Skip to main content

Cell Fusion and Syncytia Formation in Cancer

  • Chapter
  • First Online:
Syncytia: Origin, Structure, and Functions

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 71))

Abstract

The natural phenomenon of cell–cell fusion does not only take place in physiological processes, such as placentation, myogenesis, or osteoclastogenesis, but also in pathophysiological processes, such as cancer. More than a century ago postulated, today the hypothesis that the fusion of cancer cells with normal cells leads to the formation of cancer hybrid cells with altered properties is in scientific consensus. Some studies that have investigated the mechanisms and conditions for the fusion of cancer cells with other cells, as well as studies that have characterized the resulting cancer hybrid cells, are presented in this review. Hypoxia and the cytokine TNFα, for example, have been found to promote cell fusion. In addition, it has been found that both the protein Syncytin-1, which normally plays a role in placentation, and phosphatidylserine signaling on the cell membrane are involved in the fusion of cancer cells with other cells. In human cancer, cancer hybrid cells were detected not only in the primary tumor, but also in the circulation of patients as so-called circulating hybrid cells, where they often correlated with a worse outcome. Although some data are available, the questions of how and especially why cancer cells fuse with other cells are still not fully answered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASCT2:

Alanine serine cysteine transporter 2

BiFC:

Bimolecular fluorescence complementation

BMDC:

Bone marrow-derived cell

BMT:

Bone marrow transplantation

CAF:

Cancer-associated fibroblast

CCC:

Circulating cancer cell

CHC:

Circulating hybrid cell

CRLM:

Colorectal liver metastasis

CS/IC:

Cancer stem/initiating cell

CTC:

Circulating tumor cell

DC-STAMP:

Dendritic cell-specific transmembrane protein

DSP:

Dual split protein

DSS:

Disease-specific survival

EAC:

Esophageal adenocarcinoma

EC:

Endometrial carcinoma

FDR:

Fluorescence double reporter

g-aCTC:

Giant atypical circulating tumor cell

GFP:

Green fluorescent protein

GPI:

Glycosylphosphatidylinositol

HCC:

Hepatocellular carcinoma

HE:

Hematoxylin-eosin

HERV:

Human endogenous retrovirus

HIF-1α:

Hypoxia inducible factors-1α

HST/PR:

Heterokaryon-to-synkaryon transition/ploidy reduction

HTR2B:

5-hydroxytryptamine receptor 2B

HUVEC:

Human umbilical vein endothelial cell

IHC:

Immunohistochemistry

iMSC:

Immortalized mesenchymal stem cell

mRNA:

Messenger ribonucleic acid

MSC:

Mesenchymal stem cell

NAT:

Neoadjuvant therapy

NK cells:

Natural killer cells

NSCLC:

Non-small cell lung cancer

PANK/KRT/CK:

Pan cytokeratin

pCR:

Pathologic complete response

PGCC:

Polyploid giant cancer cell

PHSP:

Post-hybrid selection process

PS :

Phosphatidylserine

RAC:

Rectal adenocarcinoma

RANKL:

Receptor activator of NF-κB ligand

RFP:

Red fluorescent protein

RT-PCR:

Real-time polymerase chain reaction

SCC-9 :

Squamous cell carcinoma 9

shRNA:

Small hairpin ribonucleic acid

siRNA:

Small interfering ribonucleic acid

STR:

Short tandem repeat

TAM:

Tumor-associated macrophage

TMEM16:

Transmembrane member 16

UCC:

Urothelial cell carcinoma

References

  • Abmayr SM, Pavlath GK (2012) Myoblast fusion: lessons from flies and mice. Development 139:641–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F et al (2020) Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med 383(2):120–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguilar PS, Baylies MK, Fleissner A, Helming L, Inoue N, Podbilewicz B et al (2013) Genetic basis of cell-cell fusion mechanisms. Trends Genet 29:427–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguirre LA, Montalban-Hernandez K, Avendano-Ortiz J, Marin E, Lozano R, Toledano V et al (2020) Tumor stem cells fuse with monocytes to form highly invasive tumor-hybrid cells. Oncoimmunology 9:1773204

    Article  PubMed  PubMed Central  Google Scholar 

  • Aichel O (1911) Über Zellverschmelzung mit qualitativ abnormer Chromosomenverteilung als Ursache der Geschwulstbildung. In: Vorträge und Aufsätze über Entwicklungsmechanik der Organismen; 8

    Google Scholar 

  • Allen C, McDonald C, Giannini C, Peng KW, Rosales G, Russell SJ et al (2004) Adenoviral vectors expressing fusogenic membrane glycoproteins activated via matrix metalloproteinase cleavable linkers have significant antitumor potential in the gene therapy of gliomas. J Gene Med 6:1216–1227

    Article  CAS  PubMed  Google Scholar 

  • Andersen TL, Boissy P, Sondergaard TE, Kupisiewicz K, Plesner T, Rasmussen T et al (2007) Osteoclast nuclei of myeloma patients show chromosome translocations specific for the myeloma cell clone: a new type of cancer-host partnership? J Pathol 211:10–17

    Article  CAS  PubMed  Google Scholar 

  • Andersen TL, Soe K, Sondergaard TE, Plesner T, Delaisse JM (2010) Myeloma cell-induced disruption of bone remodelling compartments leads to osteolytic lesions and generation of osteoclast-myeloma hybrid cells. Br J Haematol 148:551–561

    Article  PubMed  Google Scholar 

  • Archacka K, Grabowska I, Mierzejewski B, Graffstein J, Gorzynska A, Krawczyk M et al (2021) Hypoxia preconditioned bone marrow-derived mesenchymal stromal/stem cells enhance myoblast fusion and skeletal muscle regeneration. Stem Cell Res Ther 12:448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Athanassiadou AM, Patsouris E, Tsipis A, Gonidi M, Athanassiadou P (2011) The significance of Survivin and Nectin-4 expression in the prognosis of breast carcinoma. Folia Histochem Cytobiol 49:26–33

    Article  CAS  PubMed  Google Scholar 

  • Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    Article  CAS  PubMed  Google Scholar 

  • Barr AR, Cooper S, Heldt FS, Butera F, Stoy H, Mansfeld J et al (2017) DNA damage during S-phase mediates the proliferation-quiescence decision in the subsequent G1 via p21 expression. Nat Commun 8:14728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bateman AR, Harrington KJ, Kottke T, Ahmed A, Melcher AA, Gough MJ et al (2002) Viral fusogenic membrane glycoproteins kill solid tumor cells by nonapoptotic mechanisms that promote cross presentation of tumor antigens by dendritic cells. Cancer Res 62:6566–6578

    CAS  PubMed  Google Scholar 

  • Benesova M, Trejbalova K, Kovarova D, Vernerova Z, Hron T, Kucerova D et al (2017) DNA hypomethylation and aberrant expression of the human endogenous retrovirus ERVWE1/syncytin-1 in seminomas. Retrovirology 14:20

    Article  PubMed  PubMed Central  Google Scholar 

  • Bevers EM, Williamson PL (2016) Getting to the outer leaflet: physiology of phosphatidylserine exposure at the plasma membrane. Physiol Rev 96:605–645

    Article  CAS  PubMed  Google Scholar 

  • Bi P, Ramirez-Martinez A, Li H, Cannavino J, McAnally JR, Shelton JM et al (2017) Control of muscle formation by the fusogenic micropeptide myomixer. Science 356:323–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianchi E, Doe B, Goulding D, Wright GJ (2014) Juno is the egg Izumo receptor and is essential for mammalian fertilization. Nature 508:483–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bielski CM, Zehir A, Penson AV, Donoghue MTA, Chatila W, Armenia J et al (2018) Genome doubling shapes the evolution and prognosis of advanced cancers. Nat Genet 50:1189–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjerregaard B, Holck S, Christensen IJ, Larsson LI (2006) Syncytin is involved in breast cancer-endothelial cell fusions. Cell Mol Life Sci 63:1906–1911

