Skip to main content

Advertisement

Log in

Plant ionomics: a newer approach to study mineral transport and its regulation

  • Review
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Up to two-thirds of the world population is at risk of deficiency in one or more essential mineral elements. In order to overcome deficiency disorders of mineral nutrients, biofortification approach in crops is an absolute requirement to eliminate the hidden hunger. Hence, the aim of crop biofortification is shifting from food security to nutritional security. In this context, ionomics becomes essential to identify potential gene(s) responsible for the uptake, transport, and storage of ions in plants. It involves the measurement of elemental composition of an organism and change in their composition in relation to physiological, developmental, environmental, and genetic factors. It renders the functional analysis of genes and gene networks that directly or indirectly affect the whole ionome. The present review deals with the study of ionome with special reference to different types of ionic interactions, quantifications, and gene identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adebooye OC, Schmitz-Eiberger M, Lankes C, Noga GJ (2010) Inhibitory effects of sub-optimal root zone temperature on leaf bioactive components, photosystem II (PS II) and minerals uptake in Trichosanthes cucumerina L. Cucurbitaceae. Acta Physiol Plant 32:67–73

    Article  CAS  Google Scholar 

  • Akbaba U, Sahin Y, Türkez H (2012) Comparison of element contents in haricot beans grown under organic and conventional farming regimes for human nutrition and health. Acta Sci Pol-Hortorum Cultus 11(2):117–125

    Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell. Garland Science, New York

    Google Scholar 

  • Apaydın G, Aylıkc V, Cengiz E, Saydam M, Küp N, Tıraşoğlu E (2010) Analysis of metal contents of seaweed (Ulva lactuca) from Istanbul, Turkey by EDXRF. Turkish J Fish Aquat Sci 10:215–220

    Google Scholar 

  • Azpiroz-Leehan R, Feldmann KA (1997) T-DNA insertion mutagenesis in Arabidopsis: going back and forth. Trends Genet 13:152–156

    Article  PubMed  CAS  Google Scholar 

  • Baxter I (2009) Ionomics: studying the social network of mineral nutrients. Curr Opin Plant Biol 12:381–386

    Article  PubMed  CAS  Google Scholar 

  • Baxter I (2010) Ionomics: the functional genomics of elements. Brief Funct Genomics 9:149–156

    Article  PubMed  CAS  Google Scholar 

  • Baxter I, Dilkes B (2012) Elemental profiles reflect plant adaptations to the environment. Science 336:1661–1663

    Article  PubMed  CAS  Google Scholar 

  • Baxter I, Hermans C, Lahner B et al (2012) Biodiversity of mineral nutrient and trace element accumulation in Arabidopsis thaliana. PLoS ONE 7:e35121

    Article  PubMed  CAS  Google Scholar 

  • Beckhoff B, Kanngießer B, Langhoff N, Wedell R, Wolff H (2006) Handbook of practical X-Ray fluorescence analysis. Springer, New York

    Book  Google Scholar 

  • Bentsink L, Yuan K, Koorneef M, Vreugdenhil D (2003) The genetics of phytate and phosphate accumulation in seeds and leaves of Arabidopsis thaliana, using natural variation. Theor Appl Genet 106:1234–1243

    PubMed  CAS  Google Scholar 

  • Bertoldi D, Larcher R, Bertamini M, Otto S, Concheri G, Nicolini G (2011) Accumulation and distribution pattern of macro, micro and trace elements in Vitis vinifera L. cv. Chardonnay berries. J Agric Food Chem 59(13):7224–7236

    Article  PubMed  CAS  Google Scholar 

  • Borevitz JO, Nordborg M (2003) The impact of genomics on the study of natural variation in Arabidopsis. Plant Physiol 132:718–725

    Article  PubMed  CAS  Google Scholar 

  • Borghi M, Rus A, Salt DE (2011) Loss-of-function of constitutive expresser of pathogenesis related Genes5 affects potassium homeostasis in Arabidopsis thaliana. PLoS ONE 6(10):e26360

    Article  PubMed  CAS  Google Scholar 

  • Burnay M, Crambert G, Kharoubi-Hess S, Geering K, Horisberger JD (2003) Electrogenicity of Na, K- and H, K-ATPase activity and presence of a positively charged amino acid in the fifth transmembrane segment. J Biol Chem 278:19237–19244

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Watanabe T, Shinano T, Okazaki K, Osaki M (2008) Ionomic study of Lotus japonica. New Phytol 181(4):795–801

    Article  Google Scholar 

  • Chen Z, Shinano T, Ezawa T, Wasaki J, Kimura K, Osaki M, Zhu Y (2009) Elemental interconnections in Lotus japonicus: a systematic study of the affects of elements additions on different natural variants. Soil Sci Plant Nutr 55(1):91–101

