Skip to main content

Rodent Modeling of Aggression: Elucidating the Role of Cytokines in the Brain

  • Reference work entry
  • First Online:
Handbook of Anger, Aggression, and Violence

Abstract

Aggression is an intrinsic behavior of most species. Escalated aggression is a common symptom of neuropsychiatric disorders (schizophrenia, substance abuse, autism spectrum disorders, depression), which are known to be associated with immune dysfunction. Increasing evidence from clinical and animal studies suggests a role of inflammation and immunologic processes in modulating behavior. This review focuses on the data obtained on the basis of multiple rodent models of aggression indicating a link between immunity, cytokines, and aggression. The current literature revealed that aggression induced by chronic exposure to psychological stress or genetic factors has a profound impact on peripheral immune responses and cytokine production accompanied by changes in cytokine profiles within brain regions involved in behavioral control and immunomodulation. These findings indicate that cytokine dysregulation might contribute to neuroimmune mechanisms underlying aggressive behavior that can assist in developing new approaches to the treatments of affective disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT:

serotonin

ACTH:

adrenocorticotropic hormone

BDNF:

brain-derived neurotrophic factor

CRP:

C-reactive protein

DA:

dopamine

DISC1:

disrupted-in-schizophrenia-1

DRN:

dorsal raphe nucleus

GABA:

γ-aminobutyric acid

HPA axis:

hypothalamus-pituitary-adrenal axis

IFN:

interferon

IL:

interleukin

LPS:

lipopolysaccharide

MCP:

monocyte chemoattractant protein

NF-κB:

transcription factor

PAG:

periaqueductal gray

TLR:

toll-like receptor

TNF:

tumor necrosis factor

References

  • Albert FW, Shchepina O, Winter C et al (2008) Phenotypic differences in behavior, physiology and neurochemistry between rats selected for tameness and for defensive aggression towards humans. Horm Behav 53:413–421

    Article  PubMed  Google Scholar 

  • Alboni S, Maggi L (2016) Editorial: cytokines as players of neuronal plasticity and sensitivity to environment in healthy and pathological brain. Front Cell Neurosci 9:508

    Article  PubMed  PubMed Central  Google Scholar 

  • Alleva E, Cirulli F, Bianchi M et al (1998) Behavioural characterization of interleukin-6 overexpressing or deficient mice during agonistic encounters. Eur J Neurosci 10:3664–3672

    Article  PubMed  Google Scholar 

  • Alperina EL (2014) Involvement of the dopaminergic system in the mechanisms of immunomodulation. Usp Fiziol Nauk 45:45–56. [in Russian]

    PubMed  Google Scholar 

  • Alperina E, Zhukova E, Idova G et al (2015) Effects of activation and blockade of serotonin 5-HT1A- receptors on the immune response in rats selected for different levels of aggressiveness. Pharmacol Pharm 6:451–459

    Article  Google Scholar 

  • Alperina E, Idova G, Zhukova E et al (2019) Cytokine variations within brain structures in rats selected for differences in aggression. Neurosci Lett 692:193–198

    Article  PubMed  Google Scholar 

  • Alperina EL, Gevorgyan MM, Zhanaeva SY et al (2021) Peculiarities of the composition of peripheral immune cells and cytokine profile in brain structures in mutant DISC1-L100P mice. Bull Exp Biol Med 171:347–351

    Article  PubMed  Google Scholar 

  • Anisman H, Gibb J, Hayley S (2008) Influence of continuous infusion of interleukin-1beta on depression-related processes in mice: corticosterone, circulating cytokines, brain monoamines, and cytokine mRNA expression. Psychopharmacology 199:231–244

    Article  PubMed  Google Scholar 

  • Audet MC, Mangano EN, Anisman H (2010) Behavior and pro-inflammatory cytokine variations among submissive and dominant mice engaged in aggressive encounters: moderation by corticosterone reactivity. Front Behav Neurosci 4:156

    Article  PubMed  PubMed Central  Google Scholar 

  • Beiderbeck DI, Reber SO, Havasi A et al (2012) High and abnormal forms of aggression in rats with extremes in trait anxiety – involvement of the dopamine system in the nucleus accumbens. Psychoneuroendocrinology 37:1969–1980

    Article  PubMed  Google Scholar 

  • Blanchard CD, Blanchard RJ (2006) Stress and aggressive behavior. In: Nelson RJ (ed) Biology of aggression. Oxford University Press, New York, pp 275–294

    Google Scholar 

  • Brebner K, Hayley S, Zacharko R et al (2000) Synergistic effects of interleukin-1β, interleukin-6, and tumor necrosis factor-α: central monoamine, corticosterone, and behavioral variations. Neuropsychopharmacology 22:566–580

    Article  PubMed  Google Scholar 

  • Capuron L, Miller AH (2011) Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol Ther 130:226–238

    Article  PubMed  PubMed Central  Google Scholar 

  • Caramaschi D, de Boer SF, de Vries H et al (2008) Development of violence in mice through repeated victory along with changes in prefrontal cortex neurochemistry. Behav Brain Res 189:263–272

    Article  PubMed  Google Scholar 

  • Cirulli F, De Acetis L, Alleva E (1998) Behavioral effects of peripheral interleukin-1 administration in adult CD-1 mice: specific inhibition of the offensive components of intermale agonistic behavior. Brain Res 791:308–312

    Article  PubMed  Google Scholar 

  • Clapcote SJ, Lipina TV, Millar JK et al (2007) Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 54:387–402

    Article  PubMed  Google Scholar 

  • Coccaro EF, Lee R, Coussons-Read M (2015) Cerebrospinal fluid inflammatory cytokines and aggression in personality disordered subjects. Int J Neuropsychopharmacol 18:pyv001

    Article  PubMed  PubMed Central  Google Scholar 

  • Cosentino M, Fietta AM, Ferrari M et al (2007) Human CD4+CD25+ regulatory T cells selectively express tyrosine hydroxylase and contain endogenous catecholamines subserving an autocrine/paracrine inhibitory functional loop. Blood 109:632–642

    Article  PubMed  Google Scholar 

  • Covington HE 3rd, Newman EL, Leonard MZ et al (2019) Translational models of adaptive and excessive fighting: an emerging role for neural circuits in pathological aggression. F1000Res 8:F1000 Faculty Rev-963

    PubMed  PubMed Central  Google Scholar 

  • Dahoun T, Trossbach SV, Brandon NJ et al (2017) The impact of disrupted-in-schizophrenia 1 (DISC1) on the dopaminergic system: a systematic review. Transl Psychiatry 7:e1015

    Article  PubMed  PubMed Central  Google Scholar 

  • Dantzer R (2009) Cytokine, sickness behavior, and depression. Immunol Allergy Clin N Am 29:247–264

    Article  Google Scholar 

  • Dantzer R (2018) Neuroimmune interactions: from the brain to the immune system and vice versa. Physiol Rev 98:477–504

    Article  PubMed  Google Scholar 

  • Das S, Deuri SK, Sarmah A et al (2016) Aggression as an independent entity even in psychosis- the role of inflammatory cytokines. J Neuroimmunol 292:45–51

    Article  PubMed  Google Scholar 

  • de Almeida RM, Ferrari PF, Parmigiani S et al (2005) Escalated aggressive behavior: dopamine, serotonin and GABA. Eur J Pharmacol 526(1–3):51–64

    Article  PubMed  Google Scholar 

  • de Boer SF (2018) Animal models of excessive aggression: implications for human aggression and violence. Curr Opin Psychol 19:81–87

    Article  PubMed  Google Scholar 

  • de Boer SF, Koolhaas JM (2005) 5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge of the serotonin deficiency hypothesis. Eur J Pharmacol 526:125–139

    Article  PubMed  Google Scholar 

  • Devoino L, Alperina E, Kudryavtseva N et al (1993) Immune responses in male mice with aggressive and submissive behavior patterns: strain differences. Brain Behav Immun 7:91–96

    Article  PubMed  Google Scholar 

  • Devoino L, Idova G, Alperina E et al (1994) Brain neuromediator systems in the immune response control: pharmacological analysis of pre- and postsynaptic mechanisms. Brain Res 633:267–274

    Article  PubMed  Google Scholar 

  • Devoino LV, Idova GV, Alperina EL (2009) Psychoneuroimmunomodulation: behavior and immunity. A role for the neuromediator pattern of the brain. Nauka, Novosibirsk, p 167. [in Russian]

    Google Scholar 

  • Dinarello CA (2018) Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev 281:8–27

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Mello C, Le T, Swain MG (2009) Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factor alpha signaling during peripheral organ inflammation. J Neurosci 29:2089–2102

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunn AJ (2006) Effects of cytokines and infections on brain neurochemistry. Clin Neurosci Res 6:526–528

