Skip to main content

A FPGA HardWare Architecture for AZSPWM Based on a Taylor Series Decomposition

  • Conference paper
  • First Online:
Applications in Electronics Pervading Industry, Environment and Society (ApplePies 2022)

Abstract

The parer illustrates a new efficient FPGA hardware architecture for the Active Zero State Pulse Width Modulation, which exploits the Taylor Series to decompose the dwell-times expressions. This decomposition avoids further resources, like external reference signals or Digital Signal Processor, as well as specific architectures, like CORDIC core or Look Up Table-based approaches, which are all solutions provided by the state of the art. All the calculations are done by a fixed-point Arithmetic Logic Unit, which can perform a real time variation of the output amplitude.

The architecture has been implemented on a Xilinx Artix VII FPGA XC7A35T1CPG236C requiring 1973 LUTs and 501 Flip Flops, respectively, the \(9.49\%\) and \(1.20\%\) of the overall resources, and a dynamic power consumption of 1 \(\textrm{mW}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, X., et al.: High-voltage hybrid igbt power modules for miniaturization of rolling stock traction inverters. IEEE Trans. Industr. Electron. 69(2), 1266–1275 (2022)

    Article  Google Scholar 

  2. Di Benedetto, L., Licciardo, G., Erlbacher, T., Bauer, A., Rubino, A.: Optimized design for 4h-sic power dmosfet. IEEE Electron Device Lett. 37(11), 1454–1457 (2016)

    Article  Google Scholar 

  3. Di Benedetto, L., Licciardo, G.D., Erlbacher, T., Bauer, A.J., Liguori, R., Rubino, A.: A model of electric field distribution in gate oxide and jfet-region of 4h-sic dmosfets. IEEE Trans. Electron Devices 63(9), 3795–3799 (2016)

    Article  Google Scholar 

  4. Barth, C.B., et al.: Design, operation, and loss characterization of a 1-kw gan-based three-level converter at cryogenic temperatures. IEEE Trans. Power Electron. 35(11), 12040–12052 (2020)

    Article  Google Scholar 

  5. Naradhipa, A.M., Kim, S., Yang, D., Choi, S., Yeo, I., Lee, Y.: Power density optimization of 700 khz gan-based auxiliary power module for electric vehicles. IEEE Trans. Power Electron. 36(5), 5610–5621 (2020)

    Article  Google Scholar 

  6. Henn, J., et al.: Intelligent gate drivers for future power converters. IEEE Trans. Power Electron. 37(3), 3484–3503 (2021)

    Article  Google Scholar 

  7. Ruiz, G.E.M., Muñoz, N., Cano, J.B.: Design methodologies and programmable devices used in power electronic converters-a survey. In: IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), vol. 2015, pp. 1–6. IEEE (2015)

    Google Scholar 

  8. Pop, O., Chindris, G., Dulf, A.: Using dsp technology for true sine pwm generators for power inverters. In: 27th International Spring Seminar on Electronics Technology: Meeting the Challenges of Electronics Technology Progress, 2004, vol. 1, pp. 141–146. IEEE (2004)

    Google Scholar 

  9. Monmasson, E., Idkhajine, L., Bahri, I., Charaabi, L., et al.: Design methodology and fpga-based controllers for power electronics and drive applications. In: 2010 5th IEEE Conference on Industrial Electronics and Applications, pp. 2328–2338. IEEE (2010)

    Google Scholar 

  10. Rashid, M.H.: Power electronics handbook: devices, circuits and applications. Elsevier (2010)

    Google Scholar 

  11. m-Mode SVPWM Technique for Power Converters. CPES. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1382-0_9

  12. Wiśniewski, R., Bazydło, G., Szcześniak, P.: Svm algorithm oriented for implementation in a low-cost xilinx fpga. Integration 64, 163–172 (2019)

    Article  Google Scholar 

  13. Shreyas, S.G., Vachhani, L.: Area efficient reconfigurable architecture for current control loop of a servo controller. In: 2012 IEEE 7th International Conference on Industrial and Information Systems (ICIIS), pp. 1–6 (2012)

    Google Scholar 

  14. Tzou, Y.Y., Hsu, H.J.: Fpga realization of space-vector pwm control ic for three-phase pwm inverters. IEEE Trans. Power Electron. 12(6), 953–963 (1997). https://doi.org/10.1109/63.641493

  15. Neacu, D.O., Kim, J.C., Lehman, B.: A three-phase multioptimal pwm implemented on 2-gbit flash memory integrated circuits. IEEE Trans. Power Electron. 32(7), 5813–5826 (2017)

    Article  Google Scholar 

  16. Neacsu, D.O.: Novel microcontrollers with direct access to flash memory benefit implementation of multi-optimal space vector modulation. IEEE Trans. Industr. Inf. 8(3), 528–535 (2012)

    Article  Google Scholar 

  17. Donisi, A., Di Benedetto, L., Licciardo, G.D., Rubino, A., Piccirilli, E., Lanzotti, E.: A fully fpga implementation of svpwm for three-phase inverters without external reference signals. In: 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe), pp. 1–5 (2020)

    Google Scholar 

  18. Donisi, A., Di Benedetto, L., Licciardo, G.D., Rubino, A., Piccirilli, E., Lanzotti, E.: Design of digital controller for svpwm algorithm with real-time control of the output amplitude and switching frequency. In: 2021 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5 (2021)

    Google Scholar 

  19. Di Benedetto, L., Donisi, A., Licciardo, G.D., Rubino, A.: A hardware architecture for svpwm digital control with variable carrier frequency and amplitude. IEEE Trans. Industrial Informat. (2021)

    Google Scholar 

  20. Di Benedetto, L., et al.: Implementation of hardware architecture for svpwm with arbitrary parameters. IEEE Access 10, 32381–32393 (2022)

    Article  Google Scholar 

  21. Ali, S.M., Reddy, V.V., Kalavathi, M.S.: Simplified active zero state pwm algorithms for vector controlled induction motor drives for reduced common mode voltage. In: International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014), pp, 1–7 (2014)

    Google Scholar 

  22. Hou, C.C., Shih, C.C., Cheng, P.T., Hava, A.M.: Common-mode voltage reduction pulsewidth modulation techniques for three-phase grid-connected converters. IEEE Trans. Power Electron. 28(4), 1971–1979 (2012)

    Article  Google Scholar 

  23. Lai, Y.S., Chen, P.S., Lee, H.K., Chou, J.: Optimal common-mode voltage reduction pwm technique for inverter control with consideration of the dead-time effects-part ii: applications to im drives with diode front end. IEEE Trans. Ind. Appl. 40(6), 1613–1620 (2004)

    Article  Google Scholar 

  24. In: Taylor expansions and applications, pp. 223–255. Springer Milan, Milano (2008)

    Google Scholar 

  25. Xilinx inc.: Artix 7. (2018). https://www.xilinx.com/products/silicon-devices/fpga/artix-7.html (Accessed 27 Feb 2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Donisi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Donisi, A., Di Benedetto, L., Liguori, R., Licciardo, G.D., Rubino, A. (2023). A FPGA HardWare Architecture for AZSPWM Based on a Taylor Series Decomposition. In: Berta, R., De Gloria, A. (eds) Applications in Electronics Pervading Industry, Environment and Society. ApplePies 2022. Lecture Notes in Electrical Engineering, vol 1036. Springer, Cham. https://doi.org/10.1007/978-3-031-30333-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30333-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30332-6

  • Online ISBN: 978-3-031-30333-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics