Skip to main content

Realistic Thermal Infrared Aerospace Image Simulation Backed by Observed Spectral Signatures

  • Conference paper
  • First Online:
Mathematical Modeling and Simulation of Systems (MODS 2022)

Abstract

The paper describes a thorough technique for simulating a thermal infrared image of the land surface using an available multispectral image of the visible, near-infrared and short-wave infrared bands and the spectral library of typical land covers. The technique is based on spectra nonlinear translation from reference spectral bands to the target one in proportion to corresponding pixel fractions, taking into account the radiative transfer model. To determine the reference spectra fractions inside a mixed pixel, the TCMI (target-constrained minimal interference) matched filtering under the NCLS (non-negatively constrained least squares) physical constraints was applied, which is more efficient than other known ones. The fast radiative transfer model is used for TIR image synthesis simulation. At that, the model is taken into account the additional heat transfer from short-wave solar irradiation complementary to the land surface steady temperature. The structural similarity metric (SSIM) was estimated between the reference and simulated images for objective assessment of the simulation’s quality. Experimental simulations of real thermal infrared images demonstrated a reasonably realistic output. The developed end-to-end technique will be useful in the preliminary design of infrared remote sensing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sobrino, J.A., Del Frate, F., Drusch, M., Jiménez-Muñoz, J.C., Manunta, P., Regan, A.: Review of thermal infrared applications and requirements for future high-resolution sensors. IEEE Trans. Geosci. Remote Sens. 54(5), 2963–2972 (2016). https://doi.org/10.1109/TGRS.2015.2509179

    Article  Google Scholar 

  2. Cheng, J., Liang, S., Meng, X., Zhang, Q., Zhou, S.: Land surface temperature and thermal infrared emissivity. In: Liang, S., Wang, J. (eds.) Advanced Remote Sensing, pp. 251–295, 2nd edn. Academic Press, London (2020). https://doi.org/10.1016/B978-0-12-815826-5.00007-6

  3. Quattrochi, D.A., Luvall, J.C.: Thermal infrared remote sensing for analysis of landscape ecological processes: current insights and trends. In: Weng, Q. (ed.) Scale Issues in Remote Sensing, pp. 34–60. Wiley, Hoboken (2014). https://doi.org/10.1002/9781118801628.ch03

  4. Rees, W.G.: Physical Principles of Remote Sensing, 3rd edn. Cambridge University Press, New York (2012). https://doi.org/10.1017/CBO9781139017411

  5. Li, Z.-L., Tang, B.-H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I.F., Sobrino, J.A.: Satellite-derived land surface temperature: current status and perspectives. Remote Sens. Environ. 131, 14–37 (2013). https://doi.org/10.1016/j.rse.2012.12.008

    Article  Google Scholar 

  6. Al-Wassai, F.A., Kalyankar, N.V.: Major limitations of satellite images. J. Glob. Res. Comput. Sci. 4(5), 51–59 (2013)

    Google Scholar 

  7. Aiazzi, B., Baronti, S., Garzelli, A., Santurri, L., Selva, M.: Spatial enhancement of TIR ASTER data via VNIR images and generalized Laplacian decomposition. In: Zagajewski, B., Sobczak, M., Wrzesień, M. (eds.) Proceedings of 4th EARSeL Workshop on Imaging Spectroscopy. New quality in environmental studies, pp. 489–500. EARSeL, Warsaw (2005). 10.1.1.381.7996

    Google Scholar 

  8. Piestova, I., Lubskyi, M., Svideniuk, M., Golubov, S., Sedlacek, P.: Satellite imagery resolution enhancement for urban area thermal micromapping. Cent. Eur. Res. J. 4(1), 35–39 (2018)

    Google Scholar 

  9. Aghamaleki, J.A., Ghorbani, A.: Infrared and visible image fusion based on optimal segmenting and contour extraction. SN Appl. Sci. 3, 369 (2021). https://doi.org/10.1007/s42452-020-04050-w

