Skip to main content
Log in

A cardiac troponin I photoelectrochemical immunosensor: nitrogen-doped carbon quantum dots–bismuth oxyiodide–flower-like SnO2

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel photoelectrochemical (PEC) immunosensor for the determination of cardiac troponin I (cTnI) was constructed. The flower-like stannic oxide (SnO2) with large specific surface area was prepared by hydrothermal synthesis. Nitrogen-doped carbon quantum dots (NCQDs) with excellent surface property were used as a sensitizer for SnO2. Bismuth oxyiodide (BiOI) is a narrow band gap (1.83 eV) nanomaterial, which was firstly modified on NCQDs-sensitized SnO2 through in situ growth method. After NCQDs with small size and BiOI nanoparticles are successively combined with SnO2, the SnO2/NCQDs/BiOI microflower was obtained, which possessed good photochemical properties. Using visible light as excitation source and ascorbic acid (AA) as electron donor, the ultrasensitive and quantitative determination of cTnI was realized by detecting the changes of photocurrent under different concentrations of cTnI. The PEC immunosensor showed a large-scaled response (0.001–100 ng mL−1) and a low detection limit (0.3 pg mL−1) under optimised experimental conditions. The sensor has potential clinical value in the prediction and diagnosis of cardiovascular diseases in elderly patients with diabetes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fan BB, Fan Q, Cui M, Wu TT, Wang JS, Ma HM, Wei Q (2019) Photoelectrochemical biosensor for sensitive detection of soluble CD44 based on the facile construction of a poly(ethylene glycol)/hyaluronic acid hybrid antifouling interface. ACS Appl Mater Interfaces 11:24764–24770. https://doi.org/10.1021/acsami.9b06937

    Article  PubMed  CAS  Google Scholar 

  2. Chen Y, Zhou YL, Yin HS, Li F, Li H, Guo RZ, Han YH, Ai SY (2020) Photoelectrochemical biosensor for histone acetyltransferase detection based on ZnO quantum dots inhibited photoactivity of BiOI nanoflower. Sensors Actuators B Chem 307:127633. https://doi.org/10.1016/j.snb.2019.127633

    Article  CAS  Google Scholar 

  3. Wang J, Lv WX, Wu JH, Li HY, Li F (2019) Electropolymerization-induced positively charged phenothiazine polymer photoelectrode for highly sensitive photoelectrochemical biosensing. Anal Chem 91(21):13831–13837. https://doi.org/10.1021/acs.analchem.9b03311

    Article  PubMed  CAS  Google Scholar 

  4. Yi WJ, Cai RL, Xiang DF, Wang YX, Zhang MS, Ma QH, Cui YH, Bian XU (2019) A novel photoelectrochemical strategy based on an integrative photoactive heterojunction nanomaterial and a redox cycling amplification system for ultrasensitive determination of microRNA in cells. Biosens Bioelectron 143:111614. https://doi.org/10.1016/j.bios.2019.111614

    Article  PubMed  CAS  Google Scholar 

  5. Bao CZ, Fan DW, Liu X, Wang XY, Wu D, Ma HM, Hu LH, Wang H, Sun X, Wei Q (2019) A signal-off type photoelectrochemical immunosensor for the ultrasensitive detection of procalcitonin: Ru(bpy)3(2+) and Bi2S3 co-sensitized ZnTiO3/TiO2 polyhedra as matrix and dual inhibition by SiO2/PDA-Au. Biosens Bioelectron 142:111513. https://doi.org/10.1016/j.bios.2019.111513

    Article  PubMed  CAS  Google Scholar 

  6. Tan JS, Peng B, Tang L, Feng CY, Wang JJ, Yu JF, Ouyang XL, Zhu X (2019) Enhanced photoelectric conversion efficiency: a novel h-BN based self-powered photoelectrochemical aptasensor for ultrasensitive detection of diazinon. Biosens Bioelectron 142:111546. https://doi.org/10.1016/j.bios.2019.111546

    Article  PubMed  CAS  Google Scholar 

  7. Cao Y, Wang LN, Wang CY, Hu XY, Liu YL, Wang GX (2019) Sensitive detection of glyphosate based on a Cu-BTC MOF/g-C3N4 nanosheet photoelectrochemical sensor. Electrochim Acta 317:341–347. https://doi.org/10.1016/j.electacta.2019.06.004

    Article  CAS  Google Scholar 

  8. Liu X, Fan DW, Duan SQ, Bao CZ, Wang H, Wang XY, Sun X, Wei Q (2019) An ultrasensitive label-free photoelectrochemical sensor based on Ag2O-sensitized WO3/TiO2 acicular composite for AFB1 detection. Anal Methods 11(30):3890–3897. https://doi.org/10.1039/C9AY01277J