    Article  CAS  Google Scholar 

  • Cizdziel J, Bu K, Nowinski P (2011) Determination of elements in situ in green leaves by laser ablation ICP-MS using pressed reference materials for calibration. Anal Methods 4:564–569

    Article  Google Scholar 

  • Clárk RB (1983) Plant genotype differences in the uptake, translocation, accumulation, and use of mineral elements required for plant growth. Plant Soil 72(2–3):175–196

    Article  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212(4):475–486

    Article  PubMed  CAS  Google Scholar 

  • Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14:1347–1357

    Article  PubMed  CAS  Google Scholar 

  • Delhaize E, Randall PJ, Wallace PA, Pinkerton A (1993) Screening Arabidopsis for mutants in mineral nutrition. Plant Soil 155(1):131–134

    Article  Google Scholar 

  • Diego HS, Henning R, Ute K, Michael KU, Joachim K (2008) Metabolome–ionome–biomass interactions: what can we learn about salt stress by multiparallel phenotyping. Plant Signal Behav 3(8):598–600

    Article  Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci 93:5624–5628

    Article  PubMed  CAS  Google Scholar 

  • Fahrni CJ (2007) Biological applications of X-ray fluorescence microscopy: exploring the subcellular topography and speciation of transition metals. Curr Opin Chem Biol 11:121–127

    Article  PubMed  CAS  Google Scholar 

  • Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 8:1157–1161

    Article  Google Scholar 

  • Fleet JC, Replogle R, Salt DE (2011) Systems genetics of mineral metabolism. J Nutr 141:520–525

    Article  PubMed  CAS  Google Scholar 

  • Galinha C, Anawar HM, Freitas MC et al (2011) Neutron activation analysis of wheat samples. Appl Radiat Isot 69(11):1596–1604

    Article  PubMed  CAS  Google Scholar 

  • Ghandilyan A, Ilk N, Hanhart C et al (2009) A strong effect of growth medium and organ type on the identification of QTLs for phytate and mineral concentrations in three Arabidopsis thaliana RIL populations. J Exp Bot 60(5):1409–1425

    Article  PubMed  CAS  Google Scholar 

  • Gilroy S, Jones DL (2000) From form to function: development and nutrient uptake in root hairs. Trends Plant Sci 5:56–60

    Article  PubMed  CAS  Google Scholar 

  • Grattan SR, Grieve CM (1998) Salinity–mineral nutrient relations in horticultural crops. Sci Hortic 78:127–157

    Article  Google Scholar 

  • Grusak MA, Della Penna D (1999) Improving the nutrient composition of plants to enhance human nutrition and health. Annu Rev Plant Physiol Plant Mol Biol 50:133–161

    Article  PubMed  CAS  Google Scholar 

  • Hacker SD, Mark DB (1995) Morphological and physiological consequences of a positive plant interaction. Ecology 76:2165–2175

    Article  Google Scholar 

  • Hemphill DD (1972) Availability of trace elements to plants with respect to soil–plant interaction. Ann N Y Acad Sci 199:46–61

    Article  PubMed  CAS  Google Scholar 

  • Hevesy G, Levi H (1936) Action of slow neutrons on rare earth elements. Nature 137:185

    Article  CAS  Google Scholar 

  • Hirochika H, Guiderdoni E, An G et al (2004) Rice mutant resources for gene discovery. Plant Mol Biol 54:325–334

    Article  PubMed  CAS  Google Scholar 

  • Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125–133

    Article  PubMed  CAS  Google Scholar 

  • Hoekenga OA, Maron LG, Piñeros MA et al (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci USA 103:9738–9743

    Article  PubMed  CAS  Google Scholar 

  • Induri BR, Ellis DR, Slavov GT, Yin T, Zhang X, Muchero W, Tuskan GA, DiFazio SP (2012) Identification of quantitative trait loci and candidate genes for cadmium tolerance in Populus. Tree Physiol 32(5):626–638

    Article  PubMed  CAS  Google Scholar 

  • Koller A, Washburn MP, Lange BM, Andon NL, Deciu C, Haynes PA (2002) Proteomic survey of metabolic pathways in rice. Proc Natl Acad Sci USA 99:11969–11974

    Article  PubMed  CAS  Google Scholar 

  • Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40:37–44

    Article  PubMed  CAS  Google Scholar 

  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic Press, San Diego

    Google Scholar 

  • Lahner B, Gong J, Mahmoudian M et al (2003) Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nat Biotechnol 21(10):1215–1221

