chukchi are the oldest inhabitants of the continental areas of the extreme northeast of Siberia, carriers of the intra-continental culture of wild reindeer hunting and fishing. The Chukchi are the smallest Indigenous group in the Republic of Sakha (Yakutia). According to the 2010 census, there were 670 Chukchi in the Republic, or 4.2% of all Chukchi living in Russia (Neustroeva & Semenova, 2018). The majority of Chukchi in Yakutia settle in the Nizhnekolymsky District – 506 people. Traditionally, coastal Chukchi hunt marine mammals, and inland Chukchi herd reindeer, their main source of subsistence, leading a nomadic lifestyle and using reindeer for transportation and meat.

Historically, there were two types of traditional economy in Yakutia: one based on reindeer herding and another one on sea mammal hunting. In the nineteenth century, the herd had from 3000–5000 to 10,000–12,000 animals. In the summer, the herders moved to the ocean coast or the mountains. With the onset of autumn, they moved inland to the forest borders for winter pastures, where they migrated between 5 and 10 km if necessary.

3.3 Important Reindeer Husbandry Region

With more than 170,000 reindeer, Yakutia is the area with the third largest number of reindeer in Russia. Today, 21 out of 34 municipal districts in the Republic are engaged in breeding domesticated reindeer (Table 3.1). In South Yakutia, taiga reindeer husbandry is spread throughout the administrative districts of Aldansky, Olekminsky, Ust-Maysky, and Neryungrinsky. Mountain taiga reindeer husbandry occupies most of the Republic, and most of the reindeer here are bred and herded by the Even, such as in the Tomponsky District. Tundra and forest-tundra reindeer husbandry is practiced in the Arctic zone, where all five Yakutia’s Indigenous peoples and Sakha people are involved in herding, and the northwest of Yakutia.

Today, 104 reindeer herding brigades employ 1295 people in Yakutia: brigadiers, herders, veterinarian reindeer herders, and workers in 21 districts (Official Portal of the State Assembly (Il Tumen) of the Republic of Sakha (Yakutia), 2021). These statistics do not aggregate data on the small number of personal subsidiary farms, but only the number of employees of officially registered legal entities. While the central part of the Republic no longer practices reindeer husbandry, the region has the potential for significant reindeer husbandry growth. There is a high diversity of reindeer breeds and sub-breeds in Yakutia. After the collapse of the Soviet Union and the transition to the market economy, reindeer husbandry in Yakutia deteriorated. Large reductions in domesticated reindeer were experienced (Fig. 3.2). In the 1990s alone, the number of reindeer fell by 2.5 times (Fig. 3.2). With a curtailment in breeding work, the rapid increase in predator populations as a control mechanism was halted. The economy weakened, and subsidies were reduced, topped by a reindeer slaughtering moratorium (Oskal et al., 2009). The moratorium on the commercial slaughtering of domesticated reindeer was lifted in 2005 (Dayanova et al., 2020). The reindeer livestock trends in different Russian Arctic regions depended on the number of reindeer in different institutional forms of reindeer husbandry (Klokov, 2020). The rapid growth of the livestock was observed only in the Nenets unregistered self-managing households in the West Siberian tundra, which were out of strict state control in the sphere of an informal economy. Another institutional form, reindeer herding enterprises, evolved in all other territories of reindeer husbandry in the Russian Arctic. It happened due to historical reasons, regional policies, and specific features of Indigenous communities’ adaptation. The future of reindeer husbandry is determined mainly by state support (Klokov, 2020).

Reindeer herding constitutes the basis of the traditional economy and culture of many Indigenous peoples in Eurasia. By the beginning of the twentieth century, most Evenki, Even, Chukchi, Yukaghir, and Dolgan households had already become significantly diverse, albeit remaining subsistence. Transportation reindeer herding, a core activity, was supported by hunting, fishing, and collecting berries and plants. Some peoples focused on hunting wild reindeer and elk, while Chukchi were engaged in large-scale reindeer herding, their main source of subsistence. However, most Indigenous peoples in the North were involved in domestic reindeer herding, which was of great importance as transportation.

