Skip to main content

Nutritional Security Approaches for Legume Biofortification—A Major Challenge

  • Chapter
  • First Online:
Legumes Biofortification

Abstract

Legumes are a primary source of protein and micronutrients. Increases in the world’s population and hunger require finding the most economical and best agricultural approaches to increase the nutritional value of crops and their yields. Micronutrient-rich legumes have dual functions: reduce hunger and increase health benefits. Food legumes contain high levels of micronutrients and proteins, which can lower the chance of developing severe human disease. Biofortification is the most important method for improving legume crops. However, the biofortification potential of legumes remains unexplored. Legumes and pulses contain a variety of amino acids and micronutrients. This chapter focuses on the importance of food legumes, where soil factors influence the micronutrients of legumes, and on the biofortification programs of legumes, which facilitates sustainable plant-based food production. Different types of biofortification in pulses and legumes provide fast and effective routes to improving micronutrient concentrations. Some biofortification methods should be added to a multidisciplinary initiative to improve legume crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbaspour N, Hurrell R, Kelishadi R (2014) Review on iron and its importance for human health. J Res Med Sci 19:164–174

    PubMed  PubMed Central  Google Scholar 

  • Alvarez JM (2007) Influence of soil type on the mobility and bioavailability of chelated zinc. J Agric Food Chem 55:3568–3576. https://doi.org/10.1021/jf063236g

    Article  CAS  PubMed  Google Scholar 

  • Amarakoon D, Thavarajah D, McPhee K, Thavarajah P (2012) Iron-, zinc-, and magnesium-rich field peas (Pisum sativum L.) with naturally low phytic acid: a potential food-based solution to global micronutrient malnutrition. J Food Compos Anal 27:8–13

    Article  CAS  Google Scholar 

  • Andersson MS, Pfeiffer WH, Tohme J (2014) Enhancing nutritional quality in crops via genomics approaches. In: Tuberosa R et al (eds) Genomics of plant genetic resources. Springer, Dordrecht, pp 417–429

    Chapter  Google Scholar 

  • Ariza-Nieto M, Blair MW, Welch RM, Glahn RP (2007) Screening of bioavailability patterns in eight bean (Phaseolus vulgaris L.) genotypes using the Caco-2 cell in vitro model. J Agr Food Chem 55:7950–7956

    Article  CAS  Google Scholar 

  • Asif M, Rooney LW, Ali R, Riaz MN (2013) Application and opportunities of pulses in food system: a review. Crit Rev Food Sci Nutr 53(11):1168–1179

    Article  CAS  PubMed  Google Scholar 

  • Ates D, Aldemir S, Yagmur B, Kahraman A, Ozkan H, Vandenberg A, Tanyolac MB (2018) QTL mapping of genome regions controlling manganese uptake in lentil seed. G3: Genes Genomes Genet 8:1409–1416

    Article  CAS  Google Scholar 

  • Barbut S (1999) Determining water and fat holding. In: Methods of testing protein functionality, pp 186–225

    Google Scholar 

  • Basavarajeshwari R, Rajashekar Reddy BH, Manoa I, Deepika M, Shankar AG (2014) Development of mapping population for grain zinc content in pigeonpea. In: 2nd International Conference on Agricultural & Horticultural Sciences, February 03–05, 2014, Hyderabad, India

    Google Scholar 

  • Baxter I (2010) Ionomics: the functional genomics of elements. Brief Funct Genom 9:149–156

    Article  CAS  Google Scholar 

  • Beebe S, Gonzalez AV, Rengifo J (2000) Research on trace minerals in the common bean. Food Nutr Bull 21:387–391

    Article  Google Scholar 

  • Biehl RR, Baker DH, DeLuca HF (1995) 1α-hydroxylated cholecalciferol compounds act additively with microbial phytase to improve phosphorus, zinc and manganese utilization in chicks fed soy-based diets. J Nutr 125(9):2407–2416

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Medina JI, Astudillo C, Rengifo J, Beebe SE, Machado G, Graham R (2010) QTL for seed iron and zinc concentrations in a recombinant inbred line population of Mesoamerican common beans (Phaseolus vulgaris L.). Theor Appl Genet 121:1059–1071

    Article  CAS  PubMed  Google Scholar 

  • Blair MW, Izquierdo P, Astudillo C, Grusak MA (2013) A legume biofortification quandary: variability and genetic control of seed coat micronutrient accumulation in common beans. Front Plant Sci 4:275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohra A, Pandey MK, Jha UC, Singh B, Singh IP, Datta D, Chaturvedi SK, Nadarajan N, Varshney RK (2014) Genomics-assisted breeding in the four major pulse crops of developing countries: present status and prospects. Theor Appl Genet 127:1263–1291