    Article  CAS  PubMed  Google Scholar 

  • Blond JL, Besème F, Duret L, Bouton O, Bedin F, Perron H et al (1999) Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family. J Virol 73:1175–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blond J-L, Lavillette D, Cheynet V, Bouton O, Oriol G, Chapel-Fernandes S et al (2000) An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J Virol 74:3321–3329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bojko A, Staniak K, Czarnecka-Herok J, Sunderland P, Dudkowska M, Sliwinska MA et al (2020) Improved autophagic flux in escapers from doxorubicin-induced senescence/polyploidy of breast cancer cells. Int J Mol Sci 21:6084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolze PA, Mommert M, Mallet F (2017) Contribution of syncytins and other endogenous retroviral envelopes to human placenta pathologies. Prog Mol Biol Transl Sci 145:111–162

    Article  CAS  PubMed  Google Scholar 

  • Braga L, Ali H, Secco I, Chiavacci E, Neves G, Goldhill D et al (2021) Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytia. Nature 594:88–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brukman NG, Uygur B, Podbilewicz B, Chernomordik LV (2019) How cells fuse. J Cell Biol 218:1436–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton C, Bartee E (2019) Syncytia formation in oncolytic virotherapy. Mol Ther Oncolytics 15:131–139

    Article  PubMed  PubMed Central  Google Scholar 

  • Chakraborty A, Lazova R, Davies S, Backvall H, Ponten F, Brash D et al (2004) Donor DNA in a renal cell carcinoma metastasis from a bone marrow transplant recipient. Bone Marrow Transplant 34:183–186

    Article  CAS  PubMed  Google Scholar 

  • Chan IS, Ewald AJ (2022) The changing role of natural killer cells in cancer metastasis. J Clin Invest 132(6):e143762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CP, Chen LF, Yang SR, Chen CY, Ko CC, Chang GD et al (2008) Functional characterization of the human placental fusogenic membrane protein syncytin 2. Biol Reprod 79:815–823

    Article  CAS  PubMed  Google Scholar 

  • Chignola R, Sega M, Molesini B, Baruzzi A, Stella S, Milotti E (2019) Collective radioresistance of T47D breast carcinoma cells is mediated by a Syncytin-1 homologous protein. PLoS One 14:e0206713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chunduri NK, Storchova Z (2019) The diverse consequences of aneuploidy. Nat Cell Biol 21:54–62

    Article  CAS  PubMed  Google Scholar 

  • Chuprin A, Gal H, Biron-Shental T, Biran A, Amiel A, Rozenblatt S et al (2013) Cell fusion induced by ERVWE1 or measles virus causes cellular senescence. Genes Dev 27:2356–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark S, Naz RK (2013) Presence and incidence of izumo antibodies in sera of immunoinfertile women and men. Am J Reprod Immunol 69:256–263

    Article  CAS  PubMed  Google Scholar 

  • Clawson GA, Kimchi E, Patrick SD, Xin P, Harouaka R, Zheng S et al (2012) Circulating tumor cells in melanoma patients. PLoS One 7:e41052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clawson GA, Matters GL, Xin P, Imamura-Kawasawa Y, Du Z, Thiboutot DM et al (2015) Macrophage-tumor cell fusions from peripheral blood of melanoma patients. PLoS One 10:e0134320

    Article  PubMed  PubMed Central  Google Scholar 

  • Clawson GA, Matters GL, Xin P, McGovern C, Wafula E, dePamphilis C et al (2017) “Stealth dissemination” of macrophage-tumor cell fusions cultured from blood of patients with pancreatic ductal adenocarcinoma. PLoS One 12:e0184451

    Article  PubMed  PubMed Central  Google Scholar 

  • Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289

    Article  CAS  PubMed  Google Scholar 

  • Coward J, Harding A (2014) Size does matter: why polyploid tumor cells are critical drug targets in the war on cancer. Front Oncol 4:123

    Article  PubMed  PubMed Central  Google Scholar 

  • Curty G, Marston JL, de Mulder RM, Leal FE, Nixon DF, Soares MA (2020) Human endogenous retrovirus K in cancer: a potential biomarker and immunotherapeutic target. Viruses 12(7):726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai L, Del Valle L, Miley W, Whitby D, Ochoa AC, Flemington EK et al (2018) Transactivation of human endogenous retrovirus K (HERV-K) by KSHV promotes Kaposi’s sarcoma development. Oncogene 37:4534–4545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies PS, Powell AE, Swain JR, Wong MH (2009) Inflammation and proliferation act together to mediate intestinal cell fusion. PLoS One 4:e6530

    Article  PubMed  PubMed Central  Google Scholar 

  • Delespaul L, Merle C, Lesluyes T, Lagarde P, Le Guellec S, Perot G et al (2019) Fusion-mediated chromosomal instability promotes aneuploidy patterns that resemble human tumors. Oncogene 38:6083–6094

    Article  CAS  PubMed  Google Scholar 

  • Delespaul L, Gelabert C, Lesluyes T, Le Guellec S, Perot G, Leroy L et al (2020) Cell-cell fusion of mesenchymal cells with distinct differentiations triggers genomic and transcriptomic remodelling toward tumour aggressiveness. Sci Rep 10:21634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Papa J, Clarkin RG, Parks RJ (2021) Use of cell fusion proteins to enhance adenoviral vector efficacy as an anti-cancer therapeutic. Cancer Gene Ther 28:745–756

    Article  PubMed  Google Scholar 

  • Deng Z, Wu S, Wang Y, Shi D (2022) Circulating tumor cell isolation for cancer diagnosis and prognosis. EBioMedicine 83:104237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Parseval N, Heidmann T (2005) Human endogenous retroviruses: from infectious elements to human genes. Cytogenet Genome Res 110:318–332

    Article  PubMed  Google Scholar 

  • Dervan E, Bhattacharyya DD, McAuliffe JD, Khan FH, Glynn SA (2021) Ancient adversary—HERV-K (HML-2) in cancer. Front Oncol 11:658489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietz MS, Sutton TL, Walker BS, Gast CE, Zarour L, Sengupta SK et al (2021) Relevance of circulating hybrid cells as a non-invasive biomarker for myriad solid tumors. Sci Rep 11:13630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding J, Jin W, Chen C, Shao Z, Wu J (2012) Tumor associated macrophage x cancer cell hybrids may acquire cancer stem cell properties in breast cancer. PLoS One 7:e41942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dittmar T (2022) Generation of cancer stem/initiating cells by cell-cell fusion. Int J Mol Sci 23(9):4514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dittmar T, Zänker KS (2011a) Cell fusion in health and disease; Volume I: Cell fusion in health. Springer, Dordrecht

    Book  Google Scholar 

  • Dittmar T, Zänker KS (2011b) Cell fusion in health and disease; Volume II: Cell fusion in disease. Springer, Dordrecht

    Book  Google Scholar 

  • Dittmar T, Nagler C, Schwitalla S, Reith G, Niggemann B, Zanker KS (2009) Recurrence cancer stem cells-made by cell fusion? Med Hypotheses 73:542–547

    Article  CAS  PubMed  Google Scholar 

  • Dittmar T, Schwitalla S, Seidel J, Haverkampf S, Reith G, Meyer-Staeckling S et al (2011) Characterization of hybrid cells derived from spontaneous fusion events between breast epithelial cells exhibiting stem-like characteristics and breast cancer cells. Clin Exp Metastasis 28:75–90

    Article  CAS  PubMed  Google Scholar 

  • Dittmar T, Weiler J, Luo T, Hass R (2021) Cell-cell fusion mediated by viruses and HERV-derived fusogens in cancer initiation and progression. Cancers (Basel) 13(21):5363

    Article  CAS  PubMed  Google Scholar 

  • Do M, Kwak IH, Ahn JH, Lee IJ, Lee JH (2017) Survivin protects fused cancer cells from cell death. BMB Rep 50:361–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dornen J, Sieler M, Weiler J, Keil S, Dittmar T (2020a) Cell fusion-mediated tissue regeneration as an inducer of polyploidy and aneuploidy. Int J Mol Sci 21:1811

    Article  PubMed  PubMed Central  Google Scholar 

  • Dornen J, Myklebost O, Dittmar T (2020b) Cell fusion of mesenchymal stem/stromal cells and breast cancer cells leads to the formation of hybrid cells exhibiting diverse and individual (stem cell) characteristics. Int J Mol Sci 21(24):9636

    Article  PubMed  PubMed Central  Google Scholar 

  • Duelli D, Lazebnik Y (2007) Cell-to-cell fusion as a link between viruses and cancer. Nat Rev Cancer 7:968–976