    Article  Google Scholar 

  • Dunn GA, Loftis JM, Sullivan EL (2020) Neuroinflammation in psychiatric disorders: an introductory primer. Pharmacol Biochem Behav 196:172981

    Article  PubMed  PubMed Central  Google Scholar 

  • Emamian ES, Hall D, Birnbaum MJ et al (2004) Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat Genet 36:131–137

    Article  PubMed  Google Scholar 

  • Fazel S, Gulati G, Linsell L et al (2009) Schizophrenia and violence: systematic review and meta-analysis. PLoS Med 6:e1000120

    Article  PubMed  PubMed Central  Google Scholar 

  • Felger JC, Lotrich FE (2013) Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience 246:199–229

    Article  PubMed  Google Scholar 

  • Fernandez-Egea E, Vértes PE, Flint SM et al (2016) Peripheral immune cell populations associated with cognitive deficits and negative symptoms of treatment-resistant schizophrenia. PLoS One 11:e0155631

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferro A, Auguste YSS, Cheadle L (2021) Microglia, cytokines, and neural activity: unexpected interactions in brain development and function. Front Immunol 12:703527

    Article  PubMed  PubMed Central  Google Scholar 

  • Gendreau PL, Petitto JM, Gariépy JL et al (1998) D2-like dopamine receptor mediation of social-emotional reactivity in a mouse model of anxiety: strain and experience effects. Neuropsychopharmacology 18:210–221

    Article  PubMed  Google Scholar 

  • Gevorgyan MM, Zhanaeva SY, Alperina EL et al (2020) The composition of peripheral immunocompetent cell subpopulations and cytokine content in the brain structures of mutant Disc1-Q31L mice. Vavilovskii Zhurnal Genet Selektsii 24:770–776

    PubMed  PubMed Central  Google Scholar 

  • Gibney SM, Drexhage HA (2013) Evidence for a dysregulated immune system in the etiology of psychiatric disorders. J Neuroimmune Pharmacol 8(4):900–920

    Article  PubMed  Google Scholar 

  • Goldsmith DR, Rapaport MH, Miller BJ (2016) A meta-analysis of blood cytokine network alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder and depression. Mol Psychiatry 21:1696–1709

    Article  PubMed  PubMed Central  Google Scholar 

  • Granger DA, Booth A, Johnson DR (2000) Human aggression and enumerative measures of immunity. Psychosom Med 62:583–590

    Article  PubMed  Google Scholar 

  • Haroon E, Raison CL, Miller AH (2012) Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology 37:137–162

    Article  PubMed  Google Scholar 

  • Hennessy MB, Deak T, Schiml PA (2014) Sociality and sickness: have cytokines evolved to serve social functions beyond times of pathogen exposure? Brain Behav Immun 37:15–20

    Article  PubMed  Google Scholar 

  • Himmerich H, Patsalos O, Lichtblau N et al (2019) Cytokine research in depression: principles, challenges, and open questions. Front Psych 10:30

    Article  Google Scholar 

  • Hoshikawa T, Okamoto N, Natsuyama T et al (2022) Associations of serum cytokines, growth factors, and high-sensitivity C-reactive protein levels in patients with major depression with and without type 2 diabetes mellitus: an explanatory investigation. Neuropsychiatr Dis Treat 18:173–186

    Article  PubMed  PubMed Central  Google Scholar 

  • Idova GV, Alperina EL, Cheido MA (2012) Contribution of brain dopamine, serotonin and opioid receptors in the mechanisms of neuroimmunomodulation: evidence from pharmacological analysis. Int Immunopharmacol 12:618–625

    Article  PubMed  Google Scholar 

  • Idova G, Alperina E, Plyusnina I et al (2015) Immune reactivity in rats selected for the enhancement or elimination of aggressiveness towards humans. Neurosci Lett 609:103–108

    Article  PubMed  Google Scholar 

  • Idova GV, Alperina EL, Zhukova EN et al (2016a) Role of 5-HT2A receptors in immunomodulation in animal models of aggressive behavior. Pharmacol Pharm 7:313–320

    Article  Google Scholar 

  • Idova GV, Markova EV, Gevorgyan MM et al (2016b) Changes in production of cytokines by C57Bl/6J mouse spleen during aggression provoked by social stress. Bull Exp Biol Med 160:679–682

