Skip to main content

Quantum Dots in Biomedical Applications: Recent Advancements and Future Prospects

  • Chapter
  • First Online:
Carbon Nanostructures in Biomedical Applications

Abstract

Quantum dots (QDs) are recognized as semiconductor or fluorescent nanocrystals, which due to their distinctive physical and chemical properties, have been used as a promising tool in various research fields, including biology, drug delivery, bio-medical, and bioimaging. Moreover, most of the conventional organic label dyes are unable to produce emissions in the near-infrared range, whereas it is possible with QDs due to their tunable electrochemical and optical properties. QDs exhibit several features, including better photo and chemical stability, greater quantum yield, and negligible toxicity. In addition, the QDs modified with precise drugs or bioactives attached to its surface have also gained attention as targeting ligands to attain cell targeting with improved theragnostic applications. Various types of QDs could be excited in the presence of a similar wavelength of light, and their fine emission bands could also be detected concurrently for numerous assays. Nowadays, researchers have shown immense interest in the fabrication and establishment of QD-based nano-theranostics platforms which could be efficiently used for sensing, imaging, and therapy simultaneously. This chapter mainly emphasizes the latest progress available in literature related to various biological and biomedical applications of QDs as a potential tool for sensing, biomedical imaging, and drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Salam, M., Omran, B., Whitehead, K., Baek, K.-H.: Superior properties and biomedical applications of microorganism-derived fluorescent quantum dots. Molecules 25(19), 4486 (2020)

    Article  CAS  Google Scholar 

  2. Agrawal, A., Tripp, R.A., Anderson, L.J., Nie, S.: Real-time detection of virus particles and viral protein expression with two-color nanoparticle probes. J. Virol. 79(13), 8625–8628 (2005)

    Article  CAS  Google Scholar 

  3. Algar, W.R., Blanco-Canosa, J.B., Manthe, R.L., Susumu, K., Stewart, M.H., Dawson, P.E., Medintz, I.L.: Synthesizing and modifying peptides for chemoselective ligation and assembly into quantum dot-peptide bioconjugates. In: Nanomaterial Interfaces in Biology, pp. 47–73. Springer (2013)

    Google Scholar 

  4. Algar, W.R., Prasuhn, D.E., Stewart, M.H., Jennings, T.L., Blanco-Canosa, J.B., Dawson, P.E., Medintz, I.L.: The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. Bioconjug. Chem. 22(5), 825–858 (2011)

    Article  CAS  Google Scholar 

  5. Baba, K., Nishida, K.: Single-molecule tracking in living cells using single quantum dot applications. Theranostics 2(7), 655 (2012)

    Article  CAS  Google Scholar 

  6. Barroso, M.M.: Quantum dots in cell biology. J. Histochem. Cytochem. 59(3), 237–251 (2011)

    Article  CAS  Google Scholar 

  7. Bekmukhametova, A., Ruprai, H., Hook, J.M., Mawad, D., Houang, J., Lauto, A.: Photodynamic therapy with nanoparticles to combat microbial infection and resistance. Nanoscale 12(41), 21034–21059 (2020)

    Article  CAS  Google Scholar 

  8. Bera, D., Qian, L., Tseng, T.-K., Holloway, P.H.: Quantum dots and their multimodal applications: a review. Materials 3(4), 2260–2345 (2010)

    Article  CAS  Google Scholar 

  9. Bhunia, S.K., Saha, A., Maity, A.R., Ray, S.C., Jana, N.R.: Carbon nanoparticle-based fluorescent bioimaging probes. Sci. Rep. 3(1), 1–7 (2013)

    Article  Google Scholar 

  10. Bruchez, M.P.: Quantum dots find their stride in single molecule tracking. Curr. Opin. Chem. Biol. 15(6), 775–780 (2011)

    Article  CAS  Google Scholar 

  11. Bwatanglang, I.B., Mohammad, F., Yusof, N.A., Abdullah, J., Alitheen, N.B., Hussein, M.Z., Abu, N., Mohammed, N.E., Nordin, N., Zamberi, N.R.: In vivo tumor targeting and anti-tumor effects of 5-fluororacil loaded, folic acid targeted quantum dot system. J. Colloid Interface Sci. 480, 146–158 (2016)

    Article  CAS  Google Scholar 

  12. Caglar, M., Pandya, R., Xiao, J., Foster, S.K., Divitini, G., Chen, R.Y.S., Greenham, N.C., Franze, K., Rao, A., Keyser, U.F.: All-optical detection of neuronal membrane depolarization in live cells using colloidal quantum dots. Nano Lett. 19(12), 8539–8549 (2019)

    Article  CAS  Google Scholar 

  13. Cai, X., Luo, Y., Zhang, W., Du, D., Lin, Y.: pH-Sensitive ZnO quantum dots–doxorubicin nanoparticles for lung cancer targeted drug delivery. ACS Appl. Mater. Interfaces 8(34), 22442–22450 (2016)

    Article  CAS  Google Scholar 

  14. Cao, L., Wang, X., Meziani, M.J., Lu, F., Wang, H., Luo, P.G., Lin, Y., Harruff, B.A., Veca, L.M., Murray, D.: Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 129(37), 11318–11319 (2007)

    Article  CAS  Google Scholar 

  15. Chan, P., Yuen, T., Ruf, F., Gonzalez-Maeso, J., Sealfon, S.C.: Method for multiplex cellular detection of mRNAs using quantum dot fluorescent in situ hybridization. Nucleic Acids Res. 33(18), e161–e161 (2005)