    Article  PubMed  PubMed Central  Google Scholar 

  • Bohra A, Sahrawat KL, Kumar S, Joshi R, Parihar AK, Singh U, Singh D, Singh NP (2015) Genetics- and genomics-based interventions for nutritional enhancement of grain legume crops: status and outlook. J Appl Genet 56:151–161

    Article  CAS  PubMed  Google Scholar 

  • Borill P, Connorton JM, Balk J, Miller AJ, Sanders D, Uauy C (2014) Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops. Front Plant Sci 5:53

    Google Scholar 

  • Bouain N, Shahzad Z, Rouached A, Khan GA, Berthomieu P, Abdelly C, Poirier Y, Rouached H (2014) Phosphate and zinc transport and signalling in plants: toward a better understanding of their homeostasis interaction. J Exp Bot 65:5725–5741

    Article  CAS  PubMed  Google Scholar 

  • Bouis HE, Saltzman A (2017) Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob Food Sec 12:49–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouis HE, Hotz C, McClafferty B, Meenakshi JV, Pfeiffer WH (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32:S31–S40. https://doi.org/10.1177/15648265110321S105

    Article  PubMed  Google Scholar 

  • Boukhalfa H, Crumbliss AL (2002) Chemical aspects of siderophore mediated iron transport. Biometals 15:325–339

    Article  CAS  PubMed  Google Scholar 

  • Brady NC (2002) The nature and properties of soils. Prentice Hall of India Private Limited, Inc, Upper Saddle River, p 621

    Google Scholar 

  • Braun DM, Wang L, Ruan YL (2014) Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signalling to enhance crop yield and food security. J Exp Bot 65:1713–1735. https://doi.org/10.1093/jxb/ert416

    Article  CAS  PubMed  Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26. https://doi.org/10.1111/j.1469-8137.2006.01935.x

    Article  CAS  PubMed  Google Scholar 

  • Carvalho SMP, Vasconcelos MW (2013) Producing more with less: strategies and novel technologies for plant-based food biofortification. Food Res Int 54:961–971

    Article  CAS  Google Scholar 

  • Cassandri M, Smirnov A, Novelli F, Pitolli C, Agostini M, Malewicz M et al (2017) Zinc-finger proteins in health and disease. Cell Death Disco 3:17071. https://doi.org/10.1038/cddiscovery.2017.71

    Article  CAS  Google Scholar 

  • Chen Z, Watanabe T, Shinano T, Okazaki K, Osaki M (2009) Rapid characterization of plant nutrients with an altered ion-profile: a case study using Lotus japonicus. New Phytol 181:795–801

    Article  CAS  PubMed  Google Scholar 

  • Choudhary AK, Suri VK (2009) Effect of organic manures and inorganic fertilizers on productivity, nutrient uptake and soil fertility in rice (Oryza sativa)–wheat (Triticum aestivum) crop sequence in western Himalayas. Curr Adv Agric Sci 1(2):65–69

    Google Scholar 

  • Choudhary AK, Suri VK (2014) ‘On farm’ participatory technology development on forage cutting and nitrogen management in dual-purpose wheat (Triticum aestivum) in North–Western Himalayas. Commun Soil Sci Plant Anal 45(6):741–750

    Article  CAS  Google Scholar 

  • Cobb JN, DeClerck G, Greenberg A, Clark R, McCouch S (2013) Nextgeneration phenotyping: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theor Appl Genet 126:1–21

    Article  Google Scholar 

  • Das DK (2011) Introductory soil science. Kalyani Publishers, New Delhi, p 645

    Google Scholar 

  • Dass A, Chandra S, Choudhary AK, Singh G, Sudhishri S (2015) Influence of field re-ponding pattern and plant spacing on rice root-shoot characteristics, yield, and water productivity of two modern cultivars under SRI management in Indian Mollisols. Paddy Water Environ. https://doi.org/10.1007/s10333-015-0477-z

  • Deb DL, Sakal R, Datta SP (2009) Fundamentals of soil science. Indian society of soil science. Cambridge Printing Works, New Delhi, p 728. ISBN 8190379747

    Google Scholar 

  • Djingove R, Mihaylova V, Lyubomirova V, Tsalev D (2013) Multielement analytical spectroscopy in plant ionomics. Res Appl Spectrosc Rev 48:384–424

    Article  Google Scholar 

  • Dwivedi SL, Sahrawat KL, Rai KN, Blair MW, Andersson M, Pfieffer W (2012) Nutritionally enhanced staple food crops. Plant Breed Rev 34:169–262