    Article  CAS  PubMed  Google Scholar 

  • Duelli DM, Padilla-Nash HM, Berman D, Murphy KM, Ried T, Lazebnik Y (2007) A virus causes cancer by inducing massive chromosomal instability through cell fusion. Curr Biol 17:431–437

    Article  CAS  PubMed  Google Scholar 

  • Duncan AW, Hickey RD, Paulk NK, Culberson AJ, Olson SB, Finegold MJ et al (2009) Ploidy reductions in murine fusion-derived hepatocytes. PLoS Genet 5:e1000385

    Article  PubMed  PubMed Central  Google Scholar 

  • Duncan AW, Taylor MH, Hickey RD, Hanlon Newell AE, Lenzi ML, Olson SB et al (2010) The ploidy conveyor of mature hepatocytes as a source of genetic variation. Nature 467:707–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dvorak HF (1986) Tumors: wounds that do not heal. N Engl J Med 315:1650–1659

    Article  CAS  PubMed  Google Scholar 

  • Dvorak HF (2015) Tumors: wounds that do not heal-redux. Cancer Immunol Res 3:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eigler T, Zarfati G, Amzallag E, Sinha S, Segev N, Zabary Y et al (2021) ERK1/2 inhibition promotes robust myotube growth via CaMKII activation resulting in myoblast-to-myotube fusion. Dev Cell 56:3349–3363.e3346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eltzschig HK, Carmeliet P (2011) Hypoxia and inflammation. N Engl J Med 364:656–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emami Nejad A, Najafgholian S, Rostami A, Sistani A, Shojaeifar S, Esparvarinha M et al (2021) The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell Int 21:62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahlbusch SS, Keil S, Epplen JT, Zanker KS, Dittmar T (2020) Comparison of hybrid clones derived from human breast epithelial cells and three different cancer cell lines regarding in vitro cancer stem/ initiating cell properties. BMC Cancer 20:446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fais S, Overholtzer M (2018) Cell-in-cell phenomena in cancer. Nat Rev Cancer 18:758–766

    Article  CAS  PubMed  Google Scholar 

  • Fang JY, Yang Z, Han B (2020) Switch of macrophage fusion competency by 3D matrices. Sci Rep 10:10348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fei F, Li C, Wang X, Du J, Liu K, Li B et al (2019) Syncytin 1, CD9, and CD47 regulating cell fusion to form PGCCs associated with cAMP/PKA and JNK signaling pathway. Cancer Med 8:3047–3058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fortuna MB, Dewey MJ, Furmanski P (1989) Cell fusion in tumor development and progression: occurrence of cell fusion in primary methylcholanthrene-induced tumorigenesis. Int J Cancer 44:731–737

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Tao L, Jin A, Vile R, Brenner MK, Zhang X (2003) Expression of a fusogenic membrane glycoprotein by an oncolytic herpes simplex virus potentiates the viral antitumor effect. Mol Ther 7:748–754

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Zhuang X, Xia X, Li X, Xiao K, Liu X (2021) Correlation between promoter hypomethylation and increased expression of Syncytin-1 in non-small cell lung cancer. Int J Gen Med 14:957–965

    Article  PubMed  PubMed Central  Google Scholar 

  • Gal H, Krizhanovsky V (2014) Cell fusion induced senescence. Aging (Albany NY) 6:353–354

    Article  PubMed  Google Scholar 

  • Gamage DG, Leikina E, Quinn ME, Ratinov A, Chernomordik LV, Millay DP (2017) Insights into the localization and function of myomaker during myoblast fusion. J Biol Chem 292:17272–17289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganem NJ, Godinho SA, Pellman D (2009) A mechanism linking extra centrosomes to chromosomal instability. Nature 460:278–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Yu XF, Chen T (2021) Human endogenous retroviruses in cancer: Expression, regulation and function. Oncol Lett 21:121

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Montojo M, Doucet-O’Hare T, Henderson L, Nath A (2018) Human endogenous retrovirus-K (HML-2): a comprehensive review. Crit Rev Microbiol 44:715–738

    Article  PubMed  PubMed Central  Google Scholar 

  • Gast CE, Silk AD, Zarour L, Riegler L, Burkhart JG, Gustafson KT et al (2018) Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival. Sci Adv 4:eaat7828

    Article  PubMed  PubMed Central  Google Scholar 

  • Gauck D, Keil S, Niggemann B, Zanker KS, Dittmar T (2017) Hybrid clone cells derived from human breast epithelial cells and human breast cancer cells exhibit properties of cancer stem/initiating cells. BMC Cancer 17:515

    Article  PubMed  PubMed Central  Google Scholar 

  • Gauster M, Moser G, Orendi K, Huppertz B (2009) Factors involved in regulating trophoblast fusion: potential role in the development of preeclampsia. Placenta 30 Suppl A:S49–S54

    Article  CAS  PubMed  Google Scholar 

  • Godinho SA, Kwon M, Pellman D (2009) Centrosomes and cancer: how cancer cells divide with too many centrosomes. Cancer Metastasis Rev 28:85–98

    Article  CAS  PubMed  Google Scholar 

  • Grandi N, Tramontano E (2018) HERV envelope proteins: physiological role and pathogenic potential in cancer and autoimmunity. Front Microbiol 9:462

    Article  PubMed  PubMed Central  Google Scholar 

  • Guedan S, Grases D, Rojas JJ, Gros A, Vilardell F, Vile R et al (2012) GALV expression enhances the therapeutic efficacy of an oncolytic adenovirus by inducing cell fusion and enhancing virus distribution. Gene Ther 19:1048–1057

    Article  CAS  PubMed  Google Scholar 

  • Gyobu S, Ishihara K, Suzuki J, Segawa K, Nagata S (2017) Characterization of the scrambling domain of the TMEM16 family. Proc Natl Acad Sci U S A 114:6274–6279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hass R (2020) Role of MSC in the tumor microenvironment. Cancers (Basel) 12(8):2107

    Article  CAS  PubMed  Google Scholar 

  • Hass R, von der Ohe J, Ungefroren H (2019) Potential role of MSC/cancer cell fusion and EMT for breast cancer stem cell formation. Cancers (Basel) 11:1432

    Article  CAS  PubMed  Google Scholar 

  • Hass R, von der Ohe J, Dittmar T (2021a) Cancer cell fusion and post-hybrid selection process (PHSP). Cancers (Basel) 13(18):4636

    Article  CAS  PubMed  Google Scholar 

  • Hass R, von der Ohe J, Dittmar T (2021b) Hybrid formation and fusion of cancer cells in vitro and in vivo. Cancers (Basel) 13(17):4496

    Article  CAS  PubMed  Google Scholar 

  • He X, Li B, Shao Y, Zhao N, Hsu Y, Zhang Z et al (2015) Cell fusion between gastric epithelial cells and mesenchymal stem cells results in epithelial-to-mesenchymal transition and malignant transformation. BMC Cancer 15:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Helming L, Gordon S (2009) Molecular mediators of macrophage fusion. Trends Cell Biol 19:514–522

    Article  CAS  PubMed  Google Scholar 

  • Helming L, Winter J, Gordon S (2009) The scavenger receptor CD36 plays a role in cytokine-induced macrophage fusion. J Cell Sci 122:453–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez JM, Podbilewicz B (2017) The hallmarks of cell-cell fusion. Development 144:4481–4495

    Article  CAS  PubMed  Google Scholar 

  • Higuchi H, Bronk SF, Bateman A, Harrington K, Vile RG, Gores GJ (2000) Viral fusogenic membrane glycoprotein expression causes syncytia formation with bioenergetic cell death: implications for gene therapy. Cancer Res 60:6396–6402

    CAS  PubMed  Google Scholar 

  • Hochreiter-Hufford AE, Lee CS, Kinchen JM, Sokolowski JD, Arandjelovic S, Call JA et al (2013) Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion. Nature 497:263–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland AJ, Cleveland DW (2009) Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat Rev Mol Cell Biol 10:478–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hotokezaka H, Sakai E, Ohara N, Hotokezaka Y, Gonzales C, Matsuo K et al (2007) Molecular analysis of RANKL-independent cell fusion of osteoclast-like cells induced by TNF-alpha, lipopolysaccharide, or peptidoglycan. J Cell Biochem 101:122–134

