Skip to main content

Advertisement

Log in

Characterization of hybrid cells derived from spontaneous fusion events between breast epithelial cells exhibiting stem-like characteristics and breast cancer cells

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Several data of the past years clearly indicated that the fusion of tumor cells and tumor cells or tumor cells and normal cells can give rise to hybrids cells exhibited novel properties such as an increased malignancy, drug resistance, or resistance to apoptosis. In the present study we characterized hybrid cells derived from spontaneous fusion events between the breast epithelial cell line M13SV1-EGFP-Neo and two breast cancer cell lines: HS578T-Hyg and MDA-MB-435-Hyg. Short-tandem-repeat analysis revealed an overlap of parental alleles in all hybrid cells indicating that hybrid cells originated from real cell fusion events. RealTime-PCR-array gene expression data provided evidence that each hybrid cell clone exhibited a unique gene expression pattern, resulting in a specific resistance of hybrid clones towards chemotherapeutic drugs, such as doxorubicin and paclitaxel, as well as a specific migratory behavior of hybrid clones towards EGF. For instance, M13MDA435-4 hybrids showed a marked resistance towards etoposide, doxorubicin and paclitaxel, whereas hybrid clones M13MDA-435-1 and -2 were only resistant towards etoposide. Likewise, all investigated M13MDA435 hybrids responded to EGF with an increased migratory activity, whereas the migration of parental MDA-MB-435-Hyg cells was blocked by EGF, suggesting that M13MDA435 hybrids may have acquired a new motility pathway. Similar findings have been obtained for M13HS hybrids. We conclude from our data that they further support the hypothesis that cell fusion could give rise to drug resistant and migratory active tumor (hybrid) cells in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aichel O (1911) Über Zellverschmelzung mit quantitativ abnormer Chromosomenverteilung als Ursache der Geschwulstbildung. In: Roux W (ed) Vorträge und Aufsätze über Entwicklungsmechanik der Organismen. Wilhelm Engelmann, Leipzig, Germany

    Google Scholar 

  2. Dittmar T, Nagler C, Schwitalla S et al (2009) Recurrence cancer stem cells—made by cell fusion? Med Hypotheses 73(4):542–547

    Article  CAS  PubMed  Google Scholar 

  3. Dittmar T, Seidel J, Zänker KS et al (2006) Carcinogenesis driven by bone marrow-derived stem cells. Contrib Microbiol 13:156–169

    Article  PubMed  Google Scholar 

  4. Lu X, Kang Y (2009) Cell fusion as a hidden force in tumor progression. Cancer Res 69(22):8536–8539

    Article  CAS  PubMed  Google Scholar 

  5. Pawelek JM (2000) Tumour cell hybridization and metastasis revisited. Melanoma Res 10(6):507–514

    Article  CAS  PubMed  Google Scholar 

  6. Mekler LB (1971) Hybridization of transformed cells with lymphocytes as 1 of the probable causes of the progression leading to the development of metastatic malignant cells. Vestn Akad Med Nauk SSSR 26(8):80–89

    CAS  PubMed  Google Scholar 

  7. Mekler LB, Drize OB, Osechinskii IV et al (1971) Transformation of a normal differentiated cell of an adult organism, induced by the fusion of this cell with another normal cell of the same organism but with different organ or tissue specificity. Vestn Akad Med Nauk SSSR 26(4):75–80

    CAS  PubMed  Google Scholar 

  8. Lu X, Kang Y (2009) Efficient acquisition of dual metastasis organotropism to bone and lung through stable spontaneous fusion between MDA-MB-231 variants. Proc Natl Acad Sci USA 106(23):9385–9390