By the end of the nineteenth century, gold was mined in South Yakutia, and Evenki began to transport goods on reindeer (Maksimov et al., 2001). Aldan gold mining in South Yakutia led to the construction of the Amur–Yakutsk Road (AYaM) in the 1920s and Evenki worked for the transportation of goods and post, while hunting became of secondary importance (Rumyantcev, 2015). By the end of the 1920s, reindeer herders had to extra feed the reindeer involved in intensive transportation of post; therefore, Evenki had to master a new type of labor – to harvest hay – while complementary feeding of reindeer with compound feed and salt was introduced after the Second World War (Rumyantcev, 2015). To our best knowledge, few reindeer were accounted for before the revolution. A sharp decrease in the reindeer population occurred over the early 1920s. Firstly, due to the First World War, when goods delivery was disturbed: there were no deliveries from 1918 to 1923, which led to the mass reindeer slaughter to feed the starving people. Secondly, the situation was aggravated by constant requisitioning and reindeer loss during the Civil War. The spread of necrobacillosis (Fusobacterium necrophorum) and icy ground led to mass reindeer mortality. Some pastures deteriorated during these years due to continuous grazing in the same place (Filippova et al., 2020: 178–179).

Collectivization in the northern territories began in 1927. It aimed at organizing supply, marketing, credit, and state financial assistance. Collectivization brought together consumption and production. In its initial stage, collectivization was voluntary and incentivized with loans and credit. In the beginning, only 15% of households undergo collectivization, mainly the poorest ones. The elimination of the prosperous households, known as kulaks, took place before, in 1930. By 1933, more than 80% of households were collectivized. After the expropriation, many herder families joined the kolkhozes, a form of a collective-owned enterprise (Kolesov, 1993). The establishment of the kolkhoz system brought immense changes. In some tundra areas, the emergence of large herds of domestic reindeer led to a reduction and then the disappearance of wild reindeer, which were the main hunting target for the Yukaghir and Even people. In the past, this would have inevitably resulted in starvation for the Indigenous communities. However, kolkhozes favored a shift from hunting to reindeer husbandry (Gogolev et al., 1975: 146). The authorities organized land and water allocation to secure the territories for kolkhozes. It resulted in the expropriation of the best pastures, hunting, and fishing lands from the kulaks. In 1931–1934, all these were assigned to kolkhozes (Postanovlenie VCIK, SNK RSFSR, 1930). As a result, during the 1930s, there was a widespread increase in the number of kolkhoz-owned reindeer. Reindeer numbers continued to increase even during the Second World War (1941–1945). In the post-war years, “millionaire collectiveFootnote 1kolkhozes emerged, in which the number of reindeer exceeded 10,000.

Reindeer husbandry technologies were changed, which led to fewer losses of reindeer. Kolkhozes used new grazing methods to tackle rapid pasture depletion, considering rotation grazing. Permanent corrals were built in the areas of the autumn slaughter and spring calving. As the economy of the kolkhozes strengthened, their facilities and equipment gradually improved. Later, the Soviet government launched a new round of social reforms in the 1950s. These reforms included the consolidation of agricultural enterprises, the removal of non-profitable settlements, and the relocation of the population to new villages. It had a detrimental effect on the life of the peoples of the North. Kolkhozes were merged and transformed into state-owned enterprises, or sovkhozes. The social conditions, living conditions, and production technologies in sovkhozes improved (Astahova et al., 2013). According to Khakhovskaya (2019) as cited by Klokov, “when the kolkhozes were reformed to sovkhozes, the reindeer became state property, and a new ‘war’ against reindeer herders started. The local authorities and the sovkhozes’ administration tried to make them change traditional ways of reindeer pasturing and increase the sovkhozes’ reindeer stock” (Klokov, 2020). From 1965 to 1968, land management aimed to increase the efficiency of pasture usage to benefit households. Reindeer husbandry innovations focused on enhancing meat production, which determined the herd structure with a predominance of the female population (Figs. 3.9a and 3.9b). However, this caused a setback in the traditional relationship between humans and reindeer. The reindeer were no longer a family member but a source of meat production. The herders started using rotation shift grazing: the brigade included two shift teams. One team was at the settlement, and the other was on round-the-clock duty with the herd. The reindeer were under constant supervision and control, which significantly increased herd survival. It also attracted more young people to reindeer husbandry, enabling them to spend quite a lot of time in the settlements. By the end of the 1970s, more than half of the reindeer herders were under 30 years of age. The shift method, however, replaced the family and clan organization of reindeer herding. The number of women in reindeer husbandry decreased dramatically, which also marked the disruption of the traditional nomadic way of life (Figs. 3.5a and 3.5b). Another innovation from the late 1970s was the slaughtering of yearlings for industrial meat production (Filippova et al., 2020: 187).