    Article  Google Scholar 

  10. Meher, B., Agrawal, S., Panda, R., Dora, L., Abraham, A.: Visible and infrared image fusion using an efficient adaptive transition region extraction technique. Eng. Sci. Technol. Int. J. 29, 101037 (2022). https://doi.org/10.1016/j.jestch.2021.06.017

    Article  Google Scholar 

  11. Stankevich, S.A., et al.: Knowledge-based multispectral remote sensing imagery superresolution. In: van Gulijk, C., Zaitseva, E. (eds.) Reliability Engineering and Computational Intelligence. Studies in Computational Intelligence, vol. 976, pp. 219–236. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-74556-1_13

  12. Sisodiya, N., Dube, N., Thakkar, P.: Next-generation artificial intelligence techniques for satellite data processing. In: Hemanth, D.J. (ed.) Artificial Intelligence Techniques for Satellite Image Analysis. Remote Sensing and Digital Image Processing, vol. 24, pp. 235–254. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-24178-0_11

  13. Zhang, W., Shi, M., Zhang, B., Li, Y., Dai, H.: Image simulation for GF-5 visual and infrared multispectral sensor. In: Proceedings of the 40th Asian Conference on Remote Sensing (ACRS 2019), vol. 3, pp. 1999–2005. KSRS, Daejeon (2019)

    Google Scholar 

  14. Stankevich, S.A., Piestova, I.O., Lubskyi, M.S.: Remote sensing imagery spatial resolution enhancement. In: Abbasov, I.B. (ed.) Recognition and Perception of Images: Fundamentals and Applications, pp. 327–360. Wiley, Hoboken (2021). https://doi.org/10.1002/9781119751991.ch9

  15. Restaino, R., Vivone, G., Addesso, P., Picone, D., Chanussot J.: Resolution enhancement of hyperspectral data exploiting real multi-platform data. In: Kwan, C. (ed.) Recent Advances in Image Restoration with Applications to Real World Problems, pp. 17–38. IntechOpen, London (2020). https://doi.org/10.5772/intechopen.92795

  16. Thomas, C., Ranchin, T., Wald, L., Chanussot, J.: Synthesis of multispectral images to high spatial resolution: a critical review of fusion methods based on remote sensing physics. IEEE Trans. Geosci. Remote Sens. 46(5), 1301–1312 (2008). https://doi.org/10.1109/TGRS.2007.912448

    Article  Google Scholar 

  17. Sun, X., Zhang, L., Yang, H., Wu, T., Cen, Y., Guo, Y.: Enhancement of spectral resolution for remotely sensed multispectral image. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(5), 2198–2211 (2015). https://doi.org/10.1109/JSTARS.2014.2356512

    Article  Google Scholar 

  18. Segl, K., Richter, R., Küster, T., Kaufmann, H.: End-to-end sensor simulation for spectral band selection and optimization with application to the Sentinel-2 mission. Appl. Opt. 51(4), 439–449 (2012). https://doi.org/10.1364/AO.51.000439

    Article  Google Scholar 

  19. Chen, J., Wang, J., Li, X., Chen, J., Yu, F., He, J., Wang, J., Zhao, Z., Li, G., Chen, X., Lu, W.: Recent progress in improving the performance of infrared photodetectors via optical field manipulations. Sensors 22(2), 677 (2022). https://doi.org/10.3390/s22020677

    Article  Google Scholar 

  20. Buffet, L., Gamet, P., Maisongrande, P., Salcedo, C., Crebassol, P.: The TIR instrument on TRISHNA satellite: a precursor of high resolution observation missions in the thermal infrared domain. Proc. SPIE 11852, 118520Q (2021). https://doi.org/10.1117/12.2599173

    Article  Google Scholar 

  21. Mao, Q., Peng, J., Wang, Y.: Resolution enhancement of remotely sensed land surface temperature: current status and perspectives. Remote Sens. 13(7), 1306 (2021). https://doi.org/10.3390/rs13071306