    Article  Google Scholar 

  16. Chang, J.C., Tomlinson, I.D., Warnement, M.R., Iwamoto, H., DeFelice, L.J., Blakely, R.D., Rosenthal, S.J.: A fluorescence displacement assay for antidepressant drug discovery based on ligand-conjugated quantum dots. J. Am. Chem. Soc. 133(44), 17528–17531 (2011)

    Article  CAS  Google Scholar 

  17. Chen, A., Yang, S.: Replacing antibodies with aptamers in lateral flow immunoassay. Biosens. Bioelectron. 71, 230–242 (2015)

    Article  CAS  Google Scholar 

  18. Chiu, S.-H., Gedda, G., Girma, W.M., Chen, J.-K., Ling, Y.-C., Ghule, A.V., Ou, K.-L., Chang, J.-Y.: Rapid fabrication of carbon quantum dots as multifunctional nanovehicles for dual-modal targeted imaging and chemotherapy. Acta Biomater. 46, 151–164 (2016)

    Article  CAS  Google Scholar 

  19. Chopade, P., Jagtap, S., Gosavi, S.: Material properties and potential applications of CdSe semiconductor nanocrystals. In: Nanoscale Compound Semiconductors and Their Optoelectronics Applications, pp. 105–153. Elsevier (2022)

    Google Scholar 

  20. Chukwuocha, E.O., Onyeaju, M.C., Harry, T.S.T.: Theoretical Studies on the Effect of Confinement on Quantum Dots Using the Brus Equation (2012)

    Google Scholar 

  21. Courty, S., Luccardini, C., Bellaiche, Y., Cappello, G., Dahan, M.: Tracking individual kinesin motors in living cells using single quantum-dot imaging. Nano Lett. 6(7), 1491–1495 (2006)

    Article  CAS  Google Scholar 

  22. Das, S.S., Alkahtani, S., Bharadwaj, P., Ansari, M.T., ALKahtani, M.D.F., Pang, Z., Hasnain, M.S., Nayak, A.K., Aminabhavi, T.M.: Corrigendum to “Molecular insights and novel approaches for targeting tumor metastasis” [Int. J. Pharm. 585 (2020) 119556]. Int. J. Pharm. 590, 119967 (2020)

    Google Scholar 

  23. Dehvari, K., Chiu, S.-H., Lin, J.-S., Girma, W.M., Ling, Y.-C., Chang, J.-Y.: Heteroatom doped carbon dots with nanoenzyme like properties as theranostic platforms for free radical scavenging, imaging, and chemotherapy. Acta Biomater. 114, 343–357 (2020)

    Article  CAS  Google Scholar 

  24. Derfus, A.M., Chan, W.C.W., Bhatia, S.N.: Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv. Mater. 16(12), 961–966 (2004)

    Article  CAS  Google Scholar 

  25. Dong, W., Wang, R., Gong, X., Liang, W., Dong, C.: A far-red FRET fluorescent probe for ratiometric detection of l-cysteine based on carbon dots and N-acetyl-l-cysteine-capped gold nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 213, 90–96 (2019)

    Article  CAS  Google Scholar 

  26. Dubertret, B., Skourides, P., Norris, D.J., Noireaux, V., Brivanlou, A.H., Libchaber, A.: In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298(5599), 1759–1762 (2002)

    Article  CAS  Google Scholar 

  27. Fan, D., Liu, X., Shao, X., Zhang, Y., Zhang, N., Wang, X., Wei, Q., Ju, H.: A cardiac troponin I photoelectrochemical immunosensor: nitrogen-doped carbon quantum dots–bismuth oxyiodide–flower-like SnO2. Microchim. Acta 187(6), 1–10 (2020)

    Article  Google Scholar 

  28. Fan, H., Yu, X., Wang, K., Yin, Y., Tang, Y., Tang, Y., Liang, X.: Graphene quantum dots (GQDs)-based nanomaterials for improving photodynamic therapy in cancer treatment. Eur. J. Med. Chem. 182, 111620 (2019)

    Article  CAS  Google Scholar 

  29. Fang, J., Liu, Y., Chen, Y., Ouyang, D., Yang, G., Yu, T.: Graphene quantum dots-gated hollow mesoporous carbon nanoplatform for targeting drug delivery and synergistic chemo-photothermal therapy. Int. J. Nanomed. 13, 5991 (2018)

    Article  CAS  Google Scholar 

  30. Farshchi, F., Saadati, A., Hasanzadeh, M.: A novel immunosensor for the monitoring of PSA using binding of biotinylated antibody to the prostate specific antigen based on nano-ink modified flexible paper substrate: efficient method for diagnosis of cancer using biosensing technology. Heliyon 6(7), e04327 (2020)

    Article  Google Scholar 

  31. Fowley, C., Nomikou, N., McHale, A.P., McCaughan, B., Callan, J.F.: Extending the tissue penetration capability of conventional photosensitisers: a carbon quantum dot–protoporphyrin IX conjugate for use in two-photon excited photodynamic therapy. Chem. Commun. 49(79), 8934–8936 (2013)

    Article  CAS  Google Scholar 

  32. Fu, C., Qiang, L., Liang, Q., Chen, X., Li, L., Liu, H., Tan, L., Liu, T., Ren, X., Meng, X.: Facile synthesis of a highly luminescent carbon dot@ silica nanorattle for in vivo bioimaging. RSC Adv. 5(57), 46158–46162 (2015)

    Article  CAS  Google Scholar 

  33. García-Fernández, J., Trapiella-Alfonso, L., Costa-Fernandez, J.M., Pereiro, R., Sanz-Medel, A.: A quantum dot-based immunoassay for screening of tetracyclines in bovine muscle. J. Agric. Food Chem. 62(7), 1733–1740 (2014)

    Article  Google Scholar 

  34. Ge, J., Lan, M., Zhou, B., Liu, W., Guo, L., Wang, H., Jia, Q., Niu, G., Huang, X., Zhou, H.: A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nat. Commun. 5(1), 1–8 (2014)

    Article  Google Scholar 

  35. Gerion, D., Chen, F., Kannan, B., Fu, A., Parak, W.J., Chen, D.J., Majumdar, A., Alivisatos, A.P.: Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays. Anal. Chem. 75(18), 4766–4772 (2003)

    Article  CAS  Google Scholar 

  36. Gerion, D., Parak, W.J., Williams, S.C., Zanchet, D., Micheel, C.M., Alivisatos, A.P.: Sorting fluorescent nanocrystals with DNA. J. Am. Chem. Soc. 124(24), 7070–7074 (2002)

    Article  CAS  Google Scholar 

  37. Geys, J., Nemmar, A., Verbeken, E., Smolders, E., Ratoi, M., Hoylaerts, M.F., Nemery, B., Hoet, P.H.M.: Acute toxicity and prothrombotic effects of quantum dots: impact of surface charge. Environ. Health Perspect. 116(12), 1607–1613 (2008)

    Article  CAS  Google Scholar 

  38. Goldman, E.R., Anderson, G.P., Tran, P.T., Mattoussi, H., Charles, P.T., Mauro, J.M.: Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Anal. Chem. 74(4), 841–847 (2002)

    Article  CAS  Google Scholar 

  39. Goldman, E.R., Balighian, E.D., Mattoussi, H., Kuno, M.K., Mauro, J.M., Tran, P.T., Anderson, G.P.: Avidin: a natural bridge for quantum dot-antibody conjugates. J. Am. Chem. Soc. 124(22), 6378–6382 (2002)

    Article  CAS  Google Scholar 

  40. Goldman, E.R., Clapp, A.R., Anderson, G.P., Uyeda, H.T., Mauro, J.M., Medintz, I.L., Mattoussi, H.: Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal. Chem. 76(3), 684–688 (2004)

    Article  CAS  Google Scholar 

  41. Guo, T., Wu, Y., Lin, Y., Xu, X., Lian, H., Huang, G., Liu, J., Wu, X., Yang, H.: Black phosphorus quantum dots with renal clearance property for efficient photodynamic therapy. Small 14(4), 1702815 (2018)

    Article  Google Scholar 

  42. Han, M., Gao, X., Su, J.Z., Nie, S.: Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 19(7), 631–635 (2001)

    Article  CAS  Google Scholar 

  43. Han, H., Valdepérez, D., Jin, Q., Yang, B., Li, Z., Wu, Y., Pelaz, B., Parak, W.J., Ji, J.: Dual enzymatic reaction-assisted gemcitabine delivery systems for programmed pancreatic cancer therapy. ACS Nano 11(2), 1281–1291 (2017)

    Article  CAS  Google Scholar 

  44. Hanaki, K., Momo, A., Oku, T., Komoto, A., Maenosono, S., Yamaguchi, Y., Yamamoto, K.: Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker. Biochem. Biophys. Res. Commun. 302(3), 496–501 (2003)

    Article  CAS  Google Scholar 

  45. Hasnain, M.S., Nayak, A.K.: Carbon nanotubes as quantum dots for therapeutic purpose. In: Carbon Nanotubes for Targeted Drug Delivery, pp. 59–64. Springer (2019)

    Google Scholar 

  46. He, X., Ma, N.: An overview of recent advances in quantum dots for biomedical applications. Colloids Surf. B 124, 118–131 (2014)

    Article  CAS  Google Scholar 

  47. Hong, G., Diao, S., Antaris, A.L., Dai, H.: Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 115(19), 10816–10906 (2015)

    Article  CAS  Google Scholar 

  48. Hossain, M.A., Chowdhury, T., Bagul, A.: Imaging modalities for the in vivo surveillance of mesenchymal stromal cells. J. Tissue Eng. Regen. Med. 9(11), 1217–1224 (2015)

    Article  Google Scholar 

  49. Huang, X., Aguilar, Z.P., Xu, H., Lai, W., Xiong, Y.: Membrane-based lateral flow immunochromatographic strip with nanoparticles as reporters for detection: a review. Biosens. Bioelectron. 75, 166–180 (2016)

    Article  CAS  Google Scholar 

  50. Iyer, G.H., Taslimi, P., Pazhanisamy, S.: Staurosporine-based binding assay for testing the affinity of compounds to protein kinases. Anal. Biochem. 373(2), 197–206 (2008)

    Article  CAS  Google Scholar 

  51. Jaiswal, J.K., Mattoussi, H., Mauro, J.M., Simon, S.M.: Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 21(1), 47–51 (2003)

    Article  CAS  Google Scholar 

  52. James Singh, K., Ahmed, T., Gautam, P., Sadhu, A.S., Lien, D.-H., Chen, S.-C., Chueh, Y.-L., Kuo, H.-C.: Recent advances in two-dimensional quantum dots and their applications. Nanomaterials 11(6), 1549 (2021)

    Article  Google Scholar 

  53. Jasieniak, J., Califano, M., Watkins, S.E.: Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals. ACS Nano 5(7), 5888–5902 (2011)

    Article  CAS  Google Scholar 

  54. Ji, X., Peng, F., Zhong, Y., Su, Y., He, Y.: Fluorescent quantum dots: synthesis, biomedical optical imaging, and biosafety assessment. Colloids Surf. B 124, 132–139 (2014)

    Article  CAS  Google Scholar 

  55. Kadian, S., Manik, G., Das, N., Roy, P.: Targeted bioimaging and sensing of folate receptor-positive cancer cells using folic acid-conjugated sulfur-doped graphene quantum dots. Microchim. Acta 187(8), 1–10 (2020)

    Article  Google Scholar 

  56. Kasibabu, B.S.B., D’souza, S.L., Jha, S., Singhal, R.K., Basu, H., Kailasa, S.K.: One-step synthesis of fluorescent carbon dots for imaging bacterial and fungal cells. Anal. Methods 7(6), 2373–2378 (2015)

    Article  CAS  Google Scholar 

  57. Kim, J., Kwon, S., Park, J.-K., Park, I.: Quantum dot-based immunoassay enhanced by high-density vertical ZnO nanowire array. Biosens. Bioelectron. 55, 209–215 (2014)

    Article  Google Scholar 

  58. Kim, C., Searson, P.C.: Magnetic bead-quantum dot assay for detection of a biomarker for traumatic brain injury. Nanoscale 7(42), 17820–17826 (2015)

    Article  CAS  Google Scholar 

  59. Kloepfer, J.A., Mielke, R.E., Wong, M.S., Nealson, K.H., Stucky, G., Nadeau, J.L.: Quantum dots as strain-and metabolism-specific microbiological labels. Appl. Environ. Microbiol. 69(7), 4205–4213 (2003)

    Article  CAS  Google Scholar 

  60. Knoblauch, R., Geddes, C.D.: Carbon nanodots in photodynamic antimicrobial therapy: a review. Materials 13(18), 4004 (2020)

    Article  CAS  Google Scholar 

  61. Kokkinos, C., Economou, A.: Emerging trends in biosensing using stripping voltammetric detection of metal-containing nanolabels—a review. Anal. Chim. Acta 961, 12–32 (2017)

    Article  CAS  Google Scholar 

  62. Kuo, W.-S., Chen, H.-H., Chen, S.-Y., Chang, C.-Y., Chen, P.-C., Hou, Y.-I., Shao, Y.-T., Kao, H.-F., Hsu, C.-L.L., Chen, Y.-C.: Graphene quantum dots with nitrogen-doped content dependence for highly efficient dual-modality photodynamic antimicrobial therapy and bioimaging. Biomaterials 120, 185–194 (2017)

    Article  CAS  Google Scholar 

  63. Larson, D.R., Zipfel, W.R., Williams, R.M., Clark, S.W., Bruchez, M.P., Wise, F.W., Webb, W.W.: Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300(5624), 1434–1436 (2003)

    Article  CAS  Google Scholar 

  64. Le, T., Zhu, L., Yu, H.: Dual-label quantum dot-based immunoassay for simultaneous determination of Carbadox and Olaquindox metabolites in animal tissues. Food Chem. 199, 70–74 (2016)

    Article  CAS  Google Scholar 

  65. Lee, L.Y., Ong, S.L., Hu, J.Y., Ng, W.J., Feng, Y., Tan, X., Wong, S.W.: Use of semiconductor quantum dots for photostable immunofluorescence labeling of Cryptosporidium parvum. Appl. Environ. Microbiol. 70(10), 5732–5736 (2004)

    Article  CAS  Google Scholar 

  66. Lemon, C.M., Karnas, E., Han, X., Bruns, O.T., Kempa, T.J., Fukumura, D., Bawendi, M.G., Jain, R.K., Duda, D.G., Nocera, D.G.: Micelle-encapsulated quantum dot-porphyrin assemblies as in vivo two-photon oxygen sensors. J. Am. Chem. Soc. 137(31), 9832–9842 (2015)

    Article  CAS  Google Scholar 

  67. Li, C., Liang, S., Zhang, C., Liu, Y., Yang, M., Zhang, J., Zhi, X., Pan, F., Cui, D.: Allogenic dendritic cell and tumor cell fused vaccine for targeted imaging and enhanced immunotherapeutic efficacy of gastric cancer. Biomaterials 54, 177–187 (2015)

    Article  CAS  Google Scholar 

  68. Li, X., Vinothini, K., Ramesh, T., Rajan, M., Ramu, A.: Combined photodynamic-chemotherapy investigation of cancer cells using carbon quantum dot-based drug carrier system. Drug Deliv. 27(1), 791–804 (2020)

    Article  CAS  Google Scholar 

  69. Liang, Z., Li, P., Wang, C., Singh, D., Zhang, X.: Visualizing the transport of porcine reproductive and respiratory syndrome virus in live cells by quantum dots-based single virus tracking. Virologica Sinica 35(4), 407–416 (2020)

    Article  Google Scholar 

  70. Lin, M., Gao, Y., Hornicek, F., Xu, F., Lu, T.J., Amiji, M., Duan, Z.: Near-infrared light activated delivery platform for cancer therapy. Adv. Coll. Interface. Sci. 226, 123–137 (2015)

    Article  CAS  Google Scholar 

  71. Liu, N., Tang, M.: Toxicity of different types of quantum dots to mammalian cells in vitro: an update review. J. Hazard. Mater. 399, 122606 (2020)

    Article  CAS  Google Scholar 

  72. Liu, J.L., Walper, S.A., Turner, K.B., Lee, A.B., Medintz, I.L., Susumu, K., Oh, E., Zabetakis, D., Goldman, E.R., Anderson, G.P.: Conjugation of biotin-coated luminescent quantum dots with single domain antibody-rhizavidin fusions. Biotechnol. Rep. 10, 56–65 (2016)

    Article  Google Scholar 

  73. Luo, L., Liu, C., He, T., Zeng, L., Xing, J., Xia, Y., Pan, Y., Gong, C., Wu, A.: Engineered fluorescent carbon dots as promising immune adjuvants to efficiently enhance cancer immunotherapy. Nanoscale 10(46), 22035–22043 (2018)

    Article  CAS  Google Scholar 

  74. Månsson, A., Sundberg, M., Balaz, M., Bunk, R., Nicholls, I.A., Omling, P., Tågerud, S., Montelius, L.: In vitro sliding of actin filaments labelled with single quantum dots. Biochem. Biophys. Res. Commun. 314(2), 529–534 (2004)

    Article  Google Scholar 

  75. Matea, C.T., Mocan, T., Tabaran, F., Pop, T., Mosteanu, O., Puia, C., Iancu, C., Mocan, L.: Quantum dots in imaging, drug delivery and sensor applications. Int. J. Nanomed. 12, 5421 (2017)

    Article  CAS  Google Scholar 

  76. Matsuno, A., Itoh, J., Takekoshi, S., Nagashima, T., Osamura, R.Y.: Three-dimensional imaging of the intracellular localization of growth hormone and prolactin and their mRNA using nanocrystal (Quantum dot) and confocal laser scanning microscopy techniques. J. Histochem. Cytochem. 53(7), 833–838 (2005)

    Article  CAS  Google Scholar 

  77. Modun, B., Morrissey, J., Williams, P.: The staphylococcal transferrin receptor: a glycolytic enzyme with novel functions. Trends Microbiol. 8(5), 231–237 (2000)

    Article  CAS  Google Scholar 

  78. Mollarasouli, F., Serafín, V., Campuzano, S., Yáñez-Sedeño, P., Pingarrón, J.M., Asadpour-Zeynali, K.: Ultrasensitive determination of receptor tyrosine kinase with a label-free electrochemical immunosensor using graphene quantum dots-modified screen-printed electrodes. Anal. Chim. Acta 1011, 28–34 (2018)

    Article  CAS  Google Scholar 

  79. Namdari, P., Negahdari, B., Eatemadi, A.: Synthesis, properties and biomedical applications of carbon-based quantum dots: an updated review. Biomed. Pharmacother. 87, 209–222 (2017)

    Article  CAS  Google Scholar 

  80. Narayanan, K., Yen, S.K., Dou, Q., Padmanabhan, P., Sudhaharan, T., Ahmed, S., Ying, J.Y., Selvan, S.T.: Mimicking cellular transport mechanism in stem cells through endosomal escape of new peptide-coated quantum dots. Sci. Rep. 3(1), 1–6 (2013)

    Article  Google Scholar 

  81. Nitzsche, B., Ruhnow, F., Diez, S.: Quantum-dot-assisted characterization of microtubule rotations during cargo transport. Nat. Nanotechnol. 3(9), 552–556 (2008)

    Article  CAS  Google Scholar 

  82. Olerile, L.D., Liu, Y., Zhang, B., Wang, T., Mu, S., Zhang, J., Selotlegeng, L., Zhang, N.: Near-infrared mediated quantum dots and paclitaxel co-loaded nanostructured lipid carriers for cancer theragnostic. Colloids Surf. B 150, 121–130 (2017)

    Article  CAS  Google Scholar 

  83. Ozkan Vardar, D., Aydin, S., Hocaoglu, I., Yagci Acar, H., Basaran, N.: An In Vitro Study on the Cytotoxicity and Genotoxicity of Silver Sulfide Quantum Dots Coated with Meso-2, 3-Dimercaptosuccinic Acid (2019)

    Google Scholar 

  84. Parvin, N., Mandal, T.K.: Synthesis of a highly fluorescence nitrogen-doped carbon quantum dots bioimaging probe and its in vivo clearance and printing applications. RSC Adv. 6(22), 18134–18140 (2016)

    Article  CAS  Google Scholar 

  85. Pathak, S., Choi, S.-K., Arnheim, N., Thompson, M.E.: Hydroxylated quantum dots as luminescent probes for in situ hybridization. J. Am. Chem. Soc. 123(17), 4103–4104 (2001)

    Article  CAS  Google Scholar 

  86. Patolsky, F., Gill, R., Weizmann, Y., Mokari, T., Banin, U., Willner, I.: Lighting-up the dynamics of telomerization and DNA replication by CdSe−ZnS quantum dots. J. Am. Chem. Soc. 125(46), 13918–13919 (2003)

    Article  CAS  Google Scholar 

  87. Peckys, D.B., Alansary, D., Niemeyer, B.A., de Jonge, N.: Visualizing quantum dot labeled ORAI1 proteins in intact cells via correlative light and electron microscopy. Microsc. Microanal. 22(4), 902–912 (2016)

    Article  CAS  Google Scholar 

  88. Perica, K., Medero, A.D.L., Durai, M., Chiu, Y.L., Bieler, J.G., Sibener, L., Niemöller, M., Assenmacher, M., Richter, A., Edidin, M.: Nanoscale artificial antigen presenting cells for T cell immunotherapy. Nanomed.: Nanotechnol. Biol. Med. 10(1), 119–129 (2014)

    Google Scholar 

  89. Pooresmaeil, M., Namazi, H.: Facile preparation of pH-sensitive chitosan microspheres for delivery of curcumin; characterization, drug release kinetics and evaluation of anticancer activity. Int. J. Biol. Macromol. 162, 501–511 (2020)

    Article  CAS  Google Scholar 

  90. Qian, Z.S., Shan, X.Y., Chai, L.J., Chen, J.R., Feng, H.: Dual-colored graphene quantum dots-labeled nanoprobes/graphene oxide: functional carbon materials for respective and simultaneous detection of DNA and thrombin. Nanotechnology 25(41), 415501 (2014)

    Article  Google Scholar 

  91. Qin, D., Jiang, X., Mo, G., Feng, J., Yu, C., Deng, B.: A novel carbon quantum dots signal amplification strategy coupled with sandwich electrochemiluminescence immunosensor for the detection of CA15-3 in human serum. ACS Sens. 4(2), 504–512 (2019)

    Article  CAS  Google Scholar 

  92. Ramalingam, G., Kathirgamanathan, P., Ravi, G., Elangovan, T., Manivannan, N., Kasinathan, K.: Quantum confinement effect of 2D nanomaterials. In: Quantum Dots-Fundamental and Applications. IntechOpen (2020)

    Google Scholar 

  93. Ren, M., Xu, H., Huang, X., Kuang, M., Xiong, Y., Xu, H., Xu, Y., Chen, H., Wang, A.: Immunochromatographic assay for ultrasensitive detection of aflatoxin B1 in maize by highly luminescent quantum dot beads. ACS Appl. Mater. Interfaces 6(16), 14215–14222 (2014)

    Article  CAS  Google Scholar 

  94. Rieger, S., Kulkarni, R.P., Darcy, D., Fraser, S.E., Köster, R.W.: Quantum dots are powerful multipurpose vital labeling agents in zebrafish embryos. Dev. Dyn. 234(3), 670–681 (2005)

    Article  CAS  Google Scholar 

  95. Roullier, V., Clarke, S., You, C., Pinaud, F., Gouzer, G., Schaible, D., Marchi-Artzner, V., Piehler, J., Dahan, M.: High-affinity labeling and tracking of individual histidine-tagged proteins in live cells using Ni2+ tris-nitrilotriacetic acid quantum dot conjugates. Nano Lett. 9(3), 1228–1234 (2009)

    Article  CAS  Google Scholar 

  96. Saad, S.M., Abdullah, J., Rashid, S.A., Fen, Y.W., Salam, F., Yih, L.H.: A fluorescence quenching based gene assay for Escherichia coli O157: H7 using graphene quantum dots and gold nanoparticles. Microchim. Acta 186(12), 1–10 (2019)

    Article  Google Scholar 

  97. Shore, A.: Retraction: Amino acid derived highly luminescent, heteroatom-doped carbon dots for label-free detection of Cd2+/Fe3+, cell imaging and enhanced antibacterial activity. RSC Adv. 8(69), 39784 (2018)

    Article  CAS  Google Scholar 

  98. Tao, Y., Zhang, Y., Ju, E., Ren, J., Qu, X.: One-step synthesized immunostimulatory oligonucleotides-functionalized quantum dots for simultaneous enhanced immunogenicity and cell imaging. Colloids Surf. B 126, 585–589 (2015)

    Article  CAS  Google Scholar 

  99. Thal, L.B., Mann, V.R., Sprinzen, D., McBride, J.R., Reid, K.R., Tomlinson, I.D., McMahon, D.G., Cohen, B.E., Rosenthal, S.J.: Ligand-conjugated quantum dots for fast sub-diffraction protein tracking in acute brain slices. Biomater. Sci. 8(3), 837–845 (2020)

    Article  CAS  Google Scholar 

  100. Toda, M., Yukawa, H., Yamada, J., Ueno, M., Kinoshita, S., Baba, Y., Hamuro, J.: In vivo fluorescence visualization of anterior chamber injected human corneal endothelial cells labeled with quantum dots. Invest. Ophthalmol. Vis. Sci. 60(12), 4008–4020 (2019)

    Article  CAS  Google Scholar 

  101. Tully, E., Hearty, S., Leonard, P., O’Kennedy, R.: The development of rapid fluorescence-based immunoassays, using quantum dot-labelled antibodies for the detection of Listeria monocytogenes cell surface proteins. Int. J. Biol. Macromol. 39(1–3), 127–134 (2006)

    Article  CAS  Google Scholar 

  102. Uğurlu, Ö., Barlas, F.B., Evran, S., Timur, S.: The cell-penetrating YopM protein-functionalized quantum dot-plasmid DNA conjugate as a novel gene delivery vector. Plasmid 110, 102513 (2020)

    Article  Google Scholar 

  103. Wagner, A.M., Knipe, J.M., Orive, G., Peppas, N.A.: Quantum dots in biomedical applications. Acta Biomater. 94, 44–63 (2019)

    Article  CAS  Google Scholar 

  104. Wang, Y., Hu, A.: Carbon quantum dots: synthesis, properties and applications. J. Mater. Chem. C 2(34), 6921–6939 (2014)

    Article  CAS  Google Scholar 

  105. Wang, Y., Wang, H., Zhou, L., Lu, J., Jiang, B., Liu, C., Guo, J.: Photodynamic therapy of pancreatic cancer: where have we come from and where are we going? Photodiagn. Photodyn. Ther. 31, 101876 (2020)

    Article  CAS  Google Scholar 

  106. Wang, C., Xiao, R., Wang, S., Yang, X., Bai, Z., Li, X., Rong, Z., Shen, B., Wang, S.: Magnetic quantum dot based lateral flow assay biosensor for multiplex and sensitive detection of protein toxins in food samples. Biosens. Bioelectron. 146, 111754 (2019)

    Article  CAS  Google Scholar 

  107. Wang, J., Zhang, Z., Zha, S., Zhu, Y., Wu, P., Ehrenberg, B., Chen, J.-Y.: Carbon nanodots featuring efficient FRET for two-photon photodynamic cancer therapy with a low fs laser power density. Biomaterials 35(34), 9372–9381 (2014)

    Article  CAS  Google Scholar 

  108. Wei, X.-M., Xu, Y., Li, Y.-H., Yin, X.-B., He, X.-W.: Ultrafast synthesis of nitrogen-doped carbon dots via neutralization heat for bioimaging and sensing applications. RSC Adv. 4(84), 44504–44508 (2014)

    Article  CAS  Google Scholar 

  109. Wen, X., Wang, Y., Zhang, F., Zhang, X., Lu, L., Shuai, X., Shen, J.: In vivo monitoring of neural stem cells after transplantation in acute cerebral infarction with dual-modal MR imaging and optical imaging. Biomaterials 35(16), 4627–4635 (2014)

    Article  CAS  Google Scholar 

  110. Wu, P., Yan, X.-P.: Doped quantum dots for chemo/biosensing and bioimaging. Chem. Soc. Rev. 42(12), 5489–5521 (2013)

    Article  CAS  Google Scholar 

  111. Wu, C., Guan, X., Xu, J., Zhang, Y., Liu, Q., Tian, Y., Li, S., Qin, X., Yang, H., Liu, Y.: Highly efficient cascading synergy of cancer photo-immunotherapy enabled by engineered graphene quantum dots/photosensitizer/CpG oligonucleotides hybrid nanotheranostics. Biomaterials 205, 106–119 (2019)

    Article  CAS  Google Scholar 

  112. Wu, X., Liu, H., Liu, J., Haley, K.N., Treadway, J.A., Larson, J.P., Ge, N., Peale, F., Bruchez, M.P.: Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21(1), 41–46 (2003)

    Article  CAS  Google Scholar 

  113. Xiang, T., Jiang, Z., Zheng, J., Lo, C., Tsou, H., Ren, G., Zhang, J., Huang, A., Lai, G.: A novel double antibody sandwich-lateral flow immunoassay for the rapid and simple detection of hepatitis C virus. Int. J. Mol. Med. 30(5), 1041–1047 (2012)

    Article  CAS  Google Scholar 

  114. Xiao, Y., Barker, P.E.: Semiconductor nanocrystal probes for human metaphase chromosomes. Nucleic Acids Res. 32(3), e28–e28 (2004)

    Article  Google Scholar 

  115. Xiao, S., Zhou, D., Luan, P., Gu, B., Feng, L., Fan, S., Liao, W., Fang, W., Yang, L., Tao, E.: Graphene quantum dots conjugated neuroprotective peptide improve learning and memory capability. Biomaterials 106, 98–110 (2016)

    Article  CAS  Google Scholar 

  116. Xie, C., Zhan, Y., Wang, P., Zhang, B., Zhang, Y.: Novel surface modification of ZnO QDs for paclitaxel-targeted drug delivery for lung cancer treatment. Dose-Response 18(2), 1559325820926739 (2020)

    Article  CAS  Google Scholar 

  117. Xu, M., He, G., Li, Z., He, F., Gao, F., Su, Y., Zhang, L., Yang, Z., Zhang, Y.: A green heterogeneous synthesis of N-doped carbon dots and their photoluminescence applications in solid and aqueous states. Nanoscale 6(17), 10307–10315 (2014)

    Article  CAS  Google Scholar 

  118. Xu, H., Sha, M.Y., Wong, E.Y., Uphoff, J., Xu, Y., Treadway, J.A., Truong, A., O’Brien, E., Asquith, S., Stubbins, M.: Multiplexed SNP genotyping using the QbeadTM system: a quantum dot-encoded microsphere-based assay. Nucleic Acids Res. 31(8), e43–e43 (2003)

    Article  Google Scholar 

  119. Xue, L., Huang, F., Hao, L., Cai, G., Zheng, L., Li, Y., Lin, J.: A sensitive immunoassay for simultaneous detection of foodborne pathogens using MnO2 nanoflowers-assisted loading and release of quantum dots. Food Chem. 322, 126719 (2020)

    Article  CAS  Google Scholar 

  120. Yang, L., Li, Y.: Simultaneous detection of Escherichia coli O157∶ H7 and Salmonella Typhimurium using quantum dots as fluorescence labels. Analyst 131(3), 394–401 (2006)

    Article  CAS  Google Scholar 

  121. Yang, Y., Li, P., Lin, Y., Li, Z., Cui, T., Song, Z., Wu, W., Lv, S., Ji, S.: Gene expression profiling of the liver and lung in mice after exposure to ZnO quantum dots. Int. J. Nanomed. 15, 2947 (2020)

    Article  CAS  Google Scholar 

  122. Yang, X.T., Tang, Y., Zhang, X., Hu, Y., Tang, Y.Y., Hu, L.Y., Li, S., Xie, Y., Zhu, D.: Fluorometric visualization of mucin 1 glycans on cell surfaces based on rolling-mediated cascade amplification and CdTe quantum dots. Microchim. Acta 186(11), 1–9 (2019)

    Google Scholar 

  123. Yang, X., Zhang, W., Zhao, Z., Li, N., Mou, Z., Sun, D., Cai, Y., Wang, W., Lin, Y.: Quercetin loading CdSe/ZnS nanoparticles as efficient antibacterial and anticancer materials. J. Inorg. Biochem. 167, 36–48 (2017)

    Article  CAS  Google Scholar 

  124. Yeh, H.-C., Ho, Y.-P., Shih, I.-M., Wang, T.-H.: Homogeneous point mutation detection by quantum dot-mediated two-color fluorescence coincidence analysis. Nucleic Acids Res. 34(5), e35–e35 (2006)

    Article  Google Scholar 

  125. Yu, X., Wen, K., Wang, Z., Zhang, X., Li, C., Zhang, S., Shen, J.: General bioluminescence resonance energy transfer homogeneous immunoassay for small molecules based on quantum dots. Anal. Chem. 88(7), 3512–3520 (2016)

    Article  CAS  Google Scholar 

  126. Yuan, Y., Zhang, Z., Hou, W., Qin, W., Meng, Z., Wu, C.: In vivo dynamic cell tracking with long-wavelength excitable and near-infrared fluorescent polymer dots. Biomaterials 254, 120139 (2020)

    Article  CAS  Google Scholar 

  127. Yukawa, H., Baba, Y.: In vivo fluorescence imaging and the diagnosis of stem cells using quantum dots for regenerative medicine. Anal. Chem. 89(5), 2671–2681 (2017)

    Article  CAS  Google Scholar 

  128. Zhang, Q., Zhang, X., Bao, L., Wu, Y., Jiang, L., Zheng, Y., Wang, Y., Chen, Y.: The application of green-synthesis-derived carbon quantum dots to bioimaging and the analysis of mercury (II). J. Anal. Methods Chem. (2019)

    Google Scholar 

  129. Zhang, J., Yu, S.-H.: Carbon dots: large-scale synthesis, sensing and bioimaging. Mater. Today 19(7), 382–393 (2016)

    Article  CAS  Google Scholar 

  130. Zhang, L.-J., Wang, S., Xia, L., Lv, C., Tang, H.-W., Liang, Z., Xiao, G., Pang, D.-W.: Lipid-specific labeling of enveloped viruses with quantum dots for single-virus tracking. MBio 11(3), e00135-e220 (2020)

    Article  Google Scholar 

  131. Zhang, F., Liu, B., Zhang, Y., Wang, J., Lu, Y., Deng, J., Wang, S.: Application of CdTe/CdS/ZnS quantum dot in immunoassay for aflatoxin B1 and molecular modeling of antibody recognition. Anal. Chim. Acta 1047, 139–149 (2019)

    Article  CAS  Google Scholar 

  132. Zhao, T., Liu, X., Li, Y., Zhang, M., He, J., Zhang, X., Liu, H., Wang, X., Gu, H.: Fluorescence and drug loading properties of ZnSe: Mn/ZnS-Paclitaxel/SiO2 nanocapsules templated by F127 micelles. J. Colloid Interface Sci. 490, 436–443 (2017)

    Article  CAS  Google Scholar 

  133. Zheng, M., Ruan, S., Liu, S., Sun, T., Qu, D., Zhao, H., Xie, Z., Gao, H., Jing, X., Sun, Z.: Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells. ACS Nano 9(11), 11455–11461 (2015)

    Article  CAS  Google Scholar 

  134. Zhou, J., Han, T., Ma, H., Yan, T., Pang, X., Li, Y., Wei, Q.: A novel electrochemiluminescent immunosensor based on the quenching effect of aminated graphene on nitrogen-doped carbon quantum dots. Anal. Chim. Acta 889, 82–89 (2015)

    Article  CAS  Google Scholar 

  135. Zhou, J., Yang, Y., Zhang, C.: Toward biocompatible semiconductor quantum dots: from biosynthesis and bioconjugation to biomedical application. Chem. Rev. 115(21), 11669–11717 (2015)

    Article  CAS  Google Scholar 

  136. Zhou, J., Deng, W., Wang, Y., Cao, X., Chen, J., Wang, Q., Xu, W., Du, P., Yu, Q., Chen, J.: Cationic carbon quantum dots derived from alginate for gene delivery: one-step synthesis and cellular uptake. Acta Biomater. 42, 209–219 (2016)

    Article  CAS  Google Scholar 

  137. Zhu, L., Ang, S., Liu, W.-T.: Quantum dots as a novel immunofluorescent detection system for Cryptosporidium parvum and Giardia lamblia. Appl. Environ. Microbiol. 70(1), 597–598 (2004)

    Article  CAS  Google Scholar 

  138. Zrazhevskiy, P., Gao, X.: Multifunctional quantum dots for personalized medicine. Nano Today 4(5), 414–428 (2009)

    Article  CAS  Google Scholar 

  139. Zrazhevskiy, P., Sena, M., Gao, X.: Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem. Soc. Rev. 39(11), 4326–4354 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Saquib Hasnain .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The authors report no conflicts of interest in this work.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmed, S. et al. (2023). Quantum Dots in Biomedical Applications: Recent Advancements and Future Prospects. In: Hasnain, M.S., Nayak, A.K., Alkahtani, S. (eds) Carbon Nanostructures in Biomedical Applications. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-28263-8_7

Download citation

Publish with us

Policies and ethics