    Article  CAS  PubMed  Google Scholar 

  9. Duelli D, Lazebnik Y (2003) Cell fusion: a hidden enemy? Cancer Cell 3(5):445–448

    Article  CAS  PubMed  Google Scholar 

  10. Duelli DM, Lazebnik YA (2000) Primary cells suppress oncogene-dependent apoptosis. Nat Cell Biol 2(11):859–862

    Article  CAS  PubMed  Google Scholar 

  11. Bjerkvig R, Tysnes BB, Aboody KS et al (2005) Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer 5(11):899–904

    Article  CAS  PubMed  Google Scholar 

  12. Wakeling WF, Greetham J, Bennett DC (1994) Efficient spontaneous fusion between some co-cultured cells, especially murine melanoma cells. Cell Biol Int 18(3):207–210

    Article  CAS  PubMed  Google Scholar 

  13. Chakraborty AK, Sodi S, Rachkovsky M et al (2000) A spontaneous murine melanoma lung metastasis comprised of host × tumor hybrids. Cancer Res 60(9):2512–2519

    CAS  PubMed  Google Scholar 

  14. Andersen TL, Boissy P, Sondergaard TE et al (2007) Osteoclast nuclei of myeloma patients show chromosome translocations specific for the myeloma cell clone: a new type of cancer-host partnership? J Pathol 211(1):10–17

    Article  CAS  PubMed  Google Scholar 

  15. Busund LT, Killie MK, Bartnes K et al (2002) Spontaneous hybridization of macrophages and Meth A sarcoma cells. Int J Cancer 98(4):573–581

    Article  CAS  PubMed  Google Scholar 

  16. Busund LT, Killie MK, Bartnes K et al (2002) Spontaneously formed tumorigenic hybrids of Meth A sarcoma and macrophages grow faster and are better vascularized than the parental tumor. Int J Cancer 100(4):407–413

    Article  CAS  PubMed  Google Scholar 

  17. Pawelek JM, Chakraborty AK (2008) Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nat Rev Cancer 8(5):377–386

    Article  CAS  PubMed  Google Scholar 

  18. Rizvi AZ, Swain JR, Davies PS et al (2006) Bone marrow-derived cells fuse with normal and transformed intestinal stem cells. Proc Natl Acad Sci USA 103(16):6321–6325

    Article  CAS  PubMed  Google Scholar 

  19. Schwitalla S, Seidel J, Keil S et al (2008) Breast stem cells spontaneously fuse with breast cancer cells: Impacts on Cancer Stem Cell formation? Proc Am Assoc Cancer Res 49:5007

    Google Scholar 

  20. Vignery A (2005) Macrophage fusion: the making of osteoclasts and giant cells. J Exp Med 202(3):337–340

    Article  CAS  PubMed  Google Scholar 

  21. Cui W, Cuartas E, Ke J et al (2007) CD200 and its receptor, CD200R, modulate bone mass via the differentiation of osteoclasts. Proc Natl Acad Sci USA 104(36):14436–14441

    Article  CAS  PubMed  Google Scholar 

  22. Shabo I, Olsson H, Sun XF et al (2009) Expression of the macrophage antigen CD163 in rectal cancer cells is associated with early local recurrence and reduced survival time. Int J Cancer 125(8):1826–1831

    Article  CAS  PubMed  Google Scholar 

  23. Shabo I, Stal O, Olsson H et al (2008) Breast cancer expression of CD163, a macrophage scavenger receptor, is related to early distant recurrence and reduced patient survival. Int J Cancer 123(4):780–786

    Article  CAS  PubMed  Google Scholar 

  24. Bjerregaard B, Holck S, Christensen IJ et al (2006) Syncytin is involved in breast cancer-endothelial cell fusions. Cell Mol Life Sci 63(16):1906–1911

    Article  CAS  PubMed  Google Scholar 

  25. Strick R, Ackermann S, Langbein M et al (2007) Proliferation and cell–cell fusion of endometrial carcinoma are induced by the human endogenous retroviral Syncytin-1 and regulated by TGF-beta. J Mol Med 85(1):23–38

    Article  CAS  PubMed  Google Scholar 

  26. Larsson LI, Holck S, Christensen IJ (2007) Prognostic role of syncytin expression in breast cancer. Hum Pathol 38(5):726–731