    Article  PubMed  CAS  Google Scholar 

  • Lee SC, Lan WZ, Kim BG, Li L, Cheong YH, Pandey GK (2007) A protein phosphorylation/dephosphorylation network regulates a plant potassium channel. Proc Natl Acad Sci 104(40):15959–15964

    Article  PubMed  CAS  Google Scholar 

  • Leonhardt N, Kwak JM, Robert N, Waner D, Leonhardt G, Schroeder JI (2004) Microarray expression analysis of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 16:596–615

    Article  PubMed  CAS  Google Scholar 

  • Li G, Nunes L, Wang Y, Williams PN, Zheng M, Zhang Q, Zhu Y (2013) Profiling the ionome of rice and its use in discriminating geographical origins at the regional scale, China. J Environ Sci 25(1):144–154

    Article  Google Scholar 

  • Loudet O, Chaillou S, Merigout P, Talbotec J, Daniel-Vedele F (2003) Quantitative trait loci analysis of nitrogen use efficiency in Arabidopsis. Plant Physiol 131:345–358

    Article  PubMed  CAS  Google Scholar 

  • Lvov B (2005) Fifty years of atomic absorption spectroscopy. J Anal Chem 60:382–392

    Article  CAS  Google Scholar 

  • Marschner P (2011) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Press, London

    Google Scholar 

  • Martienssen RA (1998) Functional genomics: probing plant gene function and expression with transposons. Proc Natl Acad Sci USA 95:2021–2026

    Article  PubMed  CAS  Google Scholar 

  • Matzke MA, Matzke AJM (1995) How and why do plants inactivate homologous (trans) genes. Plant Physiol 107:679–685

    PubMed  CAS  Google Scholar 

  • Medveď J, Streško V, Kubová J, Chmielewská E (2003) Evaluation of atomic spectrometry methods for determination of some heavy metals in soils, soil extracts, plants, and biota. Chem Pap 57(3):169–171

    Google Scholar 

  • Nadkarni RA, Morrison GH (1973) Multi-element instrumental neutron activation analysis of biological materials. Anal Chem 45:1957–1960

    Article  PubMed  CAS  Google Scholar 

  • Nelson MT (1986) Interactions of divalent cations with single calcium channels from brain synaptosomes. J Gen Physiol 87:201–222

    Article  PubMed  CAS  Google Scholar 

  • Norton GJ, Deacon CM, Xiong L, Huang S, Meharg AA, Price AH (2010) Genetic mapping of the rice ionome in leaves and grain: identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium. Plant Soil 329:139–153

    Article  CAS  Google Scholar 

  • Ohkama-Ohtsu N, Wasaki J (2010) Recent Progress in Plant nutrition research: cross-talk between nutrients, plant physiology and soil microorganisms. Plant Cell Physiol 51(8):1255–1264

    Article  PubMed  CAS  Google Scholar 

  • Patrick JW, Offler CE (2001) Compartmentation of transport and transfer events in developing seeds. J Exp Bot 52:551–564

    Article  PubMed  CAS  Google Scholar 

  • Payne KA, Bowen HC, Hammond JP et al (2004) Natural genetic variation in caesium (Cs) accumulation by Arabidopsis thaliana. New Phytol 162:535–548

    Article  CAS  Google Scholar 

  • Prasad MN, Strzalka K (2002) Physiology and biochemistry of metal toxicity and tolerance in plants. Springer

  • Punshon T, Hirschi K, Yang J, Lanzirotti A, Lai B, Mary LG (2012) The Role of CAX1 and CAX3 in elemental distribution and abundance in Arabidopsis seed. Plant Physiol 158:352–362

    Article  PubMed  CAS  Google Scholar 

  • Qin Z, Caruso JA, Lai B, Matusch A, Becker JS (2011) Trace metal imaging with high spatial resolution: applications in biomedicine. Metallomics 3:28–37

    Article  PubMed  CAS  Google Scholar 

  • Quadir QF, Watanabe T, Chen Z, Osaki M, Shinano T (2011) Ionomic response of Lotus japonicus to different root-zone temperatures. Soil Sci Plant Nutr 57:221–232

    Article  CAS  Google Scholar 

  • Rauh L, Basten C, Buckler S (2002) Quantitative trait loci analysis of growth response to varying nitrogen sources in Arabidopsis thaliana. Theor Appl Genet 104:743–750

    Article  PubMed  CAS  Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants. Cell Biochem Biophys 31:19–48

    Article  PubMed  CAS  Google Scholar 

  • Remeteiová D, Ružicková S, Matherny M, Dirner V (2011) FAAS method and the extraction process applied for fractionation analysis of gravitation dust sediments and their evaluation. J Chem Metrol 5(1):1–10

    Google Scholar 

  • Rivetta A, Negrini N, Cocucci M (1997) Involvement of Ca2+-calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination. Plant Cell Environ 20:600–608