    Article  PubMed  Google Scholar 

  • Idova GV, Al’perina EL, Zhanaeva SY et al (2019) Cytokine content in the hypothalamus and hippocampus of C57Bl/6J mice with depressive-like behavior. Bull Exp Biol Med 167:11–16

    Article  PubMed  Google Scholar 

  • Ilchibaeva TV, Kondaurova EM, Tsybko AS et al (2015) Brain-derived neurotrophic factor (BDNF) and its precursor (proBDNF) in genetically defined fear-induced aggression. Behav Brain Res 290:45–50

    Article  PubMed  Google Scholar 

  • Janicki-Deverts D, Cohen S, Doyle WJ (2010) Cynical hostility and stimulated Th1 and Th2 cytokine production. Brain Behav Immun 24:58–63

    Article  PubMed  Google Scholar 

  • Khandaker GM, Dantzer R, Jones PB (2017) Immunopsychiatry: important facts. Psychol Med 47:2229–2237

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiecolt-Glaser JK, Loving TJ, Stowell JR et al (2005) Hostile marital interactions, proinflammatory cytokine production, and wound healing. Arch Gen Psychiatry 62:1377–1384

    Article  PubMed  Google Scholar 

  • Konoshenko MY, Timoshenko TV, Plyusnina IZ (2013) c-Fos activation and intermale aggression in rats selected for behavior toward humans. Behav Brain Res 237:103–106

    Article  PubMed  Google Scholar 

  • Kraus MR, Schäfer A, Faller H et al (2003) Psychiatric symptoms in patients with chronic hepatitis C receiving interferon alfa-2b therapy. J Clin Psychiatry 64:708–714

    Article  PubMed  Google Scholar 

  • Kudryavtseva NN (2000) Agonistic behavior: a model, experimental studies, and perspectives. Neurosci Behav Physiol 30:293–305

    Article  PubMed  Google Scholar 

  • Larsen JB, Stunes AK, Vaaler A et al (2019) Cytokines in agitated and non-agitated patients admitted to an acute psychiatric department: a cross-sectional study. PLoS One 14:e0222242

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee M, Schwab C, McGeer PL (2010) Astrocytes are GABAergic cells that modulate microglial activity. Glia 59:152–165

    Article  Google Scholar 

  • Li W, Yang Y, Hong L et al (2020) Prevalence of aggression in patients with schizophrenia: a systematic review and meta-analysis of observational studies. Asian J Psychiatr 47:101846

    Article  PubMed  Google Scholar 

  • Lipina TV, Roder JC (2014) Disrupted-in-Schizophrenia-1 (DISC1) interactome and mental disorders: impact of mouse models. Neurosci Biobehav Rev 45:271–294

    Article  PubMed  Google Scholar 

  • Lipina TV, Niwa M, Jaaro-Peled H et al (2010) Enhanced dopamine function in DISC1-L100P mutant mice: implications for schizophrenia. Genes Brain Behav 9:777–789

    Article  PubMed  Google Scholar 

  • Lipina TV, Zai C, Hlousek D et al (2013) Maternal immune activation during gestation interacts with Disc1 point mutation to exacerbate schizophrenia-related behaviors in mice. J Neurosci 33:7654–7666

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Quan N (2018) Microglia and CNS Interleukin-1: beyond immunological concepts. Front Neurol 9:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Lotrich FE, Albusaysi S, Ferrell RE (2013) Brain-derived neurotrophic factor serum levels and genotype: association with depression during interferon-α treatment. Neuropsychopharmacology 38:985–995

    Article  PubMed  PubMed Central  Google Scholar 

  • Maes M, Yirmyia R, Noraberg J et al (2009) The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis 24:27–53

    Article  PubMed  Google Scholar 

  • Marsland AL, Prather AA, Petersen KL et al (2008) Antagonistic characteristics are positively associated with inflammatory markers independently of trait negative emotionality. Brain Behav Immun 22:753–761

    Article  PubMed  PubMed Central  Google Scholar 

  • Matarazzo L, Hernandez Santana YE, Walsh PT et al (2022) The IL-1 cytokine family as custodians of barrier immunity. Cytokine 154:155890

    Article  PubMed  Google Scholar 

  • Matson JL, Jang J (2014) Treating aggression in persons with autism spectrum disorders: a review. Res Dev Disabil 35:3386–3391

    Article  PubMed  Google Scholar 

  • Miczek KA, Maxson SC, Fish EW et al (2001) Aggressive behavioral phenotypes in mice. Behav Brain Res 125:167–181