    Article  CAS  PubMed  Google Scholar 

  • Hu B, Gong Y, Wang Y, Xie J, Cheng J, Huang Q (2022) Comprehensive atlas of circulating rare cells detected by SE-iFISH and image scanning platform in patients with various diseases. Front Oncol 12:821454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Q, Chen H, Wang F, Brost BC, Li J, Gao Y et al (2014) Reduced syncytin-1 expression in choriocarcinoma BeWo cells activates the calpain1-AIF-mediated apoptosis, implication for preeclampsia. Cell Mol Life Sci 71:3151–3164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CM, Yan TL, Xu Z, Wang M, Zhou XC, Jiang EH et al (2018) Hypoxia enhances fusion of oral squamous carcinoma cells and epithelial cells partly via the epithelial-mesenchymal transition of epithelial cells. Biomed Res Int 2018:5015203

    Article  PubMed  PubMed Central  Google Scholar 

  • Inoue N, Ikawa M, Isotani A, Okabe M (2005) The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434:234–238

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa H, Meng F, Kondo N, Iwamoto A, Matsuda Z (2012) Generation of a dual-functional split-reporter protein for monitoring membrane fusion using self-associating split GFP. Protein Eng Des Sel 25:813–820

    Article  CAS  PubMed  Google Scholar 

  • Janssen A, Medema RH (2011) Entosis: aneuploidy by invasion. Nat Cell Biol 13:199–201

    Article  CAS  PubMed  Google Scholar 

  • Jonas K, Liu J, Chien P, Laub MT (2013) Proteotoxic stress induces a cell-cycle arrest by stimulating Lon to degrade the replication initiator DnaA. Cell 154:623–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur E, Rajendra J, Jadhav S, Shridhar E, Goda JS, Moiyadi A et al (2015) Radiation-induced homotypic cell fusions of innately resistant glioblastoma cells mediate their sustained survival and recurrence. Carcinogenesis 36:685–695

    Article  CAS  PubMed  Google Scholar 

  • Kerbel RS, Lagarde AE, Dennis JW, Donaghue TP (1983) Spontaneous fusion in vivo between normal host and tumor cells: possible contribution to tumor progression and metastasis studied with a lectin-resistant mutant tumor. Mol Cell Biol 3:523–538

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knerr I, Huppertz B, Weigel C, Dotsch J, Wich C, Schild RL et al (2004) Endogenous retroviral syncytin: compilation of experimental research on syncytin and its possible role in normal and disturbed human placentogenesis. Mol Hum Reprod 10:581–588

    Article  CAS  PubMed  Google Scholar 

  • Krabbe T, Altomonte J (2018) Fusogenic viruses in oncolytic immunotherapy. Cancers (Basel) 10(7):216

    Article  PubMed  Google Scholar 

  • Kudo Y, Boyd CA, Sargent IL, Redman CW (2003) Hypoxia alters expression and function of syncytin and its receptor during trophoblast cell fusion of human placental BeWo cells: implications for impaired trophoblast syncytialisation in pre-eclampsia. Biochim Biophys Acta 1638:63–71

    Article  CAS  PubMed  Google Scholar 

  • Kurgyis Z, Kemeny LV, Buknicz T, Groma G, Olah J, Jakab A et al (2016) Melanoma-derived BRAF(V600E) mutation in peritumoral stromal cells: implications for in vivo cell fusion. Int J Mol Sci 17(6):980

    Article  PubMed  PubMed Central  Google Scholar 

  • Larsen JM, Christensen IJ, Nielsen HJ, Hansen U, Bjerregaard B, Talts JF et al (2009) Syncytin immunoreactivity in colorectal cancer: potential prognostic impact. Cancer Lett 280:44–49

    Article  CAS  PubMed  Google Scholar 

  • Larsson LI, Holck S, Christensen IJ (2007) Prognostic role of syncytin expression in breast cancer. Hum Pathol 38:726–731

    Article  CAS  PubMed  Google Scholar 

  • Lartigue L, Merle C, Lagarde P, Delespaul L, Lesluyes T, Le Guellec S et al (2020) Genome remodeling upon mesenchymal tumor cell fusion contributes to tumor progression and metastatic spread. Oncogene 39:4198–4211

    Article  CAS  PubMed  Google Scholar 

  • Lazova R, Laberge GS, Duvall E, Spoelstra N, Klump V, Sznol M et al (2013) A melanoma brain metastasis with a donor-patient hybrid genome following bone marrow transplantation: first evidence for fusion in human cancer. PLoS One 8:e66731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Boeuf F, Gebremeskel S, McMullen N, He H, Greenshields AL, Hoskin DW et al (2017) Reovirus FAST protein enhances vesicular stomatitis virus oncolytic virotherapy in primary and metastatic tumor models. Mol Ther Oncolytics 6:80–89

    Article  PubMed  PubMed Central  Google Scholar 

  • Lees RL, Heersche JN (1999) Macrophage colony stimulating factor increases bone resorption in dispersed osteoclast cultures by increasing osteoclast size. J Bone Miner Res 14:937–945

    Article  CAS  PubMed  Google Scholar 

  • Lehka L, Redowicz MJ (2020) Mechanisms regulating myoblast fusion: A multilevel interplay. Semin Cell Dev Biol 104:81–92

    Article  PubMed  Google Scholar 

  • Leikina E, Gamage DG, Prasad V, Goykhberg J, Crowe M, Diao J et al (2018) Myomaker and myomerger work independently to control distinct steps of membrane remodeling during myoblast fusion. Dev Cell 46:767–780 e767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levaot N, Ottolenghi A, Mann M, Guterman-Ram G, Kam Z, Geiger B (2015) Osteoclast fusion is initiated by a small subset of RANKL-stimulated monocyte progenitors, which can fuse to RANKL-unstimulated progenitors. Bone 79:21–28

    Article  CAS  PubMed  Google Scholar 

  • Li R, Sonik A, Stindl R, Rasnick D, Duesberg P (2000) Aneuploidy vs. gene mutation hypothesis of cancer: recent study claims mutation but is found to support aneuploidy. Proc Natl Acad Sci U S A 97:3236–3241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF et al (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100:672–679

    Article  CAS  PubMed  Google Scholar 

  • Li M, Radvanyi L, Yin B, Rycaj K, Li J, Chivukula R et al (2017) Downregulation of human endogenous retrovirus type K (HERV-K) viral env RNA in pancreatic cancer cells decreases cell proliferation and tumor growth. Clin Cancer Res 23:5892–5911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Fu Y, Xia X, Zhang X, Xiao K, Zhuang X et al (2019) Knockdown of SP1/Syncytin1 axis inhibits the proliferation and metastasis through the AKT and ERK1/2 signaling pathways in non-small cell lung cancer. Cancer Med 8:5750–5759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Zhao L, Li XF (2021) Hypoxia and the Tumor Microenvironment. Technol Cancer Res Treat 20:15330338211036304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang P, Yang H (2021) Molecular underpinning of intracellular pH regulation on TMEM16F. J Gen Physiol 153

    Google Scholar 

  • Lin EH, Salon C, Brambilla E, Lavillette D, Szecsi J, Cosset FL et al (2010) Fusogenic membrane glycoproteins induce syncytia formation and death in vitro and in vivo: a potential therapy agent for lung cancer. Cancer Gene Ther 17:256–265

    Article  CAS  PubMed  Google Scholar 

  • Lin KC, Torga G, Sun Y, Axelrod R, Pienta KJ, Sturm JC et al (2019) The role of heterogeneous environment and docetaxel gradient in the emergence of polyploid, mesenchymal and resistant prostate cancer cells. Clin Exp Metastasis 36:97–108

    Article  PubMed  Google Scholar 

  • Lindström A, Midtbö K, Arnesson LG, Garvin S, Shabo I (2017) Fusion between M2-macrophages and cancer cells results in a subpopulation of radioresistant cells with enhanced DNA-repair capacity. Oncotarget 8:51370–51386

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu C, Liu L, Wang X, Liu Y, Wang M, Zhu F (2017) HBV X Protein induces overexpression of HERV-W env through NF-kappaB in HepG2 cells. Virus Genes 53:797–806