    Article  CAS  PubMed  Google Scholar 

  27. Larsson LI, Bjerregaard B, Talts JF (2008) Cell fusions in mammals. Histochem Cell Biol 129(5):551–561

    Article  CAS  PubMed  Google Scholar 

  28. Rachkovsky M, Sodi S, Chakraborty A et al (1998) Melanoma × macrophage hybrids with enhanced metastatic potential. Clin Exp Metastasis 16(4):299–312

    Article  CAS  PubMed  Google Scholar 

  29. Chakraborty AK, Sousa de Freitas J, Espreafico EM et al (2001) Human monocyte × mouse melanoma fusion hybrids express human gene. Gene 275(1):103–106

    Article  CAS  PubMed  Google Scholar 

  30. Chang CC, Sun W, Cruz A et al (2001) A human breast epithelial cell type with stem cell characteristics as target cells for carcinogenesis. Radiat Res 155(1 Pt 2):201–207

    Article  CAS  PubMed  Google Scholar 

  31. Dittmar T, Schafer F, Brandt BH et al (2000) Accelerated assessing of antisense RNA efficacy using a chimeric enhanced green fluorescent protein-antisense RNA-producing vector. Antisense Nucleic Acid Drug Dev 10(5):401–408

    CAS  PubMed  Google Scholar 

  32. Heyder C, Gloria-Maercker E, Hatzmann W et al (2005) Role of the beta1-integrin subunit in the adhesion, extravasation and migration of T24 human bladder carcinoma cells. Clin Exp Metastasis 22(2):99–106

    Article  CAS  PubMed  Google Scholar 

  33. Kassmer SH, Niggemann B, Punzel M et al (2008) Cytokine combinations differentially influence the SDF-1alpha-dependent migratory activity of cultivated murine hematopoietic stem and progenitor cells. Biol Chem 389(7):863–872

    Article  CAS  PubMed  Google Scholar 

  34. Seidel J, Niggemann B, Punzel M et al (2007) The neurotransmitter gamma-aminobutyric-acid (GABA) is a potent inhibitor of the stromal cell-derived factor-1. Stem Cells Dev 16(5):827–836

    Article  CAS  PubMed  Google Scholar 

  35. Weidt C, Niggemann B, Hatzmann W et al (2004) Differential effects of culture conditions on the migration pattern of stromal cell-derived factor-stimulated hematopoietic stem cells. Stem Cells 22(6):890–896

    Article  CAS  PubMed  Google Scholar 

  36. Ying QL, Nichols J, Evans EP et al (2002) Changing potency by spontaneous fusion. Nature 416(6880):545–548

    Article  CAS  PubMed  Google Scholar 

  37. Charafe-Jauffret E, Ginestier C, Iovino F et al (2009) Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 69(4):1302–1313

    Article  CAS  PubMed  Google Scholar 

  38. Dittmar T, Heyder C, Gloria-Maercker E et al (2008) Adhesion molecules and chemokines: the navigation system for circulating tumor (stem) cells to metastasize in an organ-specific manner. Clin Exp Metastasis 25(1):11–32

    Article  CAS  PubMed  Google Scholar 

  39. Rae JM, Creighton CJ, Meck JM et al (2006) MDA-MB-435 cells are derived from M14 Melanoma cells—a loss for breast cancer, but a boon for melanoma research. Breast Cancer Res Treat 104(1):13–19

    Google Scholar 

  40. Sellappan S, Grijalva R, Zhou X et al (2004) Lineage infidelity of MDA-MB-435 cells: expression of melanocyte proteins in a breast cancer cell line. Cancer Res 64(10):3479–3485

    Article  CAS  PubMed  Google Scholar 

  41. Chambers AF (2009) MDA-MB-435 and M14 cell lines: identical but not M14 melanoma? Cancer Res 69(13):5292–5293

    Article  CAS  PubMed  Google Scholar 

  42. Wong JH, Aguero B, Gupta RK et al (1988) Recovery of a cell surface fetal antigen from circulating immune complexes of melanoma patients. Cancer Immunol Immunother 27(2):142–146