Since the 1990s, the number of reindeer and reindeer herders sharply decreased (Fig. 3.2 and Tables 3.4a, 3.4b and 3.5). Istomin (2020) discussed the diverse trajectories reindeer herding in Russia has taken in different areas of Russia after the collapse of the Soviet Union: (1) the northeastern/taiga trajectory, characterized by a collapse of Soviet-era state farms (sovkhozes) and a dramatic decrease of reindeer herding, and (2) the West Siberian trajectory, characterized by a collapse of sovkhozes and a boom in private reindeer herding. This diversity can be explained by three factors: the degree to which local reindeer herding has been “modernized” in the Soviet era, the legal status of the herders, and, most importantly, the worldview of “sovkhoism” as a complex of informal practices that manipulate collective property for personal advantage and communal security (Istomin, 2020).

3.4 Social and Economic Development of Neryungrinsky, Tomponsky, and Nizhnekolymsky Districts

Table 3.2 depicts the population scale of the Neryungrinsky District. In 1975, the industrial development of South Yakutia led to the foundation of the city of Neryungri. Before the Neryungrinsky region, the Timpton region was formed here in 1926 and abolished in 1963 (Rumyantcev, 2015). Today, the area of the municipal “Neryungrinsky District” is 98,800 km2, which is comparable with an average European country. According to the All-Russian Population Census of 2010, 1.6% of the population belongs to the Indigenous peoples of the North (in Yakutia −4.2%). The territory includes the city of Neryungri, six urban-type settlements, and two villages. The economy of the Neryungrinsky District is based on coal and gold mining industries and electricity generation. The Neryungrinsky District accounts for 20% of the total output of products and services in the Republic: 95% of the total coal produced in the Republic and over 30% of electricity (Investment Passport of Neryungri District). The region belongs to one of the most industrially developed regions of Yakutia and the entire Far East.

The population fluctuations in Tomponsky District are shown in Table 3.2. The decrease in the number of people is illustrated in Figs. 3.5a and 3.5b. The Tomponsky District was established on May 20, 1931, from four naslegs:Footnote 2 Tattinsky, Verkhoyansk, and two naslegs of the Oymyakonsky District. According to the All-Russian Population Census of 2010, 7.4% of the population belongs to the Indigenous peoples of the North. Today, the municipal district includes 2 urban-type settlements and 12 villages, united in 7 naslegs. Industrial production is developed in the region; coal and gold are mined.

The population scale of Nizhnekolymsky District is shown in Table 3.2. Nizhnekolymsky District was established in 1931. According to the All-Russian Population Census of 2010, 32.3% of the population belongs to the Indigenous peoples of the North. It includes the village of Chersky, a district center, and 11 other villages, united into 4 settlements. The district economy is based on reindeer herding: 12.2% of the Republic’s reindeer livestock settles in this district.

Despite the different patterns of natural resource use in the represented regions of Yakutia, all of them have reindeer herding enterprises in common. In general, reindeer herding is practiced in 21 districts of Yakutia in diverse areas, tundra, forest tundra, mountain taiga, and taiga, i.e., in the areas inhabited by the Indigenous peoples of the North. Reindeer herding is a unique economic enterprise that employs only Indigenous peoples. At the same time, it also remains an Indigenous way of life.