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Xu J, Wen F, Yang F, Li X, Geng D et al (2019) Upregulation of syncytin-1 promotes invasion and metastasis by activating epithelial-mesenchymal transition-related pathway in endometrial carcinoma. Onco Targets Ther 12:31–40

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Billet S, Choudhury D, Cheng R, Haldar S, Fernandez A et al (2021) Bone marrow mesenchymal stem cells interact with head and neck squamous cell carcinoma cells to promote cancer progression and drug resistance. Neoplasia 23:118–128

    Article  CAS  PubMed  Google Scholar 

  • Lopresti A, Acquaviva C, Boudin L, Finetti P, Garnier S, Aulas A et al (2022) Identification of atypical circulating tumor cells with prognostic value in metastatic breast cancer patients. Cancers (Basel) 14(4):932

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Kang Y (2009) Efficient acquisition of dual metastasis organotropism to bone and lung through stable spontaneous fusion between MDA-MB-231 variants. Proc Natl Acad Sci U S A 106:9385–9390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo F, Liu T, Wang J, Li J, Ma P, Ding H et al (2016) Bone marrow mesenchymal stem cells participate in prostate carcinogenesis and promote growth of prostate cancer by cell fusion in vivo. Oncotarget 7:30924–30934

    Article  PubMed  PubMed Central  Google Scholar 

  • Malassine A, Handschuh K, Tsatsaris V, Gerbaud P, Cheynet V, Oriol G et al (2005) Expression of HERV-W Env glycoprotein (syncytin) in the extravillous trophoblast of first trimester human placenta. Placenta 26:556–562

    Article  CAS  PubMed  Google Scholar 

  • Maliniemi P, Vincendeau M, Mayer J, Frank O, Hahtola S, Karenko L et al (2013) Expression of human endogenous retrovirus-w including syncytin-1 in cutaneous T-cell lymphoma. PLoS One 8:e76281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mameli G, Poddighe L, Mei A, Uleri E, Sotgiu S, Serra C et al (2012) Expression and activation by Epstein Barr virus of human endogenous retroviruses-W in blood cells and astrocytes: inference for multiple sclerosis. PLoS One 7:e44991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manjunath Y, Porciani D, Mitchem JB, Suvilesh KN, Avella DM, Kimchi ET et al (2020a) Tumor-cell-macrophage fusion cells as liquid biomarkers and tumor enhancers in cancer. Int J Mol Sci 21(5):1872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manjunath Y, Mitchem JB, Suvilesh KN, Avella DM, Kimchi ET, Staveley-O’Carroll KF et al (2020b) Circulating giant tumor-macrophage fusion cells are independent prognosticators in patients with NSCLC. J Thorac Oncol 15(9):1460–1471

    Article  CAS  PubMed  Google Scholar 

  • Marston JL, Greenig M, Singh M, Bendall ML, Duarte RRR, Feschotte C et al (2021) SARS-CoV-2 infection mediates differential expression of human endogenous retroviruses and long interspersed nuclear elements. JCI Insight 6:e147170

    Article  PubMed  PubMed Central  Google Scholar 

  • Martens S, McMahon HT (2008) Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol 9:543–556

    Article  CAS  PubMed  Google Scholar 

  • Martin SJ, Reutelingsperger CP, McGahon AJ, Rader JA, van Schie RC, LaFace DM et al (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182:1545–1556

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T, Wakefield L, Peters A, Peto M, Spellman P, Grompe M (2021) Proliferative polyploid cells give rise to tumors via ploidy reduction. Nat Commun 12:646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matveeva OV, Shabalina SA (2020) Prospects for using expression patterns of paramyxovirus receptors as biomarkers for oncolytic virotherapy. Cancers (Basel) 12(12):3659

    Article  CAS  PubMed  Google Scholar 

  • Meirelles K, Benedict LA, Dombkowski D, Pepin D, Preffer FI, Teixeira J et al (2012) Human ovarian cancer stem/progenitor cells are stimulated by doxorubicin but inhibited by Mullerian inhibiting substance. Proc Natl Acad Sci U S A 109:2358–2363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melzer C, von der Ohe J, Hass R (2018a) Enhanced metastatic capacity of breast cancer cells after interaction and hybrid formation with mesenchymal stroma/stem cells (MSC). Cell Commun Signal 16:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Melzer C, von der Ohe J, Hass R (2018b) In vitro fusion of normal and neoplastic breast epithelial cells with human mesenchymal stroma/stem cells partially involves tumor necrosis factor receptor signaling. Stem Cells 36:977–989

    Article  CAS  PubMed  Google Scholar 

  • Melzer C, von der Ohe J, Hass R (2018c) MSC stimulate ovarian tumor growth during intercellular communication but reduce tumorigenicity after fusion with ovarian cancer cells. Cell Commun Signal 16:67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melzer C, von der Ohe J, Hass R (2019a) Involvement of actin cytoskeletal components in breast cancer cell fusion with human mesenchymal stroma/stem-like cells. Int J Mol Sci 20(4):876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melzer C, von der Ohe J, Hass R (2019b) In vivo cell fusion between mesenchymal stroma/stem-like cells and breast cancer cells. Cancers (Basel) 11(2):185

    Article  CAS  PubMed  Google Scholar 

  • Melzer C, Ohe JV, Hass R (2020) Altered tumor plasticity after different cancer cell fusions with MSC. Int J Mol Sci 21(21):8347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menyailo ME, Zainullina VR, Khozyainova AA, Tashireva LA, Zolotareva SY, Gerashchenko TS et al (2022) Heterogeneity of circulating epithelial cells in breast cancer at single-cell resolution: identifying tumor and hybrid cells. Adv Biol (Weinh) 7(2):e2200206

    Article  PubMed  Google Scholar 

  • Merle C, Lagarde P, Lartigue L, Chibon F (2021) Acquisition of cancer stem cell capacities after spontaneous cell fusion. BMC Cancer 21:241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mi S, Lee X, Li X-p, Veldman GM, Finnerty H, Racie L et al (2000) Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403:785–789

    Article  CAS  PubMed  Google Scholar 

  • Mi R, Pan C, Bian X, Song L, Tian W, Cao F et al (2012) Fusion between tumor cells enhances melanoma metastatic potential. J Cancer Res Clin Oncol 138:1651–1658

    Article  CAS  PubMed  Google Scholar 

  • Millay DP, O’Rourke JR, Sutherland LB, Bezprozvannaya S, Shelton JM, Bassel-Duby R et al (2013) Myomaker is a membrane activator of myoblast fusion and muscle formation. Nature 499:301–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller FR, Mohamed AN, McEachern D (1989) Production of a more aggressive tumor cell variant by spontaneous fusion of two mouse tumor subpopulations. Cancer Res 49:4316–4321

    CAS  PubMed  Google Scholar 

  • Miroshnychenko D, Baratchart E, Ferrall-Fairbanks MC, Velde RV, Laurie MA, Bui MM et al (2021) Spontaneous cell fusions as a mechanism of parasexual recombination in tumour cell populations. Nat Ecol Evol 5:379–391

    Article  PubMed  Google Scholar 

  • Mirzayans R, Murray D (2020) Intratumor heterogeneity and therapy resistance: contributions of dormancy, apoptosis reversal (anastasis) and cell fusion to disease recurrence. Int J Mol Sci 21(4):1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirzayans R, Andrais B, Scott A, Wang YW, Kumar P, Murray D (2017) Multinucleated giant cancer cells produced in response to ionizing radiation retain viability and replicate their genome. Int J Mol Sci 18(2):360

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittelbrunn M, Sanchez-Madrid F (2012) Intercellular communication: diverse structures for exchange of genetic information. Nat Rev Mol Cell Biol 13:328–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuno A, Amizuka N, Irie K, Murakami A, Fujise N, Kanno T et al (1998) Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun 247:610–615

    Article  CAS  PubMed  Google Scholar 

  • Mohr M, Tosun S, Arnold WH, Edenhofer F, Zanker KS, Dittmar T (2015) Quantification of cell fusion events human breast cancer cells and breast epithelial cells using a Cre-LoxP-based double fluorescence reporter system. Cell Mol Life Sci 72:3769–3782