    Google Scholar 

  • Erdal I, Yilmaz A, Taban S, Eker S, Torun B, Cakmak I (2002) Phytic acid and phosphorus concentrations in seeds of wheat cultivars grown with and without zinc fertilization. J Plant Nutr 25:113–127

    Article  CAS  Google Scholar 

  • Fageria NK, Valigar VC, Wright RJ (1997) Soil environment and root growth dynamics of field crops. Recent Res Dev Agron 1:15–58

    Google Scholar 

  • FAO (2006) Food and agriculture statistics global outlook (Produced by the Statistics Division). http://faostat.fao.org/Portals/_Faostat/documents/pdf/world.pdf. Accessed 12 Jan 2015

  • Farzana T, Mohajan S, Saha T (2017) Formulation and nutritional evaluation of a healthy vegetable soup powder supplemented with soy flour, mushroom, and moringa leaf. Food Sci Nutr 5:911–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira H, Vasconcelos M, Gil AM, Pinto E (2020) Benefits of pulse consumption on metabolism and health: a systematic review of randomized controlled trials. Crit Rev Food Sci Nutr:1–12

    Google Scholar 

  • Finn S (2014) Nutrition insecurity and malnutrition in developed countries. In: Addressing malnutrition to improve global health. Science/AAAS, Washington, DC

    Google Scholar 

  • Fratini R, Ruiz ML (2006) Interspecific hybridization in the genus Lens applying in vitro embryo rescue. Euphytica 150:271–280

    Article  CAS  Google Scholar 

  • Garg M, Sharma N, Sharma S, Kapoor P, Kumar A, Chunduri V et al (2018) Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Front Nutr 5:12. https://doi.org/10.3389/fnut.2018.00012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gendre D, Czernic P, Conéjéro G, Pianelli K, Briat J-F, Lebrun M, Mari S (2006) TcYSL3, a member of the YSL gene family from the hyper-accumulator thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter. Plant J 49:1–15

    Article  PubMed  Google Scholar 

  • Godecke T, Stein AJ, Qaim M (2018) The global burden of chronic and hidden hunger: trends and determinants. Glob Food Sec 17:21–29. https://doi.org/10.1016/j.gfs.2018.03.004

    Article  Google Scholar 

  • González-Guerrero M, Escudero V, Saéz Á, Tejada-Jiménez M (2016) Transition metal transport in plants and associated endosymbionts: arbuscular mycorrhizal fungi and rhizobia. Front Plant Sci 7:1088

    Article  PubMed  PubMed Central  Google Scholar 

  • Graham RD, Welch RM, Bouis HE (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Adv Agron 70:77–142

    Article  Google Scholar 

  • Gupta M, Tiwari BK, Norton T (2011) Value addition and international trade. In: Pratap A, Kumar J (eds) Biology and breeding of food legumes. CABI, Oxfordshire, pp 395–404

    Chapter  Google Scholar 

  • Gupta DS, Thavarajah D, Knutson P, Thavarajah P, McGee RJ, Coyne CJ, Kumar S (2013) Lentils (Lens culinaris L.) a rich source of folates. J Agric Food Chem 61:7794–7799

    Article  PubMed  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Harrier LA, Watson CA (2003) The role of arbuscular mycorrhizal fungi in sustainable cropping systems. Adv Agron 42:185–225

    Article  Google Scholar 

  • Haydon MJ, Cobbett CS (2007) Transporters of ligands for essential metal ions in plants. New Phytol 174:499–506. https://doi.org/10.1111/j.1469-8137.2007.02051.x

    Article  CAS  PubMed  Google Scholar 

  • Hirschi KD (2009) Nutrient biofortification of food crops. Annu Rev Nutr 29:401–421

    Article  CAS  PubMed  Google Scholar 

  • Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J et al (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339. https://doi.org/10.1105/tpc.020487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong J, Merkovich A, Clyne M, Connolly EL (2017) Directing iron transport in dicots: regulation of iron acquisition and translocation. Curr Opin Plant Biol 39:106–113. https://doi.org/10.1016/j.pbi.2017.06.014

    Article  CAS  PubMed  Google Scholar 

  • Joshi-Saha A, Reddy KS (2015) Repeat length variation in the 5’UTR of myo-inositol monophosphatase gene is related to phytic acid content and contributes to drought tolerance in chickpea (Cicer arietinum L.). J Exp Bot 66:5683–5690. https://doi.org/10.1093/jxb/erv156