3.5 Dangerous and Poor Weather Conditions for Reindeer Husbandry in Nizhnekolymsky, Neryungrinsky, and Tomponsky Districts (Between 2016 and 2020)

Biological diversity is the basis and an indicator of biosphere integrity (Kirpotin et al., 2021). Together with climate change, its loss is one of the two most essential planetary boundaries (Tonkopeeva et al., 2023; van Rooij et al., 2023). Current changes in biodiversity in the vast landmass of Siberia are at an initial stage of inventory, even though the Siberian environment is experiencing rapid climate change, weather extremes, and a transformation of land use and management. Biodiversity changes affect traditional land use by Indigenous peoples (Kirpotin et al., 2021) and affect grazing conditions for reindeer (van Rooij et al., 2023). Mean air temperature in March, April, and May from 1960 has increased by more than 6 °C in Nizhnekolymsky compared to only 2 °C from 1966 in Tomponsky and more than 3 °C in Neryungri from 1920 until the present, showing variation in the territory of Yakutia (Figs. 3.3a, 3.3b, and 3.3c). These combined effects of an increase in spring temperature and biodiversity impact the economy of reindeer herders through “bad grazing years” (Table 3.3). Weather and climatic conditions are crucial factors in reindeer husbandry (Hanssen-Bauer et al., 2023). The seasonal weather conditions determine the features of grazing, the quality of feed, and the reindeer’s health (Liskevich et al., 2018). According to the report of the World Economic Forum (WEF) in 2017, extreme weather events rank first in the top 5 global risks. Between 1990 and 2000, 150–200 hazardous events of weather were registered annually in the Russian Federation. Since 2007, the number of dangerous weather events has exceeded 400 per year (Roshydromet, 2017). According to the reindeer herders and environmentalists themselves, the weather hazards for reindeer husbandry are:

  1. 1.

    In winter (during the period of snow cover):

    1. (a)

      Ice crust on the surface of the snow, in its thickness, or on the surface of the soil. The formation of the crust usually occurs during the pre-winter period when temperatures are close to zero, with subsequent frosts that prevent its breakdown, and less frequently during winter thaws.

    2. (b)

      Severe and prolonged frosts.

    3. (c)

      Blizzards and severe snowstorms.

    4. (d)

      Very deep snow cover, making it difficult for reindeer to forage (Fig. 3.8a, 3.8b).

  2. 2.

    In spring (April–June):

    1. (a)

      Blizzards or blizzards during calving season (in domestic reindeer, this is the month of May).

    2. (b)

      Sharp temperature fluctuations during the first weeks of calf life.

    3. (c)

      Violation of the usual timing of spring, especially the melting of ice too early on the water barriers that reindeer herders have to cross during migration.

  3. 3.

    In summer (July and August):

    1. (a)

      Prolonged hot, dry, windless weather.

  4. 4.

    In fall:

    1. (a)

      Disruption of the usual ice break timing due to the late onset of cold weather causes disruption in the normal rhythm of migrating and moving reindeer to winter or slaughter sites (Makeev et al., 2014).

However, warm winters in the tundra are much worse than cold ones, as thaws increase the risk of ice crust formation. And reindeer are adapted to cold temperatures because the thermoregulatory system is aimed at generating heat in the body. In summer, on the contrary, in hot weather, body thermoregulation works on “caloric extinguishing,” which in critical conditions leads to the fact that reindeer stop feeding and stop accumulating fat reserves and reindeer simply cannot survive the next winter and bring healthy offspring (Klokov & Mikhailov, 2017). Therefore, in order to understand the dangers of dangerous years and bad weather conditions for reindeer husbandry, we learned the opinion of the reindeer herders themselves, who directly face the consequences of adverse weather events (Table 3.3).