    Article  CAS  PubMed  Google Scholar 

  • Moller AM, Delaisse JM, Soe K (2017) Osteoclast fusion: time-lapse reveals involvement of CD47 and Syncytin-1 at different stages of nuclearity. J Cell Physiol 232:1396–1403

    Article  CAS  PubMed  Google Scholar 

  • Montalban-Hernandez K, Cantero-Cid R, Casalvilla-Duenas JC, Avendano-Ortiz J, Marin E, Lozano-Rodriguez R et al (2022) Colorectal cancer stem cells fuse with monocytes to form tumour hybrid cells with the ability to migrate and evade the immune system. Cancers (Basel) 14(14):3445

    Article  CAS  PubMed  Google Scholar 

  • Msheik H, El Hayek S, Bari MF, Azar J, Abou-Kheir W, Kobeissy F et al (2019) Transcriptomic profiling of trophoblast fusion using BeWo and JEG-3 cell lines. Mol Hum Reprod 25:811–824

    Article  CAS  PubMed  Google Scholar 

  • Muir A, Lever AML, Moffett A (2006) Human endogenous retrovirus-W envelope (syncytin) is expressed in both villous and extravillous trophoblast populations. J Gen Virol 87:2067–2071

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Peng KW, Vongpunsawad S, Harvey M, Mizuguchi H, Hayakawa T et al (2004) Antibody-targeted cell fusion. Nat Biotechnol 22:331–336

    Article  CAS  PubMed  Google Scholar 

  • Noubissi FK, Harkness T, Alexander CM, Ogle BM (2015) Apoptosis-induced cancer cell fusion: a mechanism of breast cancer metastasis. FASEB J 29:4036–4045

    Article  CAS  PubMed  Google Scholar 

  • Ogle BM, Cascalho M, Platt JL (2005) Biological implications of cell fusion. Nat Rev Mol Cell Biol 6:567–575

    Article  CAS  PubMed  Google Scholar 

  • Oromendia AB, Dodgson SE, Amon A (2012) Aneuploidy causes proteotoxic stress in yeast. Genes Dev 26:2696–2708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overholtzer M, Brugge JS (2008) The cell biology of cell-in-cell structures. Nat Rev Mol Cell Biol 9:796–809

    Article  CAS  PubMed  Google Scholar 

  • Parappilly MS, Chin Y, Whalen RM, Anderson AN, Robinson TS, Strgar L et al (2022) Circulating neoplastic-immune hybrid cells predict metastatic progression in uveal melanoma. Cancers (Basel) 14(19):4617

    Article  CAS  PubMed  Google Scholar 

  • Passerini V, Ozeri-Galai E, de Pagter MS, Donnelly N, Schmalbrock S, Kloosterman WP et al (2016) The presence of extra chromosomes leads to genomic instability. Nat Commun 7:10754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawelek JM (2014) Fusion of bone marrow-derived cells with cancer cells: metastasis as a secondary disease in cancer. Chin J Cancer 33:133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira-Veiga T, Schneegans S, Pantel K, Wikman H (2022) Circulating tumor cell-blood cell crosstalk: Biology and clinical relevance. Cell Rep 40:111298

    Article  CAS  PubMed  Google Scholar 

  • Petrany MJ, Millay DP (2019) Cell fusion: merging membranes and making muscle. Trends Cell Biol 29:964–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrova V, Annicchiarico-Petruzzelli M, Melino G, Amelio I (2018) The hypoxic tumour microenvironment. Oncogenesis 7:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Pircher T, Wackerhage H, Akova E, Bocker W, Aszodi A, Saller MM (2022) Fusion of normoxic- and hypoxic-preconditioned myoblasts leads to increased hypertrophy. Cells 11(6):1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Podbilewicz B (2014) Virus and cell fusion mechanisms. Annu Rev Cell Dev Biol 30:111–139

    Article  CAS  PubMed  Google Scholar 

  • Potgens AJ, Drewlo S, Kokozidou M, Kaufmann P (2004) Syncytin: the major regulator of trophoblast fusion? Recent developments and hypotheses on its action. Hum Reprod Update 10:487–496

    Article  CAS  PubMed  Google Scholar 

  • Powell AE, Anderson EC, Davies PS, Silk AD, Pelz C, Impey S et al (2011) Fusion between Intestinal epithelial cells and macrophages in a cancer context results in nuclear reprogramming. Cancer Res 71:1497–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puig PE, Guilly MN, Bouchot A, Droin N, Cathelin D, Bouyer F et al (2008) Tumor cells can escape DNA-damaging cisplatin through DNA endoreduplication and reversible polyploidy. Cell Biol Int 32:1031–1043

    Article  CAS  PubMed  Google Scholar 

  • Quinn ME, Goh Q, Kurosaka M, Gamage DG, Petrany MJ, Prasad V et al (2017) Myomerger induces fusion of non-fusogenic cells and is required for skeletal muscle development. Nat Commun 8:15665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinton RJ, DiDomizio A, Vittoria MA, Kotynkova K, Ticas CJ, Patel S et al (2021) Whole-genome doubling confers unique genetic vulnerabilities on tumour cells. Nature 590:492–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rachkovsky M, Sodi S, Chakraborty A, Avissar Y, Bolognia J, McNiff JM et al (1998) Melanoma x macrophage hybrids with enhanced metastatic potential. Clin Exp Metastasis 16:299–312

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan M, Mathur SR, Mukhopadhyay A (2013) Fusion-derived epithelial cancer cells express hematopoietic markers and contribute to stem cell and migratory phenotype in ovarian carcinoma. Cancer Res 73:5360–5370

    Article  CAS  PubMed  Google Scholar 

  • Rappa G, Mercapide J, Lorico A (2012) Spontaneous formation of tumorigenic hybrids between breast cancer and multipotent stromal cells is a source of tumor heterogeneity. Am J Pathol 180:2504–2515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribatti D, Tamma R (2018) A revisited concept. Tumors: wounds that do not heal. Crit Rev Oncol Hematol 128:65–69

    Article  PubMed  Google Scholar 

  • Rizvi AZ, Swain JR, Davies PS, Bailey AS, Decker AD, Willenbring H et al (2006) Bone marrow-derived cells fuse with normal and transformed intestinal stem cells. Proc Natl Acad Sci U S A 103:6321–6325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruano APC, Gadelha Guimaraes AP, Braun AC, Flores B, Tariki MS, Abdallah EA et al (2022) Fusion cell markers in circulating tumor cells from patients with high-grade ovarian serous carcinoma. Int J Mol Sci 23(23):14687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio C, Avendano-Ortiz J, Ruiz-Palomares R, Karaivanova V, Alberquilla O, Sanchez-Dominguez R et al (2022) Toward tumor fight and tumor microenvironment remodeling: PBA induces cell cycle arrest and reduces tumor hybrid cells’ pluripotency in bladder cancer. Cancers (Basel) 14(2):287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruebner M, Strissel PL, Ekici AB, Stiegler E, Dammer U, Goecke TW et al (2013) Reduced syncytin-1 expression levels in placental syndromes correlates with epigenetic hypermethylation of the ERVW-1 promoter region. PLoS One 8:e56145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salsman J, Top D, Boutilier J, Duncan R (2005) Extensive syncytium formation mediated by the reovirus FAST proteins triggers apoptosis-induced membrane instability. J Virol 79:8090–8100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt-Supprian M, Rajewsky K (2007) Vagaries of conditional gene targeting. Nature Immunology 8:665–668

    Article  CAS  PubMed  Google Scholar 

  • Shabo I, Stal O, Olsson H, Dore S, Svanvik J (2008) Breast cancer expression of CD163, a macrophage scavenger receptor, is related to early distant recurrence and reduced patient survival. Int J Cancer 123:780–786

    Article  CAS  PubMed  Google Scholar 

  • Shabo I, Olsson H, Sun XF, Svanvik J (2009) Expression of the macrophage antigen CD163 in rectal cancer cells is associated with early local recurrence and reduced survival time. Int J Cancer 125:1826–1831

    Article  CAS  PubMed  Google Scholar 

  • Shabo I, Olsson H, Stal O, Svanvik J (2013) Breast cancer expression of DAP12 is associated with skeletal and liver metastases and poor survival. Clin Breast Cancer 13:371–377