    Article  PubMed  Google Scholar 

  • Miczek KA, de Boer SF, Haller J (2013) Excessive aggression as model of violence: a critical evaluation of current preclinical methods. Psychopharmacology 226:445–458

    Article  PubMed  PubMed Central  Google Scholar 

  • Miczek KA, Takahashi A, Gobrogge KL et al (2015) Escalated aggression in animal models: shedding new light on mesocorticolimbic circuits. Curr Opin Behav Sci 3:90–95

    Article  PubMed  PubMed Central  Google Scholar 

  • Mommersteeg PM, Vermetten E, Kavelaars A et al (2008) Hostility in related to cluster T-cell-cytokines and chemokines in healthy men. Psychoendocrinology 33:1041–1050

    Article  Google Scholar 

  • Moulin V, Palix J, Golay P et al (2019) Violent behaviour in early psychosis patients: can we identify clinical risk profiles? Early Interv Psychiatry 13:517–524

    Article  PubMed  Google Scholar 

  • Müller N (2017) Immunological aspects of the treatment of depression and schizophrenia. Dialogues Clin Neurosci 19:55–63

    Article  PubMed  PubMed Central  Google Scholar 

  • Myint AM, Schwarz MJ, Steinbusch HW et al (2009) Neuropsychiatric disorders related to interferon and interleukins treatment. Metab Brain Dis 24:55–68

    Article  PubMed  Google Scholar 

  • Naumenko VS, Kozhemyakina RV, Plyusnina IF et al (2013) Serotonin 5-HT1A receptor in infancy-onset aggression: comparison with genetically defined aggression in adult rats. Behav Brain Res 243:97–101

    Article  PubMed  Google Scholar 

  • Nyberg J, Sandnabba K, Schalkwyk L et al (2004) Genetic and environmental (inter)actions in male mouse lines selected for aggressive and nonaggressive behavior. Genes Brain Behav 3:1019

    Article  Google Scholar 

  • Park SJ, Lee JY, Kim SJ et al (2015) Toll-like receptor-2 deficiency induces schizophrenia-like behaviors in mice. Sci Rep 5:8502

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel A, Siegel A, Zalcman SS (2010) Lack of aggression and anxiolytic like behavior in TNF receptor (TNF-R1 and TNF-R2) deficient mice. Brain Behav Immun 24:1276–1280

    Article  PubMed  PubMed Central  Google Scholar 

  • Petitto JM (2001) Behavioral genetics and immunity. In: Ader R et al (eds) Psychoneuroimmunology. Elsevier Academic Press, San Diego, pp 173–186

    Google Scholar 

  • Planas AM, Gorina R, Chamorro A (2006) Signalling pathways mediating inflammatory responses in brain ischaemia. Biochem Soc Trans 34(Pt 6):1267–1270

    Article  PubMed  Google Scholar 

  • Plyusnina I, Oskina I (1997) Behavioral and adrenocortical responses to open-field test in rats selected for reduced aggressiveness toward humans. Physiol Behav 61:381–385

    Article  PubMed  Google Scholar 

  • Plyusnina IZ, Oskina IN, Tibeikina MA et al (2009) Cross-fostering effects on weight, exploratory activity, acoustic startle reflex and corticosterone stress response in Norway gray rats selected for elimination and for enhancement of aggressiveness towards human. Behav Genet 39:202–212

    Article  PubMed  Google Scholar 

  • Plyusnina IZ, Solov’eva MY, Oskina IN (2011) Effect of domestication on aggression in gray Norway rats. Behav Genet 41:583–592

    Article  PubMed  Google Scholar 

  • Popova NK (2006) From genes to aggressive behavior: the role of serotonergic system. BioEssays 28:495–503

    Article  PubMed  Google Scholar 

  • Popova NK, Naumenko VS, Kozhemyakina RV et al (2010) Functional characteristics of serotonin 5-HT2A and 5-HT2C receptors in the brain and the expression of the 5-HT2A and 5-HT2C receptor genes in aggressive and non-aggressive rats. Neurosci Behav Physiol 40:357–361

    Article  PubMed  Google Scholar 

  • Provençal N, Suderman MJ, Vitaro F et al (2013) Childhood chronic physical aggression associates with adult cytokine levels in plasma. PLoS One 8:e69481