According to the All-Russia Research Institute of Hydrometeorological Information, World Data Centre (RIHMI-WDC), in early November and December 2016 in Chersky, the daytime temperature rose to positive values (Nizhnekolymsky). On December 8, 2016, a strong increase in temperature by +22.3° per day (Tmin for December 7 was −18.3 °C, and Tmax for December 8 rose to +4.0 °C) occurred. There was rain, wet snow, and wind from the southeast of 4–9 m/s, with gusts of up to 11–16 m/s. On December 9, the daytime temperature was +1 °C. There fell 4 mm of rain, and at the same time, there was heavy snow with a snow depth of 42 cm. At the station Ambarchik Bay on December 8 and 9, 2016, the synoptic situation was as follows: light snow, snowstorm, a southerly wind of 10–15 m/s, gusts of up to 17–22 m/s, and maximum temperature of +4.2 °C. This synoptic situation was caused by the eastern process – the removal of warm air and a cyclone from the Sea of Okhotsk in a northwesterly direction. This process is characterized by temperature increases, snow, strong wind, and snowstorms in some places. The duration of the process is 3–4 days, while in neighboring areas and stations, the temperatures may stay as low as −40 °C and even below because of the stable influence of the Siberian anticyclone.

These synoptic conditions in December 2016 resulted in the formation of an ice crust, which made it difficult for reindeer to get food. According to the reindeer herders themselves, December 2016 was abnormally warm; the temperature rose to 0 °C and above, followed by a sharp cold spell, which led to the death of 500 reindeer. According to the Hydrometeorological Centre, in November 2016, the air temperature was 6–11 degrees above average, and the amount of precipitation was five times higher than the monthly norm (maximum snow height = 72 cm). In general, 2016 was a record-breaking year in terms of precipitation (398 mm) over the past 30 years (Hydrometeorological Centre of Russia, 2016).

There was a sharp decline in reindeer from January to May 2018 in the Nizhnekolymsky District. It was due to the icing of pastures and deep snow cover with icy infusions, which made it difficult for the animals to find food. As a result, 5316 reindeer died because of the natural catastrophe.

According to the Hydrometeorological Centre of Russia, during the period from January to April 2018, 14 cases of air temperature rise to 0 °C and above (abnormal weather in winter) were registered: 2 cases in January and 12 cases in April. On January 30–31, 2018, warming was caused by the removal of warm air from the south of China together with a cyclone through Kamchatka to Chukotka, Kolyma, and the Arctic coast. During the day in Chersky, the maximum temperature was +2.0 °C, with south wind of 3–8 m/s, little snow, and a snow depth of 79 cm. First strong winds and snowstorms were observed in Nizhnekolymsky District followed by abrupt warming, and the air temperature was 20–24 °C above average. Such sharp temperature fluctuations in winter lead to the compaction of snow cover and the formation of snow and ice crusts, which significantly complicates the extraction of snow fodder by reindeer. As a result, in Nizhnekolymsky District, more than 5000 reindeer (young animals) died over a 5-month period (from January to May 2018). In addition, the situation was complicated by the fact that fodder for domestic animals, including reindeer, was delivered too late because of the late opening of winter routes. As a result, the number of reindeer across the Republic decreased by 2.7% compared to December 2017 (Pavlova, 2018) (Figs. 3.8a and 3.8b).