    Article  CAS  Google Scholar 

  9. Yang RY, Zou K, Zhang XH, Du CC, Chen JH (2019) Target-induced photocurrent-polarity switching: a highly selective and sensitive photoelectrochemical sensing platform. Chem Commun 55(61):8939–8942. https://doi.org/10.1039/C9CC03973B

    Article  CAS  Google Scholar 

  10. Wang S, Li SP, Wang WW, Zhao MZ, Liu JF, Feng HF, Chen YM, Gu Q, Du Y, Hao WC (2019) A non-enzymatic photoelectrochemical glucose sensor based on BiVO4 electrode under visible light. Sensors Actuators B Chem 291:34–41. https://doi.org/10.1016/j.snb.2019.04.057

    Article  CAS  Google Scholar 

  11. Wang HH, Li MJ, Wang HJ, Chai YQ, Yuan R (2019) P-n-sensitized heterostructure Co3O4/fullerene with highly efficient photoelectrochemical performance for ultrasensitive DNA detection. ACS Appl Mater Interfaces 11(26):23765–23772. https://doi.org/10.1021/acsami.9b05923

    Article  PubMed  CAS  Google Scholar 

  12. Shang MX, Zhang JL, Qi H, Gao Y, Yan JY, Song WB (2019) All-electrodeposited amorphous MoSx@ZnO core-shell nanorod arrays for self-powered visible-light-activated photoelectrochemical tobramycin aptasensing. Biosens Bioelectron 136:53–59. https://doi.org/10.1016/j.bios.2019.04.019

    Article  PubMed  CAS  Google Scholar 

  13. Tolba SA, Allam NK (2019) Computational design of novel hydrogen-doped, oxygen-deficient monoclinic zirconia with excellent optical absorption and electronic properties. Sci Rep 9(1):10159. https://doi.org/10.1038/s41598-019-46778-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Chen X, Huang Y, Zhang K (2018) Cobalt nanofibers coated with layered nickel silicate coaxial core-shell composites as excellent anode materials for lithium ion batteries. J Colloid Interface Sci 513:788–796. https://doi.org/10.1016/j.jcis.2017.11.078

  15. Tian YZ, Wang Q, Shen L, Cui ZC, Kou LJ, Cheng J, Zhang J (2019) A renewable resveratrol-based epoxy resin with high Tg, excellent mechanical properties and low flammability. Chem Eng J : 123124. https://doi.org/10.1016/j.cej.2019.123124

  16. Zhang B, Ma J, Ye J, Jin YJ, Yang CY, Ding JJ, Zhang ZG, Hou ZP, Liu Q, Ye F (2019) Ultra-low cost porous mullite ceramics with excellent dielectric properties and low thermal conductivity fabricated from kaolin for radome applications. Ceram Int 45(15):18865–18870. https://doi.org/10.1016/j.ceramint.2019.06.120

    Article  CAS  Google Scholar 

  17. Ma W, Hu K, Chen Q, Zhou M, Mirkin MV, Bard AJ (2017) Electrochemical size measurement and characterization of electrodeposited platinum nanoparticles at nanometer resolution with scanning electrochemical microscopy. Nano Lett 17(7):4354–4358. https://doi.org/10.1021/acs.nanolett.7b01437

    Article  PubMed  CAS  Google Scholar 

  18. Fan DW, Bao CZ, Liu X, Wu D, Zhang Y, Wang H, Du B, Wei Q (2018) A novel label-free photoelectrochemical immunosensor based on NCQDs and Bi2S3 co-sensitized hierarchical mesoporous SnO2 microflowers for detection of NT-proBNP. J Mater Chem B 6(46):7634–7642. https://doi.org/10.1039/C8TB02122H

    Article  PubMed  CAS  Google Scholar 

  19. Lee PM, Liao CH, Lin CH, Liu CY (2018) Photocurrent generation in SnO2 thin film by surface charged chemisorption O ions. Appl Surf Sci 442:398–402. https://doi.org/10.1016/j.apsusc.2018.01.289

    Article  CAS  Google Scholar 

  20. Kamarulzaman N, Abdul Aziz ND, Kasim MF, Chayed NF, Yahaya Subban RH, Badar N (2019) Anomalies in wide band gap SnO2 nanostructures. J Solid State Chem 277:271–280. https://doi.org/10.1016/j.jssc.2019.05.035

    Article  CAS  Google Scholar 

  21. Yang XL, Yu Q, Zhang SF, Sun P, Lu HY, Yan X, Liu FM, Zhou X, Liang XS, Gao Y, Lu GY (2018) Highly sensitive and selective triethylamine gas sensor based on porous SnO2/Zn2SnO4 composites. Sens Actuators B Chem 266:213–220. https://doi.org/10.1016/j.snb.2018.03.044

    Article  CAS  Google Scholar 

  22. Li YY, Wang JG, Sun HH, Hua W, Liu XR (2018) Heterostructured SnS2/SnO2 nanotubes with enhanced charge separation and excellent photocatalytic hydrogen production. Int J Hydrog Energy 43(31):14121–14129. https://doi.org/10.1016/j.ijhydene.2018.05.130

    Article  CAS  Google Scholar 

  23. Liu S, Gao S, Wang ZW, Fei T, Zhang T (2019) Oxygen vacancy modulation of commercial SnO2 by an organometallic chemistry-assisted strategy for boosting acetone sensing performances. Sens Actuators B Chem 290:493–502. https://doi.org/10.1016/j.snb.2019.03.123

    Article  CAS  Google Scholar 

  24. Yang JS, Wu HX, Yang P, Hou CJ, Huo DQ (2018) A high performance N-doped carbon quantum dots/5,5′-dithiobis-(2-nitrobenzoic acid) fluorescent sensor for biothiols detection. Sens Actuators B Chem 255:3179–3186. https://doi.org/10.1016/j.snb.2017.09.143

    Article  CAS  Google Scholar 

  25. Pang XH, Zhang Y, Pan J, Zhao Y, Chen Y, Ren X, Ma HM, Wei Q, Du B (2016) A photoelectrochemical biosensor for fibroblast-like synoviocyte cell using visible light-activated NCQDs sensitized-ZnO/CH3NH3PbI3 heterojunction. Biosens Bioelectron 77:330–338. https://doi.org/10.1016/j.bios.2015.09.047

    Article  PubMed  CAS  Google Scholar 

  26. Kim SR, Jo WK (2019) Boosted photocatalytic decomposition of nocuous organic gases over tricomposites of N-doped carbon quantum dots, ZnFe2O4, and BiOBr with different junctions. J Hazard Mater 380:120866. https://doi.org/10.1016/j.jhazmat.2019.120866

    Article  PubMed  CAS  Google Scholar 

  27. Zhang JJ, Wang ZB, Li C, Zhao L, Liu J, Zhang LM, Gu DM (2015) Multiwall-carbon nanotube modified by N-doped carbon quantum dots as Pt catalyst support for methanol electrooxidation. J Power Sources 289:63–70. https://doi.org/10.1016/j.jpowsour.2015.04.150

    Article  CAS  Google Scholar 

  28. Jiang ZY, Liang XZ, Liu YY, Jing TJ, Wang ZY, Zhang XY, Qin XY, Dai Y, Huang BB (2017) Enhancing visible light photocatalytic degradation performance and bactericidal activity of BiOI via ultrathin-layer structure. Appl Catal B Environ 211:252–257. https://doi.org/10.1016/j.apcatb.2017.03.072

    Article  CAS  Google Scholar 

  29. Wang XW, Zhang Y, Zhou CX, Huo DZ, Zhang RB, Wang LZ (2019) Hydroxyl-regulated BiOI nanosheets with a highly positive valence band maximum for improved visible-light photocatalytic performance Appl Catal B Environ : 118390. https://doi.org/10.1016/j.apcatb.2019.118390, , 268

  30. Zhu YH, Liu X, Yan K, Zhang JD (2019) A cathodic photovoltammetric sensor for chloramphenicol based on BiOI and graphene nanocomposites. Sens Actuators B Chem 284:505–513. https://doi.org/10.1016/j.snb.2018.12.160

    Article  CAS  Google Scholar 

  31. Chen DM, Yang JJ, Zhu Y, Zhang YM, Zhu YF (2018) Fabrication of BiOI/graphene Hydrogel/FTO photoelectrode with 3D porous architecture for the enhanced photoelectrocatalytic performance. Appl Catal B Environ 233:202–212. https://doi.org/10.1016/j.apcatb.2018.04.004

    Article  CAS  Google Scholar 

  32. Zhong S, Wang BQ, Zhou H, Li CY, Peng XJ, Zhang SY (2019) Fabrication and characterization of Ag/BiOI/GO composites with enhanced photocatalytic activity. J Alloys Compd 806:401–409. https://doi.org/10.1016/j.jallcom.2019.07.223

    Article  CAS  Google Scholar 

  33. Liu ZY, Wang QY, Tan XY, Wang YJ, Jin RC, Gao SM (2019) Enhanced photocatalytic performance of TiO2 NTs decorated with chrysanthemum-like BiOI nanoflowers. Sep Purif Technol 215:565–572. https://doi.org/10.1016/j.seppur.2019.01.046

    Article  CAS  Google Scholar 

  34. Jiang MH, Lu P, Lei YM, Chai YQ, Yuan R, Zhuo Y (2018) Self-accelerated electrochemiluminescence emitters of Ag@SnO2 nanoflowers for sensitive detection of cardiac troponin T. Electrochim Acta 271:464–471. https://doi.org/10.1016/j.electacta.2018.03.177

    Article  CAS  Google Scholar 

  35. Lv H, Zhang XB, Li YY, Ren Y, Zhang CY, Wang P, Xu Z, Li XJ, Chen ZW, Dong YH (2019) An electrochemical sandwich immunosensor for cardiac troponin I by using nitrogen/sulfur co-doped graphene oxide modified with Au@Ag nanocubes as amplifiers. Microchim Acta 186:416. https://doi.org/10.1007/s00604-019-3526-2

    Article  CAS  Google Scholar 

  36. Bohlooli Ghashghaee N, Tanner BCW, Dong WJ (2017) Functional significance of C-terminal mobile domain of cardiac troponin I. Arch Biochem Biophys 634:38–46. https://doi.org/10.1016/j.abb.2017.09.017

    Article  PubMed  CAS  Google Scholar 

  37. Burkart EM, Sumandea MP, Kobayashi T, Nili M, Martin AF, Homsher E, Solaro RJ (2003) Phosphorylation or glutamic acid substitution at protein kinase C sites on cardiac troponin I differentially depress myofilament tension and shortening velocity. J Biol Chem 278(13):11265–11272. https://doi.org/10.1074/jbc.M210712200

    Article  PubMed  CAS  Google Scholar 

  38. Bottenus D, Hossan MR, Ouyang Y, Dong WJ, Dutta P, Ivory CF (2011) Preconcentration and detection of the phosphorylated forms of cardiac troponin I in a cascade microchip by cationic isotachophoresis. Lab Chip 11(22):3793–3801. https://doi.org/10.1039/C1LC20469F

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Biesiadecki BJ, Tachampa K, Yuan C, Jin JP, de Tombe PP, Solaro RJ (2010) Removal of the cardiac troponin I N-terminal extension improves cardiac function in aged mice. J Biol Chem 285(25):19688–19698. https://doi.org/10.1074/jbc.M109.086892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Akter R, Jeong B, Lee YM, Choi JS, Rahman MA (2017) Femtomolar detection of cardiac troponin I using a novel label-free and reagent-free dendrimer enhanced impedimetric immunosensor. Biosens Bioelectron 91:637–643. https://doi.org/10.1016/j.bios.2017.01.021

    Article  PubMed  CAS  Google Scholar 

  41. Han TQ, Yan T, Li YY, Cao W, Pang XH, Huang Q, Wei Q (2015) Eco-friendly synthesis of electrochemiluminescent nitrogen-doped carbon quantum dots from diethylene triamine pentacetate and their application for protein detection. Carbon 91:144–152. https://doi.org/10.1016/j.carbon.2015.04.053

    Article  CAS  Google Scholar 

  42. Fan DW, Wang HY, Malik SK, Bao CZ, Wang H, Wu D, Wei Q, Du B (2017) An ultrasensitive photoelectrochemical immunosensor for insulin detection based on BiOBr/Ag2S composite by in-situ growth method with high visible-light activity. Biosens Bioelectron 97:253–259. https://doi.org/10.1016/j.bios.2017.05.044

    Article  PubMed  CAS  Google Scholar 

  43. Yan T, Wu TT, Wei SY, Wang HQ, Sun M, Yan LG, Wei Q, Ju HX (2020) Photoelectrochemical competitive immunosensor for 17β-estradiol detection based on ZnIn2S4@NH2-MIL-125(Ti) amplified by PDA NS/Mn: ZnCdS. Biosens Bioelectron 148:111739. https://doi.org/10.1016/j.bios.2019.111739

    Article  PubMed  CAS  Google Scholar 

  44. Yan PC, Jiang DS, Li HN, Cheng M, Xu L, Qian JC, Bao J, Xia JX, Li HM (2018) Exploitation of a photoelectrochemical sensing platform for catechol quantitative determination using BiPO4 nanocrystals/BiOI heterojunction. Anal Chim Acta 1042:11–19. https://doi.org/10.1016/j.aca.2018.07.063

