Skip to main content
Log in

Design and Implementation of Fractional Order Differintegrators Using Reduced s to z Transforms

  • DYNAMIC CHAOS IN RADIOPHYSICS AND ELECTRONICS
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

The Design and implementation of fractional order digital differentiators and integrators is the main objective of this paper. Identify the novel reduced s to z transforms calculated using model order reduction techniques. Thus the transforms are discretized directly using Continued Fraction Expansion (CFE).The designed differentiators and integrators are implemented on Xilinx Spartan 3E field programmable gate arrays (FPGA) and are tested using the sinusoidal, square and triangular waveforms. The practical results agree with the theoretical ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.

Similar content being viewed by others

REFERENCES

  1. K. B. Oldham, J. Spanier, The Fractional Calculus (Academic, New York, 1974).

    MATH  Google Scholar 

  2. S. Manabe, “The non-integer integral and its application to control systems,” J. IEE Japan, 80 (860), 589‒597 (1960).

    Google Scholar 

  3. M. A. Al-Alaoui, “Novel digital integrator and differentiator,” Electron. Lett. 29, 376‒378 (1993).

    Article  Google Scholar 

  4. M. A. Al-Alaoui, “A Novel Approach to analog-to-digital transforms,” IEEE Trans. Circuits Syst. 54, 338‒351 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  5. M. A. Al-Alaoui, “Class of digital integrators and differentiators,” IET Signal Process. 5, 251‒260 (2011).

    Article  Google Scholar 

  6. B. T. Krishna, “Design of fractional order differintegrators using reduced order s to z transforms,” in Proc. IEEE 10th Int. Conf. on Industrial and Information Systems, Sri Lanka, Dec. 1‒20, 2015 (IEEE, New York, 2015), pp. 18‒20.

  7. B. T. Krishna, “Studies on fractional order differentiators and integrators: A survey,” Elsevier Signal Process. 91, 386‒426 (2011).

    Article  MATH  Google Scholar 

  8. G. S. Viweswaran, P. Varshney, and M. Gupta, “New approach to realize fractional power in z-domain at low frequency,” IEEE Trans. Circuits Syst.-II Express Briefs 58, 179‒183 (2011).

    Article  Google Scholar 

  9. M. Gupta and R. Yadav, “New improved fractional order differentiator models based on optimized digital differentiators,” Sci. World J., ID 741395 (2014).

    Book  Google Scholar 

  10. K. Rajasekhar and B. T. Krishna, “Design of fractional order differintegrators at various sampling intervbals,” J. Adv. Res. Dynam. & Control Syst. 9, 1379‒1392 (2017).

    Google Scholar 

  11. B. T. Krishna, “Novel digital differentiators based on interpolation,” in Proc. Int. Conf. on Electronics and Commun. Syst. (ICECS), Coimbatore 2014 (ICECS, 2014), pp. 1‒3.

  12. C. X. Jiang, J. Carletta, and T. T. Hartley, “Implementation of fractional-order operators on field programmable gate arrays (FPGA),” Adv. Fractional Calculus (Springer), 333‒346 (2007).

  13. M. V. N. V. Prasad, K. C. Ray, and A. S. Dhar, “FPGA implementation of discrete fractional Fourier transform,” in Proc. Int. Conf. on Signal Process. and Commun. (ICSPC), Gold Coast, Australia, Dec. 1315, 2010 (ICSPC, 2010), pp. 1–5.

  14. C. X. Jiang, J. E. Carletta, T. T. Hartley, R. J. Veillette, “A systematic approach for implementing fractional-order operators and systems,” IEEE J. on Emerging and Selected Topics in Circuits and Systems 3, 301‒312 (2013).

    Article  Google Scholar 

  15. K. P. S. Rana et al., “Implementation of fractional order integrator/differentiator on field programmable gate array,” Alexandria Engineering J. 55 (2), 1765‒1773 (2016).

    Article  Google Scholar 

  16. M. F. Tolba, et al., “FPGA realization of Caputo and Grunwald-Letnikov operators”, in Proc. 6th Int. Conf. on Modern Circuits and Systems Technolog. (MOCAST), 2017 (MOCAST, 2017), pp. 1‒4.

  17. D. Silage, Embedded Design Using Programmable Gate Arrays (Bookstand, Philadelphia, 2008).

    Google Scholar 

  18. S. K. Mitra, Digital Signal Processing: a Computer-Based Approach (McGraw-Hill, New York, 2006), Vol. 2.

    Google Scholar 

  19. J. Proakis and D. Manolakis, Digital Signal Processing, Principles, Algorithms and Applications (PHI Publications, 1999).

    Google Scholar 

  20. A. N. Khovanskii, The Application of Continued Fraction and Their Generalizations to Problems in Approximation Theory (Noordhoff, 1963; Mir, Moscow, 1973).

Download references

ACKNOWLEDGMENTS

Authors wish to acknowledge the university authorities, Jawaharlal Nehru Technological University Kakinada (JNTUK), Kakinada, Andhra Pradesh, India, for providing facilities to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Rajasekhar or B. T. Krishna.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajasekhar, K., Krishna, B.T. Design and Implementation of Fractional Order Differintegrators Using Reduced s to z Transforms. J. Commun. Technol. Electron. 63, 1406–1417 (2018). https://doi.org/10.1134/S1064226918120185

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226918120185

Keywords:

Navigation