The average annual temperature in 2017 reached a maximum, repeating the achievement of 2007 in the Neryungrinsky District (Chulman and Neryungri) (Table 3.3) (Roshydromet, 2017). There were anomalies in the annual average air temperature during the whole year: up to 1 °C in EPR (European part of Russia), up to −2 °C in Siberia and in the Far East, and + 3 °C to +5 °C in the Arctic regions, in the northeast of Yakutia, and in Chukotka (Hydrometeorological Centre of Russia, 2017; Popova et al., 2023). Autumn 2017 was also remembered for the fact that there was a lot of precipitation. The amount of precipitation was 2–3 times larger than average or even more. In the south of Yakutia, the amount of precipitation was 2–3 times higher, in Yakutia, at the end of October, and the amount of precipitation exceeded monthly norms (Hydrometeorological Centre of Russia, 2017). According to reindeer herders, the autumn of 2017 was remembered for the fact that the first snow fell late, and in some places, ice crusts formed on the pastures. According to the actual data for the Nagorny settlement, temperatures in October ranged from −12.1 to +4.5 °C, respectively; it rained until mid-October, and the first snow fell on October 19, with 4 mm of precipitation falling per 1 day. Due to temperature fluctuations and zero-crossings, the snow melted and formed a crust of ice, making it difficult for the reindeer to get food. During the month, the snow depth varied due to snow melting, and only in November a stable snow cover was established. In October–November 2017, the snow fell late and then melted; on some reindeer pastures, there was a crust in places where the snow did not melt (Kolesov: personal communication 2020). Also, in October, there was low drifting snow and snowstorms (12 cases in October), with gusts of wind of up to 10–15 m/s, which also complicated reindeer grazing and worsened the visibility – a prerequisite for herders to control their reindeer.

One of the adverse events in autumn is wet snow and rain, which is often observed in the south of Yakutia. On November 5 at Neryungri station, a rain shower was observed (RIHMI-WDC). The day or two before the onset of rain, the air temperature at night dropped to −22.1 °C, the daytime temperature was −12.2 °C, there was little snow, and the weather was warm. Then, during the day, the temperature increased by +10 °C, there was a weak rain shower, the wind was 5–10 m/s from the south, and during the day, the temperature was −0.8 °C. This synoptic situation was caused by warm air from the south and Neryungri District was located in front of the cyclone. Rain in winter and an abrupt temperature rise contribute to the formation of rain crust on the snow, which, if thick enough, is dangerous for the reindeer. On the next day, November 6, the temperature dropped by 10 degrees, and there was heavy rain snow and wind with gusts of up to 10–15 m/s. In the following days, the temperature was within −10 to −15 °C, and then starting from November 15, there were frosts of −20 °C and lower (typical for November temperature). Also, for October–November at this station, 23 cases of gusty wind of up to 10–15 m/s, low-level snow drifting, and snowstorms were recorded.

In general, October and November are characterized by unstable weather, temperature changes, mixed precipitation (snow, wet snow), drifting snow, and blizzards, which are quite common. But rain in November is a rare phenomenon and is considered abnormal for this period.

3.6 Reindeer Husbandry Adaptation in Yakutia

In biology, adaptation refers to the process of adjusting behavior, physiology, or structure to become more suited to an environment. Johan Mathis Turi, the former Chair of the International Centre for Reindeer Husbandry (ICR) and President of the Association of World Reindeer Herders (WRH), stated that the concept of adaptation, rather than stability, is inherent in reindeer herding societies: We have some knowledge about how to live in a changing environment. The term “stability” is a foreign word in our language. Our search for adaptation strategies is not connected to “stability” in any form but is focused on constant adaptation to changing conditions (Mathiesen, 2023; Tonkopeeva et al., 2023). Massive loss of reindeer due to predators exceeds the number of anomalies that the nomads can manage and can be seen as maladaptation (Lavrillier & Gabyshev, 2018). In addition to the accumulation of climate change anomalies, economic crisis, industrial development (which also reduces nomadic space), and the absence of land rights (which complicates access to ancestral lands), the disaster provoked by predators reveals vulnerability (Lavrillier & Gabyshev, 2018). We can adapt to climate anomalies, industrial development, new illnesses, and economic crisis, but how can we protect our herd against predators (Lavrillier & Gabyshev, 2018)? Alexander Struchkov, Even reindeer herder from Tomponsky region, expressed in 2009: “Every herder has to adapt himself as you say adaptation, everyone has their method” (Oskal et al., 2009). Istomin and Dwyer (2010) suggested that as far as reindeer herding systems are concerned, animal behavior and the herders’ actions can be best understood as being a product of a dynamic mutual adaptation (or the lack of) between animal behavioral patterns and the herders’ patterns of actions. They conclude: “dynamic adaptation results in shaping specific animal behavioral traits and human herding technologies that either lead to increased efficiency of a pastoralist system or lead to the destabilization of such systems and even their eventual collapse.” Vassily Namchaivyn, Chukchi herder, expressed: “Remember, it is not us reindeer herders who have been the cause of climate change. The reindeer know what paths to take. Many people have lost their connection with Nature, but the animals maintain this connection and that is why we follow the reindeer” (Mathiesen et al., 2018).