    Article  CAS  PubMed  Google Scholar 

  • Kabir AH, Paltridge N, Stangoulis J (2016) Chlorosis correction and agronomic biofortification in field peas through foliar application of iron fertilizers under Fe deficiency. J Plant Interact 11:1–4. https://doi.org/10.1080/17429145.2015.1125534

    Article  CAS  Google Scholar 

  • Karan AK, Kar S, Singh VK, Singh CV (2014) Effects of liming and soil moisture regimes on time changes of soil pH, redox potential, availability of native sulphur and micronutrients to rice (Oryza sativa L.) in acid soils. Int J Soil Sci 9(1):1–15

    Article  Google Scholar 

  • Karkanis A, Ntatsi G, Lepse L, Fernández JA, Vågen IM, Rewald B, Alsin AI, Kronberga A, Balliu A, Olle M et al (2018) Faba bean cultivation—revealing novel managing practices for more sustainable and competitive European cropping systems. Front Plant Sci 9:1115

    Article  PubMed  PubMed Central  Google Scholar 

  • Katuuramu DN, Hart JP, Porch TG, Grusak MA, Glahn RP, Cichy KA (2018) Genome-wide association analysis of nutritional composition-related traits and iron bioavailability in cooked dry beans (Phaseolus vulgaris L.). Mol Breed 38:44

    Article  Google Scholar 

  • Kaur H, Shukla RK, Yadav G, Chattopadhyay D, Majee M (2008) Two divergent genes encoding L-myo-inositol 1-phosphate synthase1 (CaMIPS1) and 2 (CaMIPS2) are differentially expressed in chickpea. Plant Cell Environ 31:1701–1716. https://doi.org/10.1111/j.1365-3040.2008.01877.x

    Article  CAS  PubMed  Google Scholar 

  • Khan A, Singh J, Upadhayay VK, Singh AV, Shah S (2019) Microbial biofortification: a green technology through plant growth promoting microorganisms. In: Sustainable green technologies for environmental management. Springer, Singapore

    Google Scholar 

  • Khazaei H, Podder R, Caron CT, Kundu SS, Diapari M, Vandenberg A, Bett KE (2017) Marker-trait association analysis of iron and zinc concentration in lentil (Lens culinaris Medik.) seeds. Plant Genome 10

    Google Scholar 

  • Klein MA, Grusak MA (2009) Identification of nutrient and physical seed trait QTL in the model legume Lotus japonicus. Genome 52:677–691. https://doi.org/10.1139/g09-039

    Article  CAS  PubMed  Google Scholar 

  • Klein MA, López-Millán A-F, Grusak MA (2012) Quantitative trait locus analysis of root ferric reductase activity and leaf chlorosis in the model legume, Lotus japonicus. Plant Soil 351:363–376

    Article  CAS  Google Scholar 

  • Ku YS, Rehman HM, Lam H-M (2019) Possible roles of rhizospheric and endophytic microbes to provide a safe and affordable means of crop biofortification. Agronomy 9:764

    Article  CAS  Google Scholar 

  • Kumar S, Pandey G (2020) Biofortification of pulses and legumes to enhance nutrition. Heliyon 6(3):e03682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Suri VK, Choudhary AK (2014) Influence of inorganic phosphorus, VAM fungi and irrigation regimes on crop productivity and phosphorus transformations in Okra (Abelmoschus esculentus L.)–Pea (Pisum sativum L.) cropping system in an acid Alfisol. Commun Soil Sci Plant Anal 45:953–967

    Article  CAS  Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Tofazzal Islam M (2017) Co-inoculation with enterobacter and rhizobacteria on yield and nutrient uptake by wheat (Triticum Aestivum L.) in the alluvial soil under indo-gangetic plain of India. J Plant Growth Regul 36:608–617

    Article  CAS  Google Scholar 

  • Kumar A, Kubota Y, Chernov M, Kasuya H (2020) Potential role of zinc supplementation in prophylaxis and treatment of COVID-19. Med Hypotheses 144:109848. https://doi.org/10.1016/j.mehy.2020.109848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Küpper H, Kochian LV (2010) Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population). New Phytol 185(1):114–129

    Google Scholar 

  • Ladizinsky G, Abbo S (1993) Cryptic speciation in Lens culinaris. Genet Resour Crop Evol 40:1–5

    Article  Google Scholar 

  • Ladizinsky G, Braun D, Goshen D, Muehlbauer FJ (1984) The biological species of the genus Lens L. Bot Gaz 145:253–261

    Article  Google Scholar 

  • Ladizinsky G, Cohen D, Muehlbauer FJ (1985) Hybridization in the genus Lens by means of embryo culture. Theor Appl Genet 70:97–101

    Article  CAS  PubMed  Google Scholar 

  • Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M et al (2018) The human transcription factors. Cell 172:650–665. https://doi.org/10.1016/j.cell.2018.01.029

    Article  CAS  PubMed  Google Scholar 

  • Li M, Ahammed GJ, Li C, Bao X, Yu J, Huang C, Yin H, Zhou J (2016) Brassinosteroid ameliorates zinc oxide nanoparticles-induced oxidative stress by improving antioxidant potential and redox homeostasis in tomato seedling. Front Plant Sci 7:615

    PubMed  PubMed Central  Google Scholar 

  • Loneragan JF, Webb MJ (1993) Interactions between zinc and other nutrients affecting the growth of plants. In: Robson AD (ed) Zinc in soils and plants. Developments in plant and soil sciences, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0878-2_9

    Chapter  Google Scholar 

  • López-Morales D, de la Cruz-Lázaro E, Sánchez-Chávez E, Preciado-Rangel P, Márquez-Quiroz C, Osorio-Osorio R (2020) Impact of agronomic biofortification with zinc on the nutrient content, bioactive compounds, and antioxidant capacity of cowpea bean (Vigna unguiculata L. Walpers). Agron 10:1460. https://doi.org/10.3390/agronomy10101460

    Article  CAS  Google Scholar 

  • Ma Y, Coyne CJ, Grusak MA, Mazourek M, Cheng P, Main D, McGee RJ (2017) Genome-wide SNP identification, linkage map construction and QTL mapping for seed mineral concentrations and contents in pea (Pisum sativum L.). BMC Plant Biol 17:43

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Schwenke G, Sun L, Liu DL, Wang B, Yang B (2018) Modeling the impact of crop rotation with legume on nitrous oxide emissions from rain-fed agricultural systems in Australia under alternative future climate scenarios. Sci Total Environ 630:1544–1552

    Article  CAS  PubMed  Google Scholar 

  • Margier M, Georgé S, Hafnaoui N, Remond D, Nowicki M, Du Chaffaut L, Amiot MJ, Reboul E (2018) Nutritional composition and bioactive content of legumes: characterization of pulses frequently consumed in France and effect of the cooking method. Nutrients 10:1668

    Article  PubMed  PubMed Central  Google Scholar 

  • Marschner P (2012) Marschner’s mineral nutrition of higher plants. Elsevier, Amsterdam

    Google Scholar 

  • Mcphee JB, Hancock RE (2005) Function and therapeutic potential of host defence peptides. Journal of peptide science: an official publication of the European Peptide Society, 11(11):677–687

    Google Scholar 

  • Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milner MJ, Seamon J, Craft E, Kochian LV (2013) Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Bot 64:369–381. https://doi.org/10.1093/jxb/ers315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molvig L, Tabe LM, Eggum BO, Moore AE, Craig S, Spencer D, Higgins TJV (1997) Enhanced methionine levels and increased nutritive value of seeds of transgenic lupins (Lupinus angustifolius L.) expressing a sunflower seed albumin gene. Proc Natl Acad Sci U S A 94:8393–8398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muehlbauer FJ, Cho S, Sarker A, McPhee KE, Coyne CJ, Rajesh PN, Ford R (2006) Application of biotechnology in breeding lentil for resistance to biotic and abiotic stress. Euphytica 147:149–165

    Article  Google Scholar 

  • Murgia I, Arosio P, Tarantino D, Soave C (2012) Crops biofortification for combating ‘hidden hunger’ for iron. Trends Plant Sci 17:47–55

    Article  CAS  PubMed  Google Scholar 

  • Nair RM, Yang RY, Easdown WJ, Thavarajah D, Thavarajah P, Hughes JD, Keatinge JD (2013) Biofortification of mungbean (Vigna radiata) as a whole food to enhance human health. J Sci Food Agric 93(8):1805–1813

    Article  CAS  PubMed  Google Scholar 

  • Nath D, Maurya BR, Meena VS (2017) Documentation of five potassium- and phosphorus-solubilizing bacteria for their K and P-solubilization ability from various minerals. Biocatal Agric Biotechnol 10:174–181

    Article  CAS  Google Scholar 

  • Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G et al (2005) A new version of golden rice with increased pro-vitamin A content. Nat Biotechnol 23:482–487

    Article  CAS  PubMed  Google Scholar 

  • Palmgren MG, Clemens S, Williams LE, Krämer U, Borg S, Schjørring JK et al (2008) Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13:464–473. https://doi.org/10.1016/j.tplants.2008.06.005

    Article  CAS  PubMed  Google Scholar 

  • Palmer CM, Guerinot ML (2009) Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol 5(5):333–340

    Google Scholar 

  • Panzeri D, Cassani E, Doria E, Tagliabue G, Forti L, Campion B et al (2011) A defective ABC transporter of the MRP family, responsible for the bean lpa1 mutation, affects the regulation of the phytic acid pathway, reduces seed myo−inositol and alters ABA sensitivity. New Phytol 191:70–83. https://doi.org/10.1111/j.1469-8137.2011.03666.x

    Article  CAS  PubMed  Google Scholar 

  • Parveen F, Jaafar NI, Ainin S (2016) Social media’s impact on organizational performance and entrepreneurial orientation in organizations. Management Decision

    Google Scholar 

  • Payne SM (1994) Detection, isolation, and characterization of siderophores. Methods Enzymol 235:329–344

    Article  CAS  PubMed  Google Scholar 

  • Petry N, Rohner F, Gahutu JB, Campion B, Boy E, Tugirimana PL et al (2016) In Rwandese women with low iron status, iron absorption from low-phytic acid beans and biofortified beans is comparable, but low-phytic acid beans cause adverse gastrointestinal symptoms. J Nutr 146:970–975. https://doi.org/10.3945/jn.115.223693

    Article  CAS  PubMed  Google Scholar 

  • Poblaciones MJ, Rengel Z (2016) Soil and foliar zinc biofortification in field pea (Pisum sativum L.): grain accumulation and bioavailability in raw and cooked grains. Food Chem 212:427–433. https://doi.org/10.1016/j.foodchem.2016.05.189

    Article  CAS  PubMed  Google Scholar 

  • Potter JD, Illman RJ, Calvert GD, Oakenfull DG, Topping DL (1980) Soya saponins, plasma lipids, lipoproteins and fecal bile acids: a double blind cross-over study. Nutr Rep Int 22:521–528

    Google Scholar 

  • Prasad AS, Miale A, Farid Z, Sandstead HH, Schulert AR (1963) Zinc metabolism in patients with the syndrome of iron deficiency anemia, hepatosplenomegaly, dwarfism, and hypogonadism. J Lab Clin Med 61:537–549

    CAS  PubMed  Google Scholar 

  • Prasad R, Shivay YS, Kumar D (2014) Agronomic biofortification of cereal grains with iron and zinc. Adv Agro 125:55–91. https://doi.org/10.1016/B978-0-12-800137-0.00002-9

    Article  Google Scholar 

  • Prasad R, Shivay YS, Kumar D (2016) Interactions of zinc with other nutrients in soils and plants – a review. Indian J Fert 12:16–26

    Google Scholar 

  • Prathet P, Somta P, Srinives P (2012) Mapping QTL conferring resistance to iron deficiency chlorosis in mungbean [Vigna radiata (L.) Wilczek]. Field Crop Res 137:230–236

    Article  Google Scholar 

  • Prentice AM, Gershwin ME, Schaible UE, Keusch GT, Victoria LG, Gordon JI (2008) New challenges in studying nutrition disease interactions in the developing world. J Clin Invest 118:1322–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin Y, Song D, Chen H, Cheng W, Jiang G, Cottrell G (2017) A dual-stage attention-based recurrent neural network for time series prediction. arXiv preprint arXiv:1704.02971

    Google Scholar 

  • Rahman MM, Erskine W, Siddique KHM, Thavarajah P, Thavarajah D, Zaman MS, Materne MA, Mcmurray LM (2014) Selenium biofortification of lentil in Australia and Bangladesh. In: 6th international food legume research conference, TCU Place, Sakatoon, 7–11 July 2014

    Google Scholar 

  • Rao BN (2002) Pulses and legumes as functional foods. NFI Bull 23(1):1–4

    Google Scholar 

  • Rastall RA, Gibson GR (2015) Recent developments in prebiotics to selectively impact beneficial microbes and promote intestinal health. Curr Opin Biotechnol 32:42–46. https://doi.org/10.1016/j.copbio.2014.11.002

    Article  CAS  PubMed  Google Scholar 

  • Raymond J (2006) World’s healthiest foods: lentils (India). Health Magazine. http://www.health.com/health/article/0,23414,1149140,00.html

    Google Scholar 

  • Read SA, Obeid S, Ahlenstiel C, Ahlenstiel G (2019) The role of zinc in antiviral immunity. Adv Nutr 10:696–710. https://doi.org/10.1093/advances/nmz013

    Article  PubMed  PubMed Central  Google Scholar 

  • Rehman HM, Cooper JW, Lam H-M, Yang SH (2019) Legume biofortification is an underexploited strategy for combatting hidden hunger. Plant Cell Environ 42:52–70

    Article  CAS  PubMed  Google Scholar 

  • Reilly C (1996) Biological role of selenium. In: Selenium in food and health. Blackie, London

    Chapter  Google Scholar 

  • Ryan BM, Kirby JK, Degryse F, Harris H, McLaughlin MJ, Scheiderich K (2013) Copper speciation and isotopic fractionation in plants: uptake and translocation mechanisms. New Phytol 199:367–378. https://doi.org/10.1111/nph.12276

    Article  CAS  PubMed  Google Scholar 

  • Salt DE, Baxter I, Lahner B (2008) Ionomics and the study of the plant ionome. Annu Rev Plant Biol 59:709–733

    Article  CAS  PubMed  Google Scholar 

  • Saltzman A, Birol E, Oparinde A, Andersson MS, Asare-Marfo D, Diressie MT et al (2017) Availability, production, and consumption of crops biofortified by plant breeding: current evidence and future potential. Ann N Y Acad Sci 1390:104–114. https://doi.org/10.1111/nyas.13314

    Article  PubMed  Google Scholar 

  • Santi S, Schmidt W (2009) Dissecting iron deficiency‐induced proton extrusion in Arabidopsis roots. New Phytol 183(4):1072–1084

    Google Scholar 

  • Santos CAF, Boiteux LS (2013) Breeding biofortified cowpea lines for semi-arid tropical areas by combining higher seed protein and mineral levels. Genet Mol Res 12:6782–6789

    Article  CAS  PubMed  Google Scholar 

  • Sathya A, Vijayabharathi R, Srinivas V, Gopalakrishnan S (2016) Plant growth-promoting actinobacteria on chickpea seed mineral density: an upcoming complementary tool for sustainable biofortification strategy. 3 Biotech 6:138

    Article  PubMed  PubMed Central  Google Scholar 

  • Shivay YS, Prasad R, Singh RK, Pal M (2015) Relative efficiency of zinc-coated urea and soil and foliar application of zinc sulphate on yield, nitrogen, phosphorus, potassium, zinc and iron biofortification in grains and uptake by basmati rice (Oryza sativa L.). J Agric Sci 7(2):161

    Google Scholar 

  • Shivay YS, Singh U, Prasad R, Kaur R (2016) Agronomic interventions for micronutrient biofortification of pulses. Indian J Agron 61:161–172

    Google Scholar 

  • Singh J (2016) Biofortification of food legumes and bioavailability of nutrients. In: Biofortification of food crops. Springer, New Delhi, pp 51–60

    Chapter  Google Scholar 

  • Singh UM, Sareen P, Sengar RS, Kumar A (2013) Plant ionomics: a newer approach to study mineral transport and its regulation. Acta Physiol Plant 35:2641–2653

    Article  CAS  Google Scholar 

  • Soares JC, Santos CS, Carvalho SMP, Pintado MM, Vasconcelos MW (2019) Preserving the nutritional quality of crop plants under a changing climate: importance and strategies. Plant Soil 443:1–26

    Article  CAS  Google Scholar 

  • Socha AL, Guerinot ML (2014) Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants. Front Plant Sci 5:106

    Article  PubMed  PubMed Central  Google Scholar 

  • Sompong U, Somta P, Raboy V, Srinivas P (2012) Mapping of quantitative trait loci for phytic acid and phosphorous contents in seed and seedling of mungbean (Vigna radiata (L.) Wilczek.). Breed Sci 62:87–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suri VK, Choudhary AK (2013) Effect of vesicular arbuscular mycorrhiza and applied phosphorus through targeted yield precision model on root morphology, productivity and nutrient dynamics in soybean in an acid Alfisol. Commun Soil Sci Plant Anal 44:2587–2604

    Article  CAS  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Taunk J, Yadav NR, Yadav RC, Kumar R (2012) Genetic diversity among green gram (Vigna radiata L. Wilczek) genotypes varying in micronutrient content using RAPD. Indian J Biotechnol 11:48–53

    CAS  Google Scholar 

  • Tejada-Jiménez M, Castro-Rodríguez R, Kryvoruchko I, Lucas MM, Udvardi M, Imperial J, González-Guerrero M (2015) Medicago truncatula natural resistance-associated macrophage Protein1 is required for iron uptake by rhizobia-infected nodule cells. Plant Physiology, 168(1):258–272

    Google Scholar 

  • Thavarajah P, Thavarajah D, Vandenberg A (2009) Low phytic acid lentils (Lens culinaris L.): a potential solution for increased micronutrient bioavailability. J Agric Food Chem 57:9044–9049

    Article  CAS  PubMed  Google Scholar 

  • Thavarajah P, See CT, Vandenberg A (2010) Phytic acid and Fe and Zn concentration in lentil (Lens culinaris L.) seeds is influenced by temperature during seed filling period. Food Chem 122(1):254–259

    Article  CAS  Google Scholar 

  • Trethowan RM (2007) Breeding wheat for high iron and zinc at CIMMYT: state of the art challenges and future prospects. In: Proceedings of the 7th international wheat conference, Mar del Plata

    Google Scholar 

  • Tullu A, Buchwaldt L, Lulsdorf M, Banniza S, Barlow B, Slinkard AE, Sarker A, Tarán TD, Warkentin TD, Vandenberg A (2006) Sources of resistance to anthracnose (Colletotrichum truncatum) in wild Lens species. Genet Resour Crop Evol 53:111–119

    Article  CAS  Google Scholar 

  • Upadhyaya HD, Bajaj D, Das S, Kumar V, Gowda CL, Sharma S et al (2016) Genetic dissection of seed-iron and zinc concentrations in chickpea. Sci Rep 6:2

    Article  Google Scholar 

  • Varshney RK, Kudapa H, Pazhamala L, Chitikineni A, Thudi M, Bohra A, Gaur PM, Janila P, Fikre A, Kimurto P, Ellis N (2015) Translational genomics in agriculture: some examples in grain legumes. Crit Rev Plant Sci 34:169–194

    Article  Google Scholar 

  • Wallace A, Romney EM, Hale VQ, Hoover RM (1969) Effects of soil temperature and zinc application on yields and micronutrient content of four crop species grown together in a glasshouse. J Agron 61(4):567–568

    Article  CAS  Google Scholar 

  • Wang YH, Zou CQ, Mirza Z et al (2016) Cost of agronomic biofortification of wheat with zinc in China. Agron Sustain Dev 36:44. https://doi.org/10.1007/s13593-016-0382-x

    Article  CAS  Google Scholar 

  • Warkentin TD, Delgerjav O, Arganosa G, Rehman AU, Bett KE, Anbessa Y et al (2012) Development and characterization of low-Phytate Pea. Crop Sci 52:74–78. https://doi.org/10.2135/cropsci2011.05.0285

    Article  Google Scholar 

  • Waters BM, Grusak MA (2008) Whole-plant mineral partitioning throughout the life cycle in Arabidopsis thaliana ecotypes Columbia Landsberg erecta, Cape Verde Islands, and the mutant line ysl1ysl3. New Phytol 177:389–405. https://doi.org/10.1111/j.1469-8137.2007.02288.x

    Article  CAS  PubMed  Google Scholar 

  • Welch RA, Burland V, Plunkett III G, Redford P, Roesch P, Rasko D, ... Blattner FR (2002) Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci 99(26):17020–17024

    Google Scholar 

  • Wessels I, Rolles B, Rink L (2020) The potential impact of zinc supplementation on COVID-19 pathogenesis. Front Immunol 11:1712. https://doi.org/10.3389/fimmu.2020.01712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2011) Physiological limits to zinc biofortification of edible crops. Front Plant Sci 2:80. https://doi.org/10.3389/fpls.2011.00080

    Article  PubMed  PubMed Central  Google Scholar 

  • White PJ, Whiting SN, Baker AJM, Broadley MR (2002) Does zinc move apoplastically to the xylem in roots of Thlaspi caerulescens? New Phytol 153:201–207. https://doi.org/10.1046/j.0028-646x.2001.00325.x

    Article  CAS  Google Scholar 

  • WHO (2022) Biofortication of staple crops. Available online: http://www.who.int/elena/titles/biofortification/en/

  • Xiong L, Deng Q, Tucker GJ, McDowell DL, Chen Y (2012) Coarse-grained atomistic simulations of dislocations in Al, Ni and Cu crystals. Int J Plast 38:86–101

    Google Scholar 

  • Zou T, Xu N, Hu G, Pang J, Xu H (2014) Biofortification of soybean sprouts with zinc and bioaccessibility of zinc in the sprouts. J Sci Food Agric 94(14):3053–3060

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zubaida Yousaf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Umar, A. et al. (2023). Nutritional Security Approaches for Legume Biofortification—A Major Challenge. In: Nadeem, M.A., et al. Legumes Biofortification. Springer, Cham. https://doi.org/10.1007/978-3-031-33957-8_2

Download citation

Publish with us

Policies and ethics