Skip to main content
Log in

A fluorescence quenching based gene assay for Escherichia coli O157:H7 using graphene quantum dots and gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A fluorometric assay is described for highly sensitive quantification of Escherichia coli O157:H7. Reporter oligos were immobilized on graphene quantum dots (GQDs), and quencher oligos were immobilized on gold nanoparticles (AuNPs). Target DNA was co-hybridized with reporter oligos on the GQDs and quencher oligos on AuNPs. This triggers quenching of fluorescence (with excitation/emission peaks at 400 nm/530 nm). On introducing target into the system, fluorescence is quenched by up to 95% by 100 nM concentrations of target oligos having 20 bp. The response to the fliC gene of E. coli O157:H7 increases with the logarithm of the concentration in the range from 0.1 nM to 150 nM. The limit of detection is 1.1 ± 0.6 nM for n = 3. The selectivity and specificity of the assay was confirmed by evaluating the various oligos sequences and PCR product (fliC gene) amplified from genomic DNA of the food samples spiked with E. coli O157:H7.

Schematic representation of fluorometric assay for highly sensitive quantification of Escherichia coli O157:H7 based on fluorescence quenching gene assay for fliC gene of E. coli O157:H7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fan L, Hu Y, Wang X, Zhang L, Li F, Han D, Li Z, Zhang Q, Wang Z, Niu L (2012) Fluorescence resonance energy transfer quenching at the surface of graphene quantum dots for ultrasensitive detection of TNT. Talanta 101:192–197. https://doi.org/10.1016/j.talanta.2012.08.048

    Article  CAS  PubMed  Google Scholar 

  2. Vijayakumar V, Seshasayanan R (2015) Optical characteristics of quantum dot transistor with front side illumination. In: materials today: proceedings. Pp 4632–4635

    Google Scholar 

  3. Roushani M, Mavaei M, Rajabi HR (2015) Graphene quantum dots as novel and green nano-materials for the visible-light-driven photocatalytic degradation of cationic dye. J Mol Catal A Chem 409:102–109. https://doi.org/10.1016/j.molcata.2015.08.011

    Article  CAS  Google Scholar 

  4. Kermani HA, Hosseini M, Dadmehr M et al (2017) DNA methyltransferase activity detection based on graphene quantum dots using fluorescence and fluorescence anisotropy. Sensors Actuators B 241:217–223. https://doi.org/10.1016/j.snb.2016.10.078

    Article  CAS  Google Scholar 

  5. Valappil MO, Pillai VK, Alwarappan S (2017) Spotlighting graphene quantum dots and beyond: synthesis, properties and sensing applications. Appl Mater Today 9:350–371. https://doi.org/10.1016/j.apmt.2017.09.002

    Article  Google Scholar 

  6. Poon CY, Li Q, Zhang J, Li Z, Dong C, Lee AW, Chan WH, Li HW (2016) FRET-based modified graphene quantum dots for direct trypsin quantification in urine. Anal Chim Acta 917:64–70. https://doi.org/10.1016/j.aca.2016.02.032

    Article  CAS  PubMed  Google Scholar 

  7. Zu F, Yan F, Bai Z et al (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184:1899–1914. https://doi.org/10.1007/s00604-017-2318-9

    Article  CAS  Google Scholar 

  8. Rodzik-Czałka Ł, Lewandowska-Ła Cucka J, Gatta V et al (2018) Nucleobases functionalized quantum dots and gold nanoparticles bioconjugates as a fluorescence resonance energy transfer (FRET) system - synthesis, characterization and potential applications. J Colloid Interface Sci 514:479–490. https://doi.org/10.1016/j.jcis.2017.12.060

    Article  CAS  PubMed  Google Scholar 

  9. Stanisavljevic M, Krizkova S, Vaculovicova M, Kizek R, Adam V (2015) Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application. Biosens Bioelectron 74:562–574. https://doi.org/10.1016/j.bios.2015.06.076

    Article  CAS  PubMed  Google Scholar 

  10. Alpas H, Yeni F, Fletcher J (2017) Practical tools for plant and food biosecurity. Pract Tools Plant Food Biosecur. https://doi.org/10.1007/978-3-319-46897-6

    Google Scholar 

  11. Sandle T (2016) Rapid microbiological methods. In: Sandle T (ed) pharmaceutical microbiology. Woodhead Publishing, pp 219–231

  12. Afendy M, Son R (2015) Pre-enrichment effect on PCR detection of Salmonella Enteritidis in artificially-contaminated raw chicken meat. Int Food Res J 22:2571–2576

    Google Scholar 

  13. Pang B, Zhao C, Li L, Song X, Xu K, Wang J, Liu Y, Fu K, Bao H, Song D, Meng X, Qu X, Zhang Z, Li J (2017) Development of a low-cost paper-based ELISA method for rapid Escherichia coli O157:H7 detection. Anal Biochem 542:58–62. https://doi.org/10.1016/j.ab.2017.11.010

    Article  CAS  PubMed  Google Scholar 

  14. Zhu L, Li S, Shao X, Feng Y, Xie P, Luo Y, Huang K, Xu W (2019) Colorimetric detection and typing of E. coli lipopolysaccharides based on a dual aptamer-functionalized gold nanoparticle probe. Microchim Acta 186:6–11. https://doi.org/10.1007/s00604-018-3212-9

    Article  CAS  Google Scholar 

  15. Tao Y, Yang J, Chen L et al (2018) Dialysis assisted ligand exchange on gold nanorods: amplification of the performance of a lateral flow immunoassay for E. coli O157:H7. Microchim Acta 185:350. https://doi.org/10.1007/s00604-018-2897-0

    Article  CAS  Google Scholar 

  16. Van Thuan D, Nguyen TK, Kim S-W et al (2017) Chemical-hydrothermal synthesis of oval-shaped graphene/ZnO quantum hybrids and their photocatalytic performances. Catal Commun 101:102–106. https://doi.org/10.1016/j.catcom.2017.08.004

    Article  CAS  Google Scholar 

  17. Raghav R, Srivastava S (2016) Immobilization strategy for enhancing sensitivity of immunosensors: L-asparagine-AuNPs as a promising alternative of EDC-NHS activated citrate-AuNPs for antibody immobilization. Biosens Bioelectron 78:396–403. https://doi.org/10.1016/j.bios.2015.11.066

    Article  CAS  PubMed  Google Scholar 

  18. Kumar S, Ojha AK, Ahmed B et al (2017) Tunable (violet to green) emission by high-yield graphene quantum dots and exploiting its unique properties towards sun-light-driven photocatalysis and supercapacitor electrode materials. Mater Today Commun 11:76–86. https://doi.org/10.1016/j.mtcomm.2017.02.009

    Article  CAS  Google Scholar 

  19. Zhao X, Ding J, Bai W et al (2018) PEDOT:PSS/AuNPs/CA modified screen-printed carbon based disposable electrochemical sensor for sensitive and selective determination of carmine. J Electroanal Chem 824:14–21. https://doi.org/10.1016/j.jelechem.2018.07.030

    Article  CAS  Google Scholar 

  20. Chauhan N, Jain U, Gandotra R, Hooda V (2017) Zeolites-AuNPs assembled interface towards amperometric biosensing of spermidine. Electrochim Acta 230:106–115. https://doi.org/10.1016/j.electacta.2017.01.069

    Article  CAS  Google Scholar 

  21. Chang L, He X, Chen L, Zhang Y (2017) A fluorescent sensing for glycoproteins based on the FRET between quantum dots and au nanoparticles. Sensors Actuators B 250:17–23. https://doi.org/10.1016/j.snb.2017.04.153

    Article  CAS  Google Scholar 

  22. Medintz I, Hildebrandt N (2013) FRET - Förster resonance energy transfer. Wiley-VCH

  23. Ghosh D, Chattopadhyay N (2015) Gold and silver nanoparticles based superquenching of fluorescence: a review. J Lumin 160:223–232. https://doi.org/10.1016/j.jlumin.2014.12.018

    Article  CAS  Google Scholar 

  24. Shrivastava A, Gupta V (2011) Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles Young Sci 2:21–25. https://doi.org/10.4103/2229-5186.79345

    Article  Google Scholar 

  25. Shi J, Chan C, Pang Y, Ye W, Tian F, Lyu J, Zhang Y, Yang M (2015) A fluorescence resonance energy transfer (FRET) biosensor based on graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) for the detection of mecA gene sequence of Staphylococcus aureus. Biosens Bioelectron 67:595–600. https://doi.org/10.1016/j.bios.2014.09.059

    Article  CAS  PubMed  Google Scholar 

  26. Tao Y, Lin Y, Huang Z, Ren J, Qu X (2012) DNA-templated silver nanoclusters-graphene oxide nanohybrid materials: a platform for label-free and sensitive fluorescence turn-on detection of multiple nucleic acid targets. Analyst 137:2588–2592. https://doi.org/10.1039/c2an35373c

    Article  CAS  PubMed  Google Scholar 

  27. Mao A, Wei C (2019) Cytosine-rich ssDNA-templated fluorescent silver and copper/silver nanoclusters: optical properties and sensitive detection for mercury (II). Microchim Acta 186:541. https://doi.org/10.1007/s00604-019-3658-4

    Article  CAS  Google Scholar 

  28. Wang Q, Wang W, Lei J, Xu N, Gao F, Ju H (2013) Fluorescence quenching of carbon nitride nanosheet through its interaction with DNA for versatile fluorescence sensing. Anal Chem 85:12182–12188. https://doi.org/10.1021/ac403646n

    Article  CAS  PubMed  Google Scholar 

  29. Xu Q, Gong Y, Zhang Z, Miao Y, Li D, Yan G (2019) Preparation of graphene oxide quantum dots from waste toner, and their application to a fluorometric DNA hybridization assay. Microchim Acta 186:483. https://doi.org/10.1007/s00604-019-3539-x

    Article  CAS  Google Scholar 

  30. Lee IYS, Suzuki H (2008) Quenching dynamics promoted by silver nanoparticles. J Photochem Photobiol A Chem 195:254–260. https://doi.org/10.1016/j.jphotochem.2007.10.009

    Article  CAS  Google Scholar 

  31. Kang TS (2019) Basic principles for developing real-time PCR methods used in food analysis: a review. Trends Food Sci Technol 91:574–585. https://doi.org/10.1016/j.tifs.2019.07.037

    Article  CAS  Google Scholar 

  32. Liu WT, Guo H, Wu JH (2007) Effects of target length on the hybridization efficiency and specificity of rRNA-based oligonucleotide microarrays. Appl Environ Microbiol 73:73–82. https://doi.org/10.1128/AEM.01468-06

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is jointly funded by University Putra Malaysia under the Putra Grant (GP-IPB/2016/9515403) and MARDI under the Development Grant (P-RI-401). Authors also acknowledge the Public Service Department (JPA) of Malaysia for the scholarship under the National Training Award (HLP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaafar Abdullah.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 863 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saad, S.M., Abdullah, J., Rashid, S.A. et al. A fluorescence quenching based gene assay for Escherichia coli O157:H7 using graphene quantum dots and gold nanoparticles. Microchim Acta 186, 804 (2019). https://doi.org/10.1007/s00604-019-3913-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3913-8

Keywords

Navigation