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts RC (2007) Schizophrenia in translation: disrupted in schizophrenia (DISC1): integrating clinical and basic findings. Schizophr Bull 33:11–15. https://doi.org/10.1093/schbul/sbl063. Elsevier Academic Press, 1:563–577

    Article  PubMed  Google Scholar 

  • Rothermundt M, Arolt V (2007) Schizophrenia and immunity. In: Ader R (ed) Psychoneuroimmunology, 4th edn. Elsevier Academic Press, San Diego, pp 563–577

    Chapter  Google Scholar 

  • Sandnabba NK (1996) Selective breeding for isolation-induced intermale aggression in mice: associated responses and environmental influences. Behav Genet 26:477–488

    Article  PubMed  Google Scholar 

  • Sarkar C, Basu B, Chakroborty D et al (2010) The immunoregulatory role of dopamine: an update. Brain Behav Immun 2:525–528

    Article  Google Scholar 

  • Sawada M, Suzumura A, Hosoya H et al (1999) Interleukin-10 inhibits both production of cytokines and expression of cytokine receptors in microglia. J Neurochem 72:1466–1471

    Article  PubMed  Google Scholar 

  • Serantes R, Arnalich F, Figueroa M et al (2006) Interleukin-1beta enhances GABAA receptor cell-surface expression by a phosphatidylinositol 3-kinase/Akt pathway: relevance to sepsis-associated encephalopathy. J Biol Chem 281:14632–14643

    Article  PubMed  Google Scholar 

  • Serykh A, Khrapova MV, Dubrovina NI et al (2020) The increased density of the habenular neurons, high impulsivity, aggression and resistant fear memory in Disc1-Q31L genetic mouse model of depression. Behav Brain Res 392:112693

    Article  PubMed  Google Scholar 

  • Siegel A, Bhatt S, Bhatt R et al (2007) The neurobiological bases for development of pharmacological treatments of aggressive disorders. Curr Neuropharmacol 5:135–147

    Article  PubMed  PubMed Central  Google Scholar 

  • Suarez EC, Lewis JG, Kuch C (2002) The relation of aggression, hostility, and anger to lipopolysaccharide-stimulated tumor necrosis factor (TNF)-alpha by blood monocytes from normal men. Brain Behav Immun 16:675–684

    Article  PubMed  Google Scholar 

  • Takahashi A, Miczek KA (2014) Neurogenetics of aggressive behavior: studies in rodents. Curr Top Behav Neurosci 17:3–44

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi A, Flanigan ME, McEven BS et al (2018) Aggression, social stress, and the immune system in humans and animal models. Front Behav Neurosci 12:56–62

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi A, Aleyasin H, Stavarache MA et al (2022) Neuromodulatory effect of interleukin 1β in the dorsal raphe nucleus on individual differences in aggression. Mol Psychiatry 27:2563–2579. https://doi.org/10.1038/s41380-021-01110-4

    Article  PubMed  Google Scholar 

  • Turner MD, Nedjai B, Hurst T et al (2014) Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta 1843:2563–2582

    Article  PubMed  Google Scholar 

  • van der Vegt BJ, Lieuwes N, van de Wall EH et al (2003) Activation of serotonergic neurotransmission during the performance of aggressive behavior in rats. Behav Neurosci 117:667–674

    Article  PubMed  Google Scholar 

  • Veenema AH (2009) Early life stress, the development of aggression and neuroendocrine and neurobiological correlates: what can we learn from animal models? Front Neuroendocrinol 30:497–518

    Article  PubMed  Google Scholar 

  • Volavka J (2013) Violence in schizophrenia and bipolar disorder. Psychiatr Danub 2:24–33

    Google Scholar 

  • Yang T, Li Y, Wang H et al (2022) The 5-HT and PLC signaling pathways regulate the secretion of IL-1β, TNF-α and BDNF from NG2 cells. Evid Based Complement Alternat Med 2022:7425538

    PubMed  PubMed Central  Google Scholar 

  • Zalcman SS, Siegel A (2006) The neurobiology of aggression and rage: role of cytokines. Brain Behav Immun 20:507–514

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizaveta Alperina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Alperina, E., Idova, G., Zhanaeva, S. (2023). Rodent Modeling of Aggression: Elucidating the Role of Cytokines in the Brain. In: Martin, C.R., Preedy, V.R., Patel, V.B. (eds) Handbook of Anger, Aggression, and Violence. Springer, Cham. https://doi.org/10.1007/978-3-031-31547-3_150

Download citation

Publish with us

Policies and ethics