    Article  CAS  PubMed  Google Scholar 

  • Shabo I, Midtbo K, Andersson H, Akerlund E, Olsson H, Wegman P et al (2015) Macrophage traits in cancer cells are induced by macrophage-cancer cell fusion and cannot be explained by cellular interaction. BMC Cancer 15:922

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma B, Kanwar SS (2018) Phosphatidylserine: A cancer cell targeting biomarker. Semin Cancer Biol 52:17–25

    Article  CAS  PubMed  Google Scholar 

  • Sheltzer JM (2013) A transcriptional and metabolic signature of primary aneuploidy is present in chromosomally unstable cancer cells and informs clinical prognosis. Cancer Res 73:6401–6412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skokos EA, Charokopos A, Khan K, Wanjala J, Kyriakides TR (2011) Lack of TNF-alpha-induced MMP-9 production and abnormal E-cadherin redistribution associated with compromised fusion in MCP-1-null macrophages. Am J Pathol 178:2311–2321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sodi SA, Chakraborty AK, Platt JT, Kolesnikova N, Rosemblat S, Keh-Yen A et al (1998) Melanoma x macrophage fusion hybrids acquire increased melanogenesis and metastatic potential: altered N-glycosylation as an underlying mechanism. Pigment Cell Res 11:299–309

    Article  CAS  PubMed  Google Scholar 

  • Soe K (2020) Osteoclast fusion: physiological regulation of multinucleation through heterogeneity-potential implications for drug sensitivity. Int J Mol Sci 21(20):7717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soe K, Andersen TL, Hobolt-Pedersen AS, Bjerregaard B, Larsson LI, Delaisse JM (2011) Involvement of human endogenous retroviral syncytin-1 in human osteoclast fusion. Bone 48:837–846

    Article  CAS  PubMed  Google Scholar 

  • Song K, Zhu F, Zhang HZ, Shang ZJ (2012) Tumor necrosis factor-alpha enhanced fusions between oral squamous cell carcinoma cells and endothelial cells via VCAM-1/VLA-4 pathway. Exp Cell Res 318:1707–1715

    Article  CAS  PubMed  Google Scholar 

  • Song H-L, Liu T-H, Wang Y-H, Li F-F, Ruan L-L, Adu-Gyamfi EA et al (2021a) Appropriate expression of P57kip2 drives trophoblast fusion via cell cycle arrest. Reproduction 161:633–644

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Zhao Y, Deng Z, Zhao R, Huang Q (2021b) Stress-induced polyploid giant cancer cells: unique way of formation and non-negligible characteristics. Front Oncol 11:724781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soygur B, Sati L (2016) The role of syncytins in human reproduction and reproductive organ cancers. Reproduction 152:R167–R178

    Article  CAS  PubMed  Google Scholar 

  • Soygur B, Sati L, Demir R (2016) Altered expression of human endogenous retroviruses syncytin-1, syncytin-2 and their receptors in human normal and gestational diabetic placenta. Histol Histopathol 31:1037–1047

    CAS  PubMed  Google Scholar 

  • Sprangers AJ, Freeman BT, Kouris NA, Ogle BM (2012) A Cre-Lox P recombination approach for the detection of cell fusion in vivo. J Vis Exp. https://doi.org/10.3791/3581

  • Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med (Berl) 81:678–699

    Article  CAS  PubMed  Google Scholar 

  • Strick R, Ackermann S, Langbein M, Swiatek J, Schubert SW, Hashemolhosseini S et al (2007) Proliferation and cell-cell fusion of endometrial carcinoma are induced by the human endogenous retroviral Syncytin-1 and regulated by TGF-beta. J Mol Med (Berl) 85:23–38

    Article  CAS  PubMed  Google Scholar 

  • Strissel PL, Ruebner M, Thiel F, Wachter D, Ekici AB, Wolf F et al (2012) Reactivation of codogenic endogenous retroviral (ERV) envelope genes in human endometrial carcinoma and prestages: Emergence of new molecular targets. Oncotarget 3(10):1204–1219

    Article  PubMed  PubMed Central  Google Scholar 

  • Sugimoto J, Sugimoto M, Bernstein H, Jinno Y, Schust D (2013) A novel human endogenous retroviral protein inhibits cell-cell fusion. Sci Rep 3:1462

    Article  PubMed  PubMed Central  Google Scholar 

  • Sugimoto J, Schust DJ, Kinjo T, Aoki Y, Jinno Y, Kudo Y (2019) Suppressyn localization and dynamic expression patterns in primary human tissues support a physiologic role in human placentation. Sci Rep 9:19502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulaiman R, De P, Aske JC, Lin X, Dale A, Vaselaar E et al (2022) Identification and morphological characterization of features of circulating cancer-associated macrophage-like cells (CAMLs) in endometrial cancers. Cancers (Basel) 14(19):4577

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Ouyang DY, Pang W, Tu YQ, Li YY, Shen XM et al (2010) Expression of syncytin in leukemia and lymphoma cells. Leuk Res 34:1195–1202

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Dai X, Zhao D, Wang H, Rong X, Huang Q et al (2019) Mesenchymal stem cells promote glioma neovascularization in vivo by fusing with cancer stem cells. BMC Cancer 19:1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutton TL, Patel RK, Anderson AN, Bowden SG, Whalen R, Giske NR et al (2022) Circulating cells with macrophage-like characteristics in cancer: the importance of circulating neoplastic-immune hybrid cells in cancer. Cancers (Basel) 14(16):3871

    Article  CAS  PubMed  Google Scholar 

  • Suzuki J, Umeda M, Sims PJ, Nagata S (2010) Calcium-dependent phospholipid scrambling by TMEM16F. Nature 468:834–838

    Article  CAS  PubMed  Google Scholar 

  • Suzuki J, Fujii T, Imao T, Ishihara K, Kuba H, Nagata S (2013) Calcium-dependent phospholipid scramblase activity of TMEM16 protein family members. J Biol Chem 288:13305–13316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tal A, Tal R, Shaikh S, Gidicsin S, Mamillapalli R, Taylor HS (2019) Characterization of cell fusion in an experimental mouse model of endometriosis. Biol Reprod 100:390–397

    Article  CAS  PubMed  Google Scholar 

  • Thyagarajan B, Guimarães MJ, Groth AC, Calos MP (2000) Mammalian genomes contain active recombinase recognition sites. Gene 244:47–54

    Article  CAS  PubMed  Google Scholar 

  • Tinganelli W, Durante M (2020) Tumor hypoxia and circulating tumor cells. Int J Mol Sci 21:9592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uleri E, Mei A, Mameli G, Poddighe L, Serra C, Dolei A (2014) HIV Tat acts on endogenous retroviruses of the W family and this occurs via Toll-like receptor 4: inference for neuroAIDS. AIDS 28:2659–2670

    Article  CAS  PubMed  Google Scholar 

  • Uygur B, Leikina E, Melikov K, Villasmil R, Verma SK, Vary CPH et al (2019) Interactions with muscle cells boost fusion, stemness, and drug resistance of prostate cancer cells. Mol Cancer Res 17:806–820

    Article  CAS  PubMed  Google Scholar 

  • van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19:213–228

    Article  PubMed  Google Scholar 

  • Vargas A, Moreau J, Landry S, LeBellego F, Toufaily C, Rassart E et al (2009) Syncytin-2 plays an important role in the fusion of human trophoblast cells. J Mol Biol 392:301–318

    Article  CAS  PubMed  Google Scholar 

  • Verma SK, Leikina E, Melikov K, Gebert C, Kram V, Young MF et al (2018) Cell-surface phosphatidylserine regulates osteoclast precursor fusion. J Biol Chem 293:254–270

    Article  CAS  PubMed  Google Scholar 

  • Vignery A (2005) Macrophage fusion: the making of osteoclasts and giant cells. J Exp Med 202:337–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakeling WF, Greetham J, Bennett DC (1994) Efficient spontaneous fusion between some co-cultured cells, especially murine melanoma cells. Cell Biol Int 18:207–210

    Article  CAS  PubMed  Google Scholar 

  • Walker BS, Sutton TL, Zarour L, Hunter JG, Wood SG, Tsikitis VL et al (2021) Circulating hybrid cells: a novel liquid biomarker of treatment response in gastrointestinal cancers. Ann Surg Oncol 28:8567–8578

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang R, Sun X, Wang CY, Hu P, Chu CY, Liu S et al (2012) Spontaneous cancer-stromal cell fusion as a mechanism of prostate cancer androgen-independent progression. PLoS One 7:e42653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Yuan Y, Zhang L, Min Z, Zhou D, Yu S et al (2018) Impact of cell fusion in myeloma marrow microenvironment on tumor progression. Oncotarget 9(57):30997–31006

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Li Y, Li J, Li L, Zhu H, Chen H et al (2019) Cell-in-Cell phenomenon and its relationship with tumor microenvironment and tumor progression: a review. Front Cell Dev Biol 7:311

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang R, Lewis MS, Lyu J, Zhau HE, Pandol SJ, Chung LWK (2020) Cancer-stromal cell fusion as revealed by fluorescence protein tracking. Prostate 80:274–283

    Article  CAS  PubMed  Google Scholar 

  • Wang HF, Xiang W, Xue BZ, Wang YH, Yi DY, Jiang XB et al (2021) Cell fusion in cancer hallmarks: Current research status and future indications. Oncol Lett 22:530

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang YN, Ye Y, Zhou D, Guo ZW, Xiong Z, Gong XX et al (2022) The role of syncytin in placental angiogenesis and fetal growth. Front Cell Dev Biol 10:852561

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei HJ, Nickoloff JA, Chen WH, Liu HY, Lo WC, Chang YT et al (2014) FOXF1 mediates mesenchymal stem cell fusion-induced reprogramming of lung cancer cells. Oncotarget 5:9514–9529

    Article  PubMed  PubMed Central  Google Scholar 

  • Weiler J, Dittmar T (2019a) Cell fusion in human cancer: the dark matter hypothesis. Cells 8(2):132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiler J, Dittmar T (2019b) Minocycline impairs TNF-alpha-induced cell fusion of M13SV1-Cre cells with MDA-MB-435-pFDR1 cells by suppressing NF-kappaB transcriptional activity and its induction of target-gene expression of fusion-relevant factors. Cell Commun Signal 17:71

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitlock JM, Chernomordik LV (2021) Flagging fusion: Phosphatidylserine signaling in cell-cell fusion. J Biol Chem 296:100411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitlock JM, Yu K, Cui YY, Hartzell HC (2018) Anoctamin 5/TMEM16E facilitates muscle precursor cell fusion. J Gen Physiol 150:1498–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia P, Wang S, Guo Z, Yao X (2008) Emperipolesis, entosis and beyond: dance with fate. Cell Res 18:705–707

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Li Y, Lian S, Lu Y, Jia L (2022) Cancer metastasis chemoprevention prevents circulating tumour cells from germination. Signal Transduct Target Ther 7:341

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu MH, Gao X, Luo D, Zhou XD, Xiong W, Liu GX (2014) EMT and acquisition of stem cell-like properties are involved in spontaneous formation of tumorigenic hybrids between lung cancer and bone marrow-derived mesenchymal stem cells. PLoS One 9:e87893

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue J, Zhu Y, Sun Z, Ji R, Zhang X, Xu W et al (2015) Tumorigenic hybrids between mesenchymal stem cells and gastric cancer cells enhanced cancer proliferation, migration and stemness. BMC Cancer 15:793

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue B, Sechi LA, Kelvin DJ (2020) Human endogenous retrovirus K (HML-2) in health and disease. Front Microbiol 11:1690

    Article  PubMed  PubMed Central  Google Scholar 

  • Yagi M, Miyamoto T, Sawatani Y, Iwamoto K, Hosogane N, Fujita N et al (2005) DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med 202:345–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Y, Hsu Y, He X, Lu N, Wei W, Zhang Z et al (2015) Evidence of cell fusion in carcinogen-induced mice gastric carcinoma. Tumour Biol 36:5089–5094

    Article  CAS  PubMed  Google Scholar 

  • Yan B, Wang J, Liu L (2016) Chemotherapy promotes tumour cell hybridization in vivo. Tumour Biol 37:5025–5030

    Article  CAS  PubMed  Google Scholar 

  • Yan TL, Wang M, Xu Z, Huang CM, Zhou XC, Jiang EH et al (2017) Up-regulation of syncytin-1 contributes to TNF-alpha-enhanced fusion between OSCC and HUVECs partly via Wnt/beta-catenin-dependent pathway. Sci Rep 7:40983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanez-Mo M, Siljander PR, Andreu Z, Zavec AB, Borras FE, Buzas EI et al (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4:27066

    Article  PubMed  Google Scholar 

  • Yart L, Bastida-Ruiz D, Allard M, Dietrich PY, Petignat P, Cohen M (2022) Linking unfolded protein response to ovarian cancer cell fusion. BMC Cancer 22:622

    Article  PubMed  PubMed Central  Google Scholar 

  • Yilmaz Y, Lazova R, Qumsiyeh M, Cooper D, Pawelek J (2005) Donor Y chromosome in renal carcinoma cells of a female BMT recipient: visualization of putative BMT-tumor hybrids by FISH. Bone Marrow Transplant 35:1021–1024

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Liu T, Zhao Z, Chen Y, Zeng J, Liu S et al (2014) Mutations in 3′-long terminal repeat of HERV-W family in chromosome 7 upregulate syncytin-1 expression in urothelial cell carcinoma of the bladder through interacting with c-Myb. Oncogene 33:3947–3958

    Google Scholar 

  • Yu M, Zhao H, Chen T, Tian Y, Li M, Wu K et al (2018) Mutational analysis of IZUMO1R in women with fertilization failure and polyspermy after in vitro fertilization. J Assist Reprod Genet 35:539–544

    Article  PubMed  Google Scholar 

  • Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B et al (2013) Pan-cancer patterns of somatic copy number alteration. Nat Genet 45:1134–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaitseva E, Zaitsev E, Melikov K, Arakelyan A, Marin M, Villasmil R et al (2017) Fusion stage of HIV-1 entry depends on virus-induced cell surface exposure of phosphatidylserine. Cell Host Microbe 22:99–110 e117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Vashisht AA, O’Rourke J, Corbel SY, Moran R, Romero A et al (2017) The microprotein minion controls cell fusion and muscle formation. Nat Commun 8:15664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang LN, Kong CF, Zhao D, Cong XL, Wang SS, Ma L et al (2019) Fusion with mesenchymal stem cells differentially affects tumorigenic and metastatic abilities of lung cancer cells. J Cell Physiol 234:3570–3582

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Le T, Grabau R, Mohseni Z, Kim H, Natale DR et al (2020) TMEM16F phospholipid scramblase mediates trophoblast fusion and placental development. Sci Adv 6:eaba0310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Liang P, Yang L, Shan KZ, Feng L, Chen Y et al (2022) Functional coupling between TRPV4 channel and TMEM16F modulates human trophoblast fusion. Elife 11:e78840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Platt JL (2011) Molecular and cellular mechanisms of mammalian cell fusion. Adv Exp Med Biol 713:33–64

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Merchak K, Lee W, Grande JP, Cascalho M, Platt JL (2015) Cell fusion connects oncogenesis with tumor evolution. Am J Pathol 185:2049–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou F, Li M, Wei Y, Lin K, Lu Y, Shen J et al (2016) Activation of HERV-K Env protein is essential for tumorigenesis and metastasis of breast cancer cells. Oncotarget 7:84093–84117

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Liu L, Liu Y, Zhou P, Yan Q, Yu H et al (2021) Implication of human endogenous retrovirus W family envelope in hepatocellular carcinoma promotes MEK/ERK-mediated metastatic invasiveness and doxorubicin resistance. Cell Death Discov 7:177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zielske SP, Spalding AC, Wicha MS, Lawrence TS (2011) Ablation of breast cancer stem cells with radiation. Transl Oncol 4:227–233

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mareike Sieler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sieler, M., Dittmar, T. (2024). Cell Fusion and Syncytia Formation in Cancer. In: Kloc, M., Uosef, A. (eds) Syncytia: Origin, Structure, and Functions. Results and Problems in Cell Differentiation, vol 71. Springer, Cham. https://doi.org/10.1007/978-3-031-37936-9_20

Download citation

Publish with us

Policies and ethics