    Article  CAS  PubMed  Google Scholar 

  43. Li R, Sonik A, Stindl R et al (2000) Aneuploidy versus gene mutation hypothesis of cancer: recent study claims mutation, but is found to support aneuploidy. Proc Natl Acad Sci USA 97:3236–3241

    Article  CAS  PubMed  Google Scholar 

  44. Miller FR, Mohamed AN, McEachern D (1989) Production of a more aggressive tumor cell variant by spontaneous fusion of two mouse tumor subpopulations. Cancer Res 49(15):4316–4321

    CAS  PubMed  Google Scholar 

  45. Longley DB, Johnston PG (2005) Molecular mechanisms of drug resistance. J Pathol 205(2):275–292

    Article  CAS  PubMed  Google Scholar 

  46. Szakacs G, Paterson JK, Ludwig JA et al (2006) Targeting multidrug resistance in cancer. Nat Rev Drug Discov 5(3):219–234

    Article  CAS  PubMed  Google Scholar 

  47. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5(4):275–284

    Article  CAS  PubMed  Google Scholar 

  48. Hembruff SL, Laberge ML, Villeneuve DJ et al (2008) Role of drug transporters and drug accumulation in the temporal acquisition of drug resistance. BMC Cancer 8:318

    Article  PubMed  Google Scholar 

  49. Duesberg P, Stindl R, Hehlmann R (2000) Explaining the high mutation rates of cancer cells to drug and multidrug resistance by chromosome reassortments that are catalyzed by aneuploidy. Proc Natl Acad Sci USA 19(26):14295–14300

    Article  Google Scholar 

  50. Duesberg P, Stindl R, Hehlmann R (2001) Origin of multidrug resistance in cells with and without multidrug resistance genes: chromosome reassortments catalyzed by aneuploidy. Proc Natl Acad Sci USA 98(20):11283–11288

    Article  CAS  PubMed  Google Scholar 

  51. Brandt BH, Roetger A, Dittmar T et al (1999) c-erbB-2/EGFR as dominant heterodimerization partners determine a motogenic phenotype in human breast cancer cells. FASEB J 13(14):1939–1949

    CAS  PubMed  Google Scholar 

  52. Dittmar T, Husemann A, Schewe Y et al (2002) Induction of cancer cell migration by epidermal growth factor is initiated by specific phosphorylation of tyrosine 1248 of c-erbB-2 receptor via EGFR. FASEB J 16(13):1823–1825

    CAS  PubMed  Google Scholar 

  53. Hsieh AC, Moasser MM (2007) Targeting HER proteins in cancer therapy and the role of the non-target HER3. Br J Cancer 97(4):453–457

    Article  CAS  PubMed  Google Scholar 

  54. Stern DF (2008) ERBB3/HER3 and ERBB2/HER2 duet in mammary development and breast cancer. J Mammary Gland Biol Neoplasia 13(2):215–223

    Article  PubMed  Google Scholar 

  55. Rachkovsky M, Pawelek J (1999) Acquired melanocyte stimulating hormone-inducible chemotaxis following macrophage fusion with Cloudman S91 melanoma cells. Cell Growth Differ 10(7):517–524

    CAS  PubMed  Google Scholar 

  56. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3(6):453–458

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the technical assistance of Silvia Keil. This work was supported by the Verein zur Förderung der Krebsforschung e.V., Heidelberg, Germany and the Fritz-Bender-Foundation, Munich, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Dittmar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dittmar, T., Schwitalla, S., Seidel, J. et al. Characterization of hybrid cells derived from spontaneous fusion events between breast epithelial cells exhibiting stem-like characteristics and breast cancer cells. Clin Exp Metastasis 28, 75–90 (2011). https://doi.org/10.1007/s10585-010-9359-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-010-9359-3

Keywords

Navigation