    Article  Google Scholar 

  22. Bhutto, J.A., Tian, L., Du, Q., Sun, Z., Yu, L., Soomro, T.A.: An improved infrared and visible image fusion using an adaptive contrast enhancement method and deep learning network with transfer learning. Remote Sens. 14(4), 939 (2022). https://doi.org/10.3390/rs14040939

    Article  Google Scholar 

  23. Xie, Y., Han, X., Zhu, S.: Synthesis of true color images from the Fengyun advanced geostationary radiation imager. J. Meteorol. Res. 35, 1136–1147 (2021). https://doi.org/10.1007/s13351-021-1138-3

    Article  Google Scholar 

  24. Ma, L., Zhenhong, J., Yang, J., Kasabov, N.: Multi-spectral image change detection based on single-band iterative weighting and fuzzy C-means clustering. Eur. J. Remote Sens. 53(1), 1–13 (2020). https://doi.org/10.1080/22797254.2019.1707124

    Article  Google Scholar 

  25. Vandal, T.J., McDuff, D., Wang, W., Duffy, K., Michaelis, A., Nemani, R.R.: Spectral synthesis for geostationary satellite-to-satellite translation. IEEE Trans. Geosci. Remote Sens. 60, 4702611 (2022). https://doi.org/10.1109/TGRS.2021.3088686

    Article  Google Scholar 

  26. Shanmugam, V., Shanmugam, P., He, X.: New algorithm for computation of the Rayleigh-scattering radiance for remote sensing of water color from space. Opt. Express 27(21), 30116–30139 (2019). https://doi.org/10.1364/OE.27.030116

    Article  Google Scholar 

  27. Qiu, X., Zhao, H., Jia, G., Li, J.: Atmosphere and terrain coupling simulation framework for high-resolution visible-thermal spectral imaging over heterogeneous land surface. Remote Sens. 14(9), 2043 (2022). https://doi.org/10.3390/rs14092043

    Article  Google Scholar 

  28. He, X., Xu, X.: Physically based model for multispectral image simulation of Earth observation sensors. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10(5), 1897–1908 (2017). https://doi.org/10.1109/JSTARS.2017.2658678

    Article  Google Scholar 

  29. Vostikolaei, F.S., Akhoondzadeh, M.: A comparison of four methods for extracting land surface emissivity and temperature in the thermal infrared hyperspectral data. Earth Obs. Geomatics Eng. 2(1), 56–63 (2018). https://doi.org/10.22059/eoge.2018.239666.1011

    Article  Google Scholar 

  30. Schmugge, T., French, A., Ritchie, J.C., Rango, A., Pelgrum, H.: Temperature and emissivity separation from multispectral thermal infrared observations. Remote Sens. Environ. 79(2–3), 189–198 (2002). https://doi.org/10.1016/S0034-4257(01)00272-3

    Article  Google Scholar 

  31. Friedl, M.A.: Forward and inverse modeling of land surface energy balance using surface temperature measurements. Remote Sens. Environ. 79(2–3), 344–354 (2002). https://doi.org/10.1016/S0034-4257(01)00284-X

    Article  Google Scholar 

  32. Bateni, S.M., Liang, S.L.: Estimating surface energy fluxes using a dual-source data assimilation approach adjoined to the heat diffusion equation. J. Geophys. Res. Atmos. 117(D17), D17118 (2012). https://doi.org/10.1029/2012JD017618

    Article  Google Scholar 

  33. Cao, B., et al.: A review of Earth surface thermal radiation directionality observing and modeling: historical development, current status and perspectives. Remote Sens. Environ. 232, 111304 (2019). https://doi.org/10.1016/j.rse.2019.111304

    Article  Google Scholar 

  34. Sobrino, J.A., Jiménez-Muñoz, J.C., Sòria, G., Romaguera, M., Guanter, L., Moreno, J., Plaza, A., Martínez, P.: Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE Trans. Geosci. Remote Sens. 46(2), 316–327 (2008). https://doi.org/10.1109/TGRS.2007.904834