    Article  CAS  Google Scholar 

  • Sallaud C, Gay C, Larmande P et al (2004) High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Plant J 39:450–464

    Article  PubMed  CAS  Google Scholar 

  • Salt DE (2004) Update on ionomics. Plant Physiol 136:2451–2456

    Article  PubMed  CAS  Google Scholar 

  • Salt DE, Baxter I, Lahner B (2008) Ionomics and the study of the plant ionome. Annu Rev Plant Biol 59:709–733

    Article  PubMed  CAS  Google Scholar 

  • Schwacke R, Schneider A, Van Der Graaff E, Fischer K, Catoni E, Desimone M (2003) Aramemnon, a novel database for Arabidopsis integral membrane proteins. Plant Physiol 131:16–26

    Article  PubMed  CAS  Google Scholar 

  • Sha Z, Oka N, Watanabe T, Tampubolon BD, Okazaki K, Osaki M, Shinano T (2012) Ionome of soybean seed affected by previous cropping with mycorrhizal plant and manure application. J Agric Food Chem 60:9543–9552

    Article  PubMed  CAS  Google Scholar 

  • Šmit Zˇ (2005) Recent developments of material analysis with PIXE. Nucl Instrum Methods Phys Res B 240:258–264

    Article  Google Scholar 

  • Soetan KO, Olaiya CO, Oyewole OE (2010) The importance of mineral elements for humans, domestic animals and plants: A review. Afr J Food Sci 4(5):200-222

    CAS  Google Scholar 

  • Sundaresan V, Springer P, Volpe T, Haward S, Jones JDG, Dean C, Ma H, Martienssen R (1995) Patterns of gene action in plant development revealed by enhancer trap and gene trap transposable elements. Genes Dev 9:1797–1810

    Article  PubMed  CAS  Google Scholar 

  • Török P, Žemberyová M (2012) Direct solid sampling electrothermal atomic absorption spectrometric determination of toxic and potentially toxic elements in certified reference materials of brown coal fly ash. Spectrochim Acta Part B At Spectrosc 71–72:80–85

    Article  Google Scholar 

  • Tulchinsky TH (2010) Micronutrient deficiency conditions: global health issues. Public Health Rev 32(1):243–255

    Google Scholar 

  • Vallapragada VV, Inti G, Ramulu JS (2011) A validated Inductively Coupled Plasma–Optical Emission Spectrometry (ICP–OES) method to estimate free calcium and phosphorus in in vitro phosphate binding study of eliphos tablets. Am J Anal Chem 2:718–725

    Article  CAS  Google Scholar 

  • Wheal MS, Fowles TO, Palmer LT (2011) A cost-effective acid digestion method using closed polypropylene tubes for inductively coupled plasma optical emission spectrometry (ICP–OES) analysis of plant essential elements. Anal Methods 3(12):2854–2863

    Article  CAS  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets-iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105(7):1073–1080

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Biskup B, Elzenga JTM, Homann U, Thiel G, Wissing F, Maathuis FJ (1999) Advanced patch-clamp techniques and single-channel analysis. J Exp Bot 50:1037–1054

    CAS  Google Scholar 

  • White PJ, Broadley MR, Thompson JA, McNicol JW, Crawley MJ, Poulton PR, Johnston AE (2012) Testing the distinctness of shoot ionomes of angiosperm families using the Rothamsted Park Grass Continuous Hay experiment. New Phytol 196(1):101–109

    Article  PubMed  CAS  Google Scholar 

  • Williams L, Salt DE (2009) The plant ionome coming into focus. Curr Opin Plant Biol 12:247

    Article  PubMed  CAS  Google Scholar 

  • Wu C, Li X, Yuan W et al (2003) Development of enhancer trap lines for functional analysis of the rice genome. Plant J 35(3):418–427

    Article  PubMed  CAS  Google Scholar 

  • Yang G, Livingston K, Jones R, Klein F (2012) High resolution X-ray diffraction study of single crystal diamond radiators. Phys Status Solidi A 209:1786–1791

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is published under the research programme is funded by Department of Biotechnology, Govt. of India in the form of Programme Support for research and development in Agricultural Biotechnology at G.B. Pant University of Agriculture and Technology, Pantnagar, India (Grant No. BT/PR7849/AGR/02/2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar.

Additional information

Communicated by A. K. Kononowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, U.M., Sareen, P., Sengar, R.S. et al. Plant ionomics: a newer approach to study mineral transport and its regulation. Acta Physiol Plant 35, 2641–2653 (2013). https://doi.org/10.1007/s11738-013-1316-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-013-1316-8

Keywords

Navigation