One of the main threats to reindeer husbandry in Yakutia is predation. The main threat to the future existence of some of these Indigenous societies is the high population of bears, wolves, wolverines, lynxes, and eagles that prey on reindeer during the calving season (Figs. 3.4a and 3.4b). Over the past years, the number of wolves in Yakutia has remained at approximately 3500–4000 (Akimova, 2021). The Directorate of Biological Resources, Specially Protected Natural Areas and Natural Parks of Yakutia is no longer able to provide effective assistance to wolf control in the districts, and the number of reindeer loss to wolves is growing (Akimova, 2021). Russia did not ratify the Bern Convention for the protection of large predators yet but follows the convention in local management practice. Russia is an observer to this convention and could have allowed the regulation of predators via helicopter hunting. Spring is the reindeer calving season. Evenki reindeer herders in South Yakutia report that the loss of calves to bears can be as high as 50% in the first few weeks after calving. It is affecting reindeer herding communities all over Yakutia. According to the Ministry of Ecology, Nature Management, and Forestry of Yakutia, the total number of brown bears in 2017–2018 is estimated at 17,000 bears. The number of brown bears seems to increase due to the lack of recruited hunters, the high cost of the tax levy for issuing a permit to hunt brown bears, migration from neighboring regions due to fires, an improvement in the food supply, and a high birth rate (Ministry of Ecology, Nature Management, and Forestry of Yakutia, 2018). After bears are coming out of hibernation, the size of bears’ stomachs is rather small, which makes them forage less than in autumn. For that very reason, bears mainly eat small reindeer calves after they are born and they do not hunt grown reindeer (Kolesov, personal conversation, 2021). Hunting for these predators is especially difficult in the mountainous and taiga regions of the Republic due to the landscape. As a consequence, the use of motor vehicles for transportation to hunting wolves is not particularly effective. “Wolf hunting in the taiga is completely different from hunting in the tundra, where you can use snowmobiles. Wolves are very difficult to get, so the control over their population should be carried out systematically involving the experience of herders, because we have the traditional methods of dealing with wolves, and we know a lot about their habits” (Pogodaev & Oskal, 2015).

Indigenous peoples hold ancient knowledge that was enacted in everyday life, developed over millennia, and transmitted through generations. This knowledge helped them thrive in the harshest conditions of tundra and taiga. It also reflects in the hunting skills of the Indigenous peoples of Yakutia and their knowledge about animals’ behavior. For example, Evenki reindeer herders, whose main traditional activity besides reindeer herding is also hunting, know what kind of reindeer bears would choose to chase and kill (Kolesov, personal conversation, 2021). Another example is about Yukaghir elders who remember that one should not hunt all the wolves that inhabit your area, because wolves will also protect “their” territory from wolves of a “stranger” territory, meaning they will not let other wolves hunt on your area (Shadrin, personal conversation, 2020).

Routine reindeer and household chores and hunting regulations prevent herders from the meaningful hunt for predators to protect the reindeer. Thus, it is necessary to cooperate and assist in controlling the number of predators to preserve the reindeer population and reindeer husbandry in the region. The appearance of wild dogs that attack reindeer also aggravates the current problem. The dogs arrived in the taiga with industrial shift workers. Quite often, when the shifts are over, laborers leave and abandon dogs that later stray into herds (Personal conversion with reindeer herders, 2020). Therefore, we recommend that mining and industrial enterprises impose strict rules for their employees for inappropriate treatment of personal animals. Reindeer herders in the taiga regions believe that shooting predators from helicopters and fencing off the calving pastures with an animal net can be more effective for controlling predators’ numbers and protecting reindeer.