    Article  Google Scholar 

  35. Liu, H., Zhang, C., Ye, F., Zhang, J.: Temperature and emissivity separation methods based on TASI data. In: Proceedings of the International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE 2013), pp. 685–688. Atlantis Press, Nanjing (2013). https://doi.org/10.2991/rsete.2013.166

  36. Berrett, C., Williams, G.P., Moon, T., Gunther, J.: A Bayesian nonparametric model for temperature-emissivity separation of long-wave hyperspectral images. Technometrics 56(2), 200–211 (2014). https://doi.org/10.1080/00401706.2013.869262

    Article  MathSciNet  Google Scholar 

  37. Vanhellemont, Q.: Combined land surface emissivity and temperature estimation from Landsat 8 OLI and TIRS. ISPRS J. Photogramm. Remote. Sens. 166, 390–402 (2020). https://doi.org/10.1016/j.isprsjprs.2020.06.007

    Article  Google Scholar 

  38. Lan, X., Zhao, E., Li, Z.-L., Labed, J., Nerry, F.: An improved linear spectral emissivity constraint method for temperature and emissivity separation using hyperspectral thermal infrared data. Sensors 19(24), 5552 (2019). https://doi.org/10.3390/s19245552

    Article  Google Scholar 

  39. Gillespie, A.R., Rokugawa, S., Matsunaga, T., Cothern, J.S., Hook, S., Kahle, A.B.: A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens. 36(4), 1113–1126 (1998). https://doi.org/10.1109/36.700995

    Article  Google Scholar 

  40. Xie, F., Shao, H., Liu, Z., Liu, C., Zhang, C., Yang, G., Wang, J., Cai, N.: Retrieval of the pixel component temperatures from multi-band thermal infrared image using Bayesian inversion technique. Proc. SPIE 9880, 98802A (2016). https://doi.org/10.1117/12.2227579

    Article  Google Scholar 

  41. Wang, H., Mao, K., Yuan, Z., Shi, J., Cao, M., Qin, Z., Duan, S., Tang, B.: A method for land surface temperature retrieval based on model-data-knowledge-driven and deep learning. Remote Sens. Environ. 265, 112665 (2021). https://doi.org/10.1016/j.rse.2021.112665

    Article  Google Scholar 

  42. Poglio, T., Mathieu-Marni, S., Ranchin, T., Savaria, E., Wald, L.: OSIrIS: a physically based simulation tool to improve training in thermal infrared remote sensing over urban areas at high spatial resolution. Remote Sens. Environ. 104, 238–246 (2006). https://doi.org/10.1016/j.rse.2006.03.017

    Article  Google Scholar 

  43. Carson, T., Salvaggio, C.: Soil signature simulation in the thermal infrared. Opt. Eng. 54(10), 104102 (2015). https://doi.org/10.1117/1.OE.54.10.104102

    Article  Google Scholar 

  44. Kottler, B., Burkard, E., Bulatov, D., Haraké, L.: Physically-based thermal simulation of large scenes for infrared imaging. In: Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2019), pp. 53–64. SciTePress, Prague (2019). https://doi.org/10.5220/0007351400530064

  45. Bandfield, J.L., Rogers, D.A.: Thermal infrared spectral modeling. In: Bishop, J.L., Bell III, J.F., Moersch, J.E. (eds.) Remote Compositional Analysis Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces, pp. 324–336. Cambridge University Press, Cambridge (2019). https://doi.org/10.1017/9781316888872.017

  46. Riedl, M.J.: Optical Design Fundamentals for Infrared Systems, 2nd edn. SPIE Press, Bellingham (2001). https://doi.org/10.1117/3.412729

  47. Salisbury, J.W., Wald, A., D’Aria, D.M.: Thermal-infrared remote sensing and Kirchhoff’s law 1. Laboratory measurements. J. Geophys. Res. 99(B6), 11897–11911 (1994). https://doi.org/10.1029/93JB03600