    Article  PubMed  CAS  Google Scholar 

  45. Du MX, Du Y, Feng YB, Li ZF, Wang JY, Jiang N, Liu Y (2019) Advanced photocatalytic performance of novel BiOBr/BiOI/cellulose composites for the removal of organic pollutant. Cellulose 26(9):5543–5557. https://doi.org/10.1007/s10570-019-02474-1

    Article  CAS  Google Scholar 

  46. Huang HW, Han X, Li XW, Wang SC, Chu PK, Zhang YH (2015) Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr-BiOI full-range composites based on microstructure modulation and band structures. ACS Appl Nano Mater 7(1):482–492. https://doi.org/10.1021/am5065409

    Article  CAS  Google Scholar 

  47. Pang XH, Zhang Y, Pan J, Zhao YH, Chen Y, Ren X, Ma HM, Wei Q, Du B (2016) A photoelectrochemical biosensor for fibroblast-like synoviocyte cell using visible light-activated NCQDs sensitized-ZnO/CH3NH3PbI3 heterojunction. Biosens Bioelectron 77:330–338. https://doi.org/10.1016/j.bios.2015.09.047

    Article  PubMed  CAS  Google Scholar 

  48. Kang Q, Yang LX, Chen YF, Luo SL, Cai QY, Wen LF, Yao SZ (2010) Photoelectrochemical detection of pentachlorophenol with a multiple hybrid CdSexTe1-x/TiO2 nanotube structure-based label-free immunosensor. Anal Chem 82:9749–9754. https://doi.org/10.1021/ac101798t

    Article  PubMed  CAS  Google Scholar 

  49. Ren KW, Wu J, Yan F, Zhang Y, Ju HX (2015) Immunoreaction-triggered DNA assembly for one-step sensitive ratiometric electrochemical biosensing of protein biomarker. Biosens Bioelectron 66:345–349. https://doi.org/10.1016/j.bios.2014.11.046

    Article  PubMed  CAS  Google Scholar 

  50. Tuteja SK, Kukkar M, Suri CR, Paul AK, Deep A (2015) One step in-situ synthesis of amine functionalized graphene for immunosensing of cardiac marker cTnI. Biosens Bioelectron 66:129–135. https://doi.org/10.1016/j.bios.2014.10.072

    Article  PubMed  CAS  Google Scholar 

  51. Liu DK, Lu X, Yang YW, Zhai YY, Zhang J, Li L (2018) A novel fluorescent aptasensor for the highly sensitive and selective detection of cardiac troponin I based on a graphene oxide platform. Anal Bioanal Chem 410(18):4285–4291. https://doi.org/10.1007/s00216-018-1076-9

    Article  PubMed  CAS  Google Scholar 

  52. Chen FF, Wu Q, Song DK, Wang XY, Ma P, Sun Y (2019) Fe3O4@PDA immune probe-based signal amplification in surface plasmon resonance (SPR) biosensing of human cardiac troponin I. Colloids Surf B Biointerfaces 177:105–111. https://doi.org/10.1016/j.colsurfb.2019.01.053

    Article  PubMed  CAS  Google Scholar 

  53. Song SY, Han YD, Kim K, Yang SS, Yoon HC (2011) A fluoro-microbead guiding chip for simple and quantifiable immunoassay of cardiac troponin I (cTnI). Biosens Bioelectron 26(9):3818–3824. https://doi.org/10.1016/j.bios.2011.02.036

    Article  PubMed  CAS  Google Scholar 

  54. Luo ZB, Sun DP, Tong YL, Zhong YS, Chen ZG (2019) DNA nanotetrahedron linked dual-aptamer based voltammetric aptasensor for cardiac troponin I using a magnetic metal-organic framework as a label. Mikrochim Acta 186(6):374. https://doi.org/10.1007/s00604-019-3470-1

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This research was financially supported by the Innovation team project of colleges and universities in Jinan (No. 2019GXRC027), the National Natural Science Foundation of China (Nos. 21775054, 21775053, 21575050, 21777056, 21505051), the National Key Scientific Instrument and Equipment Development Project of China (No. 21627809), the Natural Science Foundation of Shandong Province (No. ZR2017MB027), and the Jinan Scientific Research Leader Workshop Project (2018GXRC024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dawei Fan or Huangxian Ju.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 514 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, D., Liu, X., Shao, X. et al. A cardiac troponin I photoelectrochemical immunosensor: nitrogen-doped carbon quantum dots–bismuth oxyiodide–flower-like SnO2. Microchim Acta 187, 332 (2020). https://doi.org/10.1007/s00604-020-04302-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04302-x

Keywords

Navigation