The Working Group II of the Intergovernmental Panel on Climate Change’s Fifth Assessment Report (IPCC AR 5 WG II) concluded that the protection of grazing land should be the most important adaptive strategy for reindeer herders under climate change (Larsen et al., 2014). The decreasing of pastures for wild and domestic reindeer is affected by an increase in the densities of predators on the remaining territories. The loss and degradation of reindeer pastures are often associated with oil and gas production, mining, and infrastructure development. Taiga reindeer herding areas in South Yakutia also face challenges: industrial development and loss of pastures (Figs. 3.6, 3.7a and 3.7b).

3.7 Conclusion

In reindeer husbandry, as in other sectors of the economy, weather conditions play a significant role, and if domestic reindeer are kept year-round, adverse weather conditions are observed in every season. Throughout the year on reindeer pastures, there are changes associated with the change of seasons but also rapid changes in weather conditions during the day or several days.

Unfavorable weather phenomena for reindeer herding are extremely low temperatures, high snow cover (height from 1 m and more), sharp warming (thaw) in winter, wet snow (during the calving period), rain (in winter), blizzards, and abnormal heat in summer. Such unfavorable weather conditions lead to different consequences, such as the death of reindeer, low business output, the death of young animals, and exhaustion from lack of food due to pasture endowment. Due to late autumn, as noted by reindeer herders, the “corallization” of reindeer and other work sometimes takes place 1 month late, which also has a negative impact on reindeer herding.

Authors argue that the condition for the success of traditional reindeer husbandry is the informal economic environment. Peculiarities of the regional politics and adaptation of Indigenous communities affect the numbers of reindeer differently (Klokov, 2020). After the collapse of the Soviet Union, the development of reindeer herding took very different trajectories in different parts of Russia. The northeast Siberian and taiga direction is characterized by a dramatic decrease in reindeer herding. It went hand-in-hand with the collapse of post-sovkhoz collectives in the 1990s (Istomin, 2020). The number of reindeer has reduced in all regions, but the number of reindeer herders decreased more in the south (taiga) than in the north (tundra) (Fig. 3.2). Young reindeer herders in the taiga zone of South Yakutia must not be left behind and have equal support as those in the Arctic zone of Yakutia (Fig. 3.5b).

The large population of wolves (3500) and bears (14,000–17,000) as well as other predators such as lynxes, wolverines, and eagles in Yakutia became a challenge to reindeer herding communities. The industrial Soviet transformation of reindeer husbandry in Yakutia affected the Indigenous communities. The fact that traditional reindeer husbandry in South Yakutia still exists despite heavy industrial development in the region shows that Evenki reindeer herders can be resilient to changes. Yet, there are more challenges and changes, which means that it is necessary to enhance the resilience of the herding communities. There is a need for technical and financial assistance in the development of traditional livelihoods. Herders also have to resort to Indigenous knowledge of adaptation and resilience. The past 100 years of transforming reindeer husbandry and collectivization have affected traditional knowledge transfer from one generation to another. The original family-based system was gone after the Indigenous lifestyle became sedentary. Such a transition weakened the direct connection between practical experience and family life. It is an opportunity for them to observe and experience the nomadic way of life and participate in traditional practices.

Indigenous peoples hold ancient knowledge that was enacted in everyday life, developed over millennia, and transmitted through generations. This knowledge helped them thrive in the harshest conditions of tundra and taiga. It also reflects in the hunting skills of the Indigenous peoples of Yakutia and their knowledge about animals’ behavior. Co-producing knowledge between Indigenous communities and scientists should aim for increased hunting efficiency, especially in the reindeer breeding season during the first weeks after calving to protect reindeer and Indigenous economies.

Adaptation to climate change requires long-term sustainable thinking training for local leaders within Indigenous and grassroots communities. This educational goal should reside on the best available adaptation knowledge. It is necessary to offer new means of delivering education to practitioners of traditional livelihoods, especially those in remote areas.