    Article  Google Scholar 

  48. Kerekes, J.P., Strackerjan, K.-E., Salvaggio, C.: Spectral reflectance and emissivity of man-made surfaces contaminated with environmental effects. Opt. Eng. 47(10), 106201 (2008). https://doi.org/10.1117/1.3000433

    Article  Google Scholar 

  49. Haraké, L., Burkard. E.: Towards physically based material appearance in the thermal infrared spectrum: a short survey. In: Proceedings of the Eurographics Workshop on Material Appearance Modeling (EG MAM 2018), pp. 37–40. Eurographics Association, Karlsruhe (2018). https://doi.org/10.2312/mam.20181198

  50. Degerickx, J., Okujeni, A., Iordache, M.-D., Hermy, M., Van der Linden, S., Somers, B.: A novel spectral library pruning technique for spectral unmixing of urban land cover. Remote Sensing 9(6), 565 (2017). https://doi.org/10.3390/rs9060565

    Article  Google Scholar 

  51. Stankevich, S.A., Shklyar, S.V.: Land cover classification in hyperspectral aerospace imagery by separation of spectral components mixtures. J. Autom. Inf. Sci. 38(12), 31–41 (2006). https://doi.org/10.1615/JAutomatInfScien.v38.i12.40

    Article  Google Scholar 

  52. Wei, J., Wang, X.: An overview on linear unmixing of hyperspectral data. Math. Probl. Eng. 2020, 3735403 (2020). https://doi.org/10.1155/2020/3735403

    Article  MathSciNet  MATH  Google Scholar 

  53. Stankevich, S.A., Shklyar, S.V.: Advanced algorithm for endmembers unmixing on hyperspectral image (in Ukrainian). In: Proceedings of the 1st Ukrainian Conference with International Participation “Earth Observations for Sustainable Development and Security”, pp. 85–89. Naukova Dumka, Kiev (2008)

    Google Scholar 

  54. Liu, X., Yang, Q., Wu, W., Zhou, D.K., Larar, A.M.: Fast radiative transfer model from IR to UV for remote sensing applications. Proc. SPIE 10424, 1042407 (2017). https://doi.org/10.1117/12.2277897

    Article  Google Scholar 

  55. White, O.R. (ed.): Colorado Associated University Press, Boulder (1977)

    Google Scholar 

  56. Hollands, K.G.T.: Thermal Radiation Fundamentals. Begell House, New York (2004)

    Google Scholar 

  57. Goswami, D.Y.: Principles of Solar Engineering, 3rd edn. CRC Press, Boca Raton (2015). https://doi.org/10.1201/b18119

  58. Minkina, W.: Theoretical basics of radiant heat transfer – practical examples of calculation for the infrared (IR) used in infrared thermography measurements. Quant. InfraRed Thermogr. J. 18(4), 269–282 (2021). https://doi.org/10.1080/17686733.2020.1738164

    Article  Google Scholar 

  59. Keshava, N.: A survey of spectral unmixing algorithms. Lincoln Lab. J. 14(1), 55–78 (2003)

    Google Scholar 

  60. Brunet, D., Vrscay, E.R., Wang, Z.: On the mathematical properties of the structural similarity index. IEEE Trans. Image Process. 21(4), 1488–1499 (2012). https://doi.org/10.1109/TIP.2011.2173206

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey A. Stankevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stankevich, S.A., Kozlova, A.A. (2023). Realistic Thermal Infrared Aerospace Image Simulation Backed by Observed Spectral Signatures. In: Shkarlet, S., et al. Mathematical Modeling and Simulation of Systems. MODS 2022. Lecture Notes in Networks and Systems, vol 667. Springer, Cham. https://doi.org/10.1007/978-3-031-30251-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30251-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30250-3

  • Online ISBN: 978-3-031-30251-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics