Skip to main content

An Enhanced Internet of Things Enabled Type-2 Fuzzy Logic for Healthcare System Applications

  • Chapter
  • First Online:
Recent Trends on Type-2 Fuzzy Logic Systems: Theory, Methodology and Applications

Abstract

Due to advancements in information and communication technology, the Internet of Things has gained popularity in a variety of academic fields. In IoT-based healthcare systems, numerous wearable sensors are employed to collect various data from patients. The healthcare system has been challenged by the increase in the number of people living with chronic and infectious diseases. There are several existing IoT-based healthcare systems and ontology-based methods to judiciously diagnose, and monitor patients with chronic diseases in real-time and for a very long term. This was done to drastically minimize the vast manual labor in healthcare monitoring and recommendation systems. The current monitoring and recommendation systems generally utilised Type-1 Fuzzy Logic (T1FL) or ontology that is unsuitable owing to uncertainty and inconsistency in the processing, and analysis of observed data. Due to the expansion of risk and unpredictable factors in chronic and infectious patients such as diabetes, heart attacks, and COVID-19, these healthcare systems cannot be utilized to collect thorough physiological data about patients. Furthermore, utilizing the current T1FL ontology-based method to extract the ideal membership value of risk factors becomes challenging and problematic, resulting in unsatisfactory outcomes. Therefore, this chapter discusses the applicability of IoT-based enabled Type-2 Fuzzy Logic (T2FL) in the healthcare system, and the challenges and prospects of their applications were also reviewed. The chapter proposes an IoT-based enabled T2FL system for monitoring patients with diabetes by extracting the physiological factors from patients’ bodies. The wearable sensors were used to capture the physiological factors of the patients, and the data capture was used for the monitoring of patients. The results from the experiment reveal that the model is very efficient and effective for diabetes patient monitoring, using patient risk factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Awotunde, J.B., Ayoade, O.B., Ajamu, G.J., AbdulRaheem, M., Oladipo, I.D.: Internet of Things and cloud activity monitoring systems for elderly healthcare. Stud. Comput. Intell. 2022(1011), 181–207 (2022)

    Article  Google Scholar 

  2. Ullah, I., Youn, H.Y., Han, Y.H.: Integration of type-2 fuzzy logic and Dempster-Shafer theory for accurate inference of IoT-based healthcare system. Futur. Gener. Comput. Syst. 124, 369–380 (2021)

    Article  Google Scholar 

  3. Awotunde, J.B., Jimoh, R.G., AbdulRaheem, M., Oladipo, I.D., Folorunso, S.O., Ajamu, G.J.: IoT-based wearable body sensor network for COVID-19 pandemic. In: Advances in Data Science and Intelligent Data Communication Technologies for COVID-19, pp. 253–275 (2022)

    Google Scholar 

  4. Qiu, T., Chen, N., Li, K., Atiquzzaman, M., Zhao, W.: How can heterogeneous internet of things build our future: a survey. IEEE Commun. Surv. Tutor. 20(3), 2011–2027 (2018)

    Article  Google Scholar 

  5. Awotunde, J.B., Jimoh, R.G., Ogundokun, R.O., Misra, S., Abikoye, O.C.: Big data analytics of IoT-based cloud system framework: smart healthcare monitoring systems. Internet of Things 2022, 181–208 (2022)

    Article  Google Scholar 

  6. Wu, C.H., Lam, C.H., Xhafa, F., Tang, V., Ip, W.H.: IoT for Elderly, Aging and EHealth: Quality of Life and Independent Living for the Elderly, vol. 108. Springer Nature (2022)

    Google Scholar 

  7. Guo, X., Lin, H., Wu, Y., Peng, M.: A new data clustering strategy for enhancing mutual privacy in healthcare IoT systems. Futur. Gener. Comput. Syst. 113, 407–417 (2020)

    Article  Google Scholar 

  8. Uscher-Pines, L., Sousa, J., Raja, P., Mehrotra, A., Barnett, M.L., Huskamp, H.A.: Suddenly becoming a “virtual doctor”: experiences of psychiatrists transitioning to telemedicine during the COVID-19 pandemic. Psychiatr. Serv. 71(11), 1143–1150 (2020)

    Article  Google Scholar 

  9. Aceto, G., Persico, V., Pescapé, A.: Industry 4.0 and health: Internet of things, big data, and cloud computing for healthcare 4.0. J. Indus. Inform. Integr. 18, 100129 (2020)

    Google Scholar 

  10. Awotunde, J.B., Folorunso, S.O., Bhoi, A.K., Adebayo, P.O., Ijaz, M.F.: Disease diagnosis system for IoT-based wearable body sensors with machine learning algorithm. In: Hybrid Artificial Intelligence and IoT in Healthcare, pp. 201–222. Springer, Singapore (2021)

    Google Scholar 

  11. Ivanov, M., Markova, V., Ganchev, T.: An overview of network architectures and technology for wearable sensor-based health monitoring systems. In: 2020 International Conference on Biomedical Innovations and Applications (BIA), pp. 81–84. IEEE (2020)

    Google Scholar 

  12. Awotunde, J.B., Jimoh, R.G., Folorunso, S.O., Adeniyi, E.A., Abiodun, K.M., Banjo, O.O.: Privacy and security concerns in IoT-based healthcare systems. In: The Fusion of Internet of Things, Artificial Intelligence, and Cloud Computing in Health Care, pp. 105–134. Springer, Cham (2021)

    Google Scholar 

  13. Li, W., Chai, Y., Khan, F., Jan, S.R.U., Verma, S., Menon, V.G., Li, X.: A comprehensive survey on machine learning-based big data analytics for IoT-enabled smart healthcare systems. Mob. Netw. Appl. 26(1), 234–252 (2021)

    Article  Google Scholar 

  14. Chiang, T.C., Liang, W.H.: A context-aware interactive health care system based on ontology and fuzzy inference. J. Med. Syst. 39(9), 1–25 (2015)

    Article  Google Scholar 

  15. Du, J., Jing, H., Choo, K.K.R., Sugumaran, V., Castro-Lacouture, D.: An ontology and multi-agent-based decision support framework for prefabricated component supply chain. Inf. Syst. Front. 22(6), 1467–1485 (2020)

    Article  Google Scholar 

  16. Kalamkar, S., Geetha Mary, A.: Heterogeneous data fusion for healthcare monitoring: a survey. In: Big Data, IoT, and Machine Learning, pp. 205–232. CRC Press (2020)

    Google Scholar 

  17. Selvan, N.S., Vairavasundaram, S., Ravi, L.: Fuzzy ontology-based personalized recommendation for internet of medical things with linked open data. J. Intell. Fuzzy Syst. 36(5), 4065–4075 (2019)

    Article  Google Scholar 

  18. Collotta, M., Pau, G., Bobovich, A.V.: A fuzzy data fusion solution to enhance the QoS and the energy consumption in wireless sensor networks. In: Wireless Communications and Mobile Computing (2017)

    Google Scholar 

  19. Rasi, D., Deepa, S.N.: Energy optimization of Internet of Things in wireless sensor network models using type-2 fuzzy neural systems. Int. J. Commun. Syst. 34(17), e4967 (2021)

    Article  Google Scholar 

  20. Jana, D.K., Basu, S.: Novel Internet of Things (IoT) for controlling indoor temperature via Gaussian type-2 fuzzy logic. Int. J. Model. Simul. 41(2), 92–100 (2021)

    Article  Google Scholar 

  21. Ogundokun, R.O., Awotunde, J.B., Adeniyi, E.A., Misra, S.: Application of the Internet of Things (IoT) to fight the COVID-19 Pandemic. Internet of Things 2022, 83–103 (2022)

    Article  Google Scholar 

  22. Sennan, S., Ramasubbareddy, S., Balasubramaniyam, S., Nayyar, A., Abouhawwash, M., Hikal, N.A.: T2FL-PSO: Type-2 fuzzy logic-based particle swarm optimization algorithm used to maximize the lifetime of Internet of Things. IEEE Access 9, 63966–63979 (2021)

    Article  Google Scholar 

  23. Awotunde, J.B., Abiodun, K.M., Adeniyi, E.A., Folorunso, S.O., Jimoh, R.G.: (2021) A deep learning-based intrusion detection technique for a secured IoMT system. Commun. Comput. Inform. Sci. 1547 CCIS, 50–62

    Google Scholar 

  24. Adeniyi, E.A., Ogundokun, R.O., Awotunde, J.B.: IoMT-based wearable body sensors network healthcare monitoring system. Stud. Comput. Intell. 2021(933), 103–121 (2021)

    Article  Google Scholar 

  25. Awotunde, J.B., Bhoi, A.K., Barsocchi, P.: Hybrid cloud/fog environment for healthcare: an exploratory study, opportunities, challenges, and future prospects. In: Hybrid Artificial Intelligence and IoT in Healthcare, pp. 1–20. Springer, Singapore (2021)

    Google Scholar 

  26. Tang, J.: Discussion on health service system of mobile medical institutions based on Internet of Things and cloud computing. J. Healthc. Eng. (2022)

    Google Scholar 

  27. Alreshidi, E.J.: Introducing Fog Computing (FC) technology to Internet of Things (IoT) cloud-based anti-theft vehicles solutions. Int. J. Syst. Dyn. Appl. (IJSDA) 11(3), 1–21 (2022)

    Google Scholar 

  28. Firouzi, F., Farahani, B., Marinšek, A.: The convergence and interplay of edge, fog, and cloud in the AI-driven Internet of Things (IoT). Inf. Syst. 107, 101840 (2022)

    Article  Google Scholar 

  29. Tang, Q., Xie, R., Yu, F.R., Chen, T., Zhang, R., Huang, T., Liu, Y.: Distributed task scheduling in serverless edge computing networks for the Internet of Things: a learning approach. IEEE Internet of Things J. (2022)

    Google Scholar 

  30. Ali, O., Ishak, M.K., Bhatti, M.K.L., Khan, I., Kim, K.I.: A comprehensive review of internet of things: technology stack, middlewares, and fog/edge computing interface. Sensors 22(3), 995 (2022)

    Article  Google Scholar 

  31. Malik, S., Gupta, D.: Examining the adoption and application of Internet of Things for smart cities. In: IoT and IoE Driven Smart Cities, pp. 97–119. Springer, Cham (2022)

    Google Scholar 

  32. Abiodun, M.K., Adeniyi, E.A., Awotunde, J.B., Bhoi, A.K., AbdulRaheem, M., Oladipo, I.D.: A framework for the actualization of green cloud-based design for smart cities. In: IoT and IoE Driven Smart Cities, pp. 163–182. Springer, Cham (2022)

    Google Scholar 

  33. Kamruzzaman, M.M., Alrashdi, I., Alqazzaz, A.: New opportunities, challenges, and applications of edge-AI for connected healthcare in internet of medical things for smart cities. J. Healthc. Eng. (2022)

    Google Scholar 

  34. Dogra, A.K., Kaur, J.: Moving towards smart transportation with machine learning and Internet of Things (IoT): a review. J. Smart Environ. Green Comput. 2(1), 3–18 (2022)

    Google Scholar 

  35. Shamshuddin, K., Jayalaxmi, G.N.: Privacy-preserving scheme for smart transportation in 5G integrated IoT. In: ICT with Intelligent Applications, pp. 59–67. Springer, Singapore (2022)

    Google Scholar 

  36. Sinha, B.B., Dhanalakshmi, R.: Recent advancements and challenges of Internet of Things in smart agriculture: a survey. Futur. Gener. Comput. Syst. 126, 169–184 (2022)

    Article  Google Scholar 

  37. Rehman, A., Saba, T., Kashif, M., Fati, S.M., Bahaj, S.A., Choudhary, H.: A revisit of Internet of Things technologies for monitoring and control strategies in smart agriculture. Agronomy 12(1), 127 (2022)

    Article  Google Scholar 

  38. Dhaou, I.S.B., Kondoro, A., Kakakhel, S.R.U., Westerlund, T., Tenhunen, H.: Internet of Things technologies for smart grid. In: Research Anthology on Smart Grid and Microgrid Development, pp. 805–832. IGI Global (2022)

    Google Scholar 

  39. Krishnan, P.R., Jacob, J.: An IOT based efficient energy management in smart grid using DHOCSA technique. Sustain. Cities Soc. 79, 103727 (2022)

    Article  Google Scholar 

  40. Prajapati, D., Chan, F.T., Chelladurai, H., Lakshay, L., Pratap, S.: An Internet of Things embedded sustainable supply chain management of B2B e-commerce. Sustainability 14(9), 5066 (2022)

    Article  Google Scholar 

  41. Hrouga, M., Sbihi, A., Chavallard, M.: The potentials of combining Blockchain technology and Internet of Things for digital reverse supply chain: a case study. J. Clean. Prod. 130609 (2022)

    Google Scholar 

  42. Abikoye, O.C., Bajeh, A.O., Awotunde, J.B., Ameen, A.O., Mojeed, H.A., Abdulraheem, M., ... & Salihu, S.A.: Application of internet of thing and cyber physical system in Industry 4.0 smart manufacturing. Adv. Sci. Technol. Innov. 2021, pp. 203–217 (2021)

    Google Scholar 

  43. Hagras, H., Wagner, C.: Towards the wide spread use of type-2 fuzzy logic systems in real world applications. IEEE Comput. Intell. Mag. 7(3), 14–24 (2012)

    Article  Google Scholar 

  44. Hagras, H., Wagner, C.: Introduction to interval type-2 fuzzy logic controllers-towards better uncertainty handling in real world applications. IEEE Syst. Man Cybern. eNewsl. 27 (2009)

    Google Scholar 

  45. Dalpe, A.J., Thein, M.W.L., Renken, M.: PERFORM: a metric for evaluating autonomous system performance in marine testbed environments using interval type-2 fuzzy logic. Appl. Sci. 11(24), 11940 (2021)

    Article  Google Scholar 

  46. Mittal, K., Jain, A., Vaisla, K.S., Castillo, O., Kacprzyk, J.: A comprehensive review on type 2 fuzzy logic applications: past, present and future. Eng. Appl. Artif. Intell. 95, 103916 (2020)

    Article  Google Scholar 

  47. Melin, P., Castillo, O.: A review on type-2 fuzzy logic applications in clustering, classification and pattern recognition. Appl. Soft Comput. 21, 568–577 (2014)

    Article  Google Scholar 

  48. Karnik, N.N., Mendel, J.M.: Introduction to type-2 fuzzy logic systems. In: 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE world congress on Computational Intelligence (Cat. No. 98CH36228), vol. 2, pp. 915–920. IEEE (1998)

    Google Scholar 

  49. Castillo, O., Melin, P., Kacprzyk, J., Pedrycz, W.: Type-2 fuzzy logic: theory and applications. In: 2007 IEEE International Conference on Granular Computing (GRC 2007), pp. 145–145). IEEE (2007)

    Google Scholar 

  50. Hagras, H.A.: A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Trans. Fuzzy Syst. 12(4), 524–539 (2004)

    Article  Google Scholar 

  51. Wijayasekara, D. S.: Improving understandability and uncertainty modeling of data using Fuzzy Logic Systems. Virginia Commonwealth University (2016)

    Google Scholar 

  52. Hagras, H.: Type-2 FLCs: a new generation of fuzzy controllers. IEEE Comput. Intell. Mag. 2(1), 30–43 (2007)

    Article  Google Scholar 

  53. Zhou, Y.S., Lai, L.Y.: Optimal design for fuzzy controllers by genetic algorithms. IEEE Trans. Ind. Appl. 36(1), 93–97 (2000)

    Article  Google Scholar 

  54. Folorunso, S.O., Awotunde, J.B., Ayo, F.E., Abdullah, K.K.A.: RADIoT: the unifying framework for IoT, radiomics and deep learning modeling. Intell. Syst. Ref. Libr. 2021(209), 109–128 (2021)

    Google Scholar 

  55. Bajeh, A.O., Mojeed, H.A., Ameen, A.O., Abikoye, O.C., Salihu, S.A., Abdulraheem, M., ... & Awotunde, J.B.: Internet of robotic things: its domain, methodologies, and applications. Adv. Sci. Technol. Innov. 2021, 135–146 (2021)

    Google Scholar 

  56. Papaioannou, M., Karageorgou, M., Mantas, G., Sucasas, V., Essop, I., Rodriguez, J., Lymberopoulos, D.: A survey on security threats and countermeasures in internet of medical things (IoMT). Trans. Emerg. Telecommun. Technol. e4049 (2020)

    Google Scholar 

  57. RM, S.P., Maddikunta, P.K.R., Parimala, M., Koppu, S., Gadekallu, T.R., Chowdhary, C.L., Alazab, M.: An effective feature engineering for DNN using hybrid PCA-GWO for intrusion detection in IoMT architecture. Comput. Commun. 160, 139–149

    Google Scholar 

  58. Awotunde, J.B., Oluwabukonla, S., Chakraborty, C., Bhoi, A.K., Ajamu, G.J.: Application of artificial intelligence and big data for fighting COVID-19 pandemic. Decis. Sci. COVID-19, 3–26 (2022)

    Google Scholar 

  59. Haghi, M., Neubert, S., Geissler, A., Fleischer, H., Stoll, N., Stoll, R., Thurow, K.: A flexible and pervasive IoT-based healthcare platform for physiological and environmental parameters monitoring. IEEE Internet Things J. 7(6), 5628–5647 (2020)

    Article  Google Scholar 

  60. Muhammad, L.J., Algehyne, E.A.: Fuzzy based expert system for diagnosis of coronary artery disease in Nigeria. Heal. Technol. 11(2), 319–329 (2021)

    Article  Google Scholar 

  61. Yew, H.T., Ng, M.F., Ping, S.Z., Chung, S.K., Chekima, A., Dargham, J.A.: Iot based real-time remote patient monitoring system. In: 2020 16th IEEE International Colloquium On Signal Processing & Its Applications (CSPA), pp. 176–179. IEEE

    Google Scholar 

  62. Wang, X., Cai, S.: Secure healthcare monitoring framework integrating NDN-based IoT with edge cloud. Futur. Gener. Comput. Syst. 112, 320–329 (2020)

    Article  Google Scholar 

  63. Reddy, G.T., Khare, N.: Hybrid firefly-bat optimized fuzzy artificial neural network based classifier for diabetes diagnosis. Int. J. Intell. Eng. Syst. 10(4), 18–27 (2017)

    Google Scholar 

  64. Lee, C.S., Wang, M.H., Hagras, H.: A type-2 fuzzy ontology and its application to personal diabetic-diet recommendation. IEEE Trans. Fuzzy Syst. 18(2), 374–395 (2010)

    Google Scholar 

  65. Habib, C., Makhoul, A., Darazi, R., Salim, C.: Self-adaptive data collection and fusion for health monitoring based on body sensor networks. IEEE Trans. Industr. Inf. 12(6), 2342–2352 (2016)

    Article  Google Scholar 

  66. Muzammal, M., Talat, R., Sodhro, A.H., Pirbhulal, S.: A multi-sensor data fusion enabled ensemble approach for medical data from body sensor networks. Inform. Fus. 53, 155–164 (2020)

    Article  Google Scholar 

  67. Wu, T., Wu, F., Redoute, J.M., Yuce, M.R.: An autonomous wireless body area network implementation towards IoT connected healthcare applications. IEEE Access 5, 11413–11422 (2017)

    Article  Google Scholar 

  68. Pinto, A.R., Montez, C., Araújo, G., Vasques, F., Portugal, P.: An approach to implement data fusion techniques in wireless sensor networks using genetic machine learning algorithms. Inform. Fus. 15, 90–101 (2014)

    Article  Google Scholar 

  69. Liu, K., Yang, T., Ma, J., Cheng, Z.: Fault-tolerant event detection in wireless sensor networks using evidence theory. KSII Trans. Internet Inform. Syst. (TIIS) 9(10), 3965–3982 (2015)

    Google Scholar 

  70. Awotunde, J.B., Chakraborty, C., Adeniyi, A.E.: Intrusion detection in industrial internet of things network-based on deep learning model with rule-based feature selection.Wirel. Commun. Mob. Comput. (2021)

    Google Scholar 

  71. Awotunde, J.B., Misra, S., Ayoade, O.B., Ogundokun, R.O., Abiodun, M.K.: Blockchain-based framework for secure medical information in Internet of Things system. In: Blockchain Applications in the Smart Era, pp. 147–169. Springer, Cham (2022)

    Google Scholar 

  72. Awotunde, J.B., Chakraborty, C., Folorunso, S.O.: A secured smart healthcare monitoring systems using blockchain technology. In: Intelligent Internet of Things for Healthcare and Industry, pp. 127–143. Springer, Cham (2022)

    Google Scholar 

  73. Sajid, A., Abbas, H., Saleem, K.: Cloud-assisted IoT-based SCADA systems security: a review of the state of the art and future challenges. IEEE Access 4, 1375–1384 (2016)

    Article  Google Scholar 

  74. Rizvi, S., Orr, R.J., Cox, A., Ashokkumar, P., Rizvi, M.R.: Identifying the attack surface for IoT network. Internet of Things 9, 100162 (2020)

    Article  Google Scholar 

  75. Awotunde, J.B., Misra, S.: Feature extraction and artificial intelligence-based intrusion detection model for a secure Internet of Things networks. In: Illumination of Artificial Intelligence in Cybersecurity and Forensics, pp. 21–44. Springer, Cham (2022)

    Google Scholar 

  76. Mendel, J.M., John, R.B.: Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 10(2), 117–127 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Bamidele Awotunde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Awotunde, J.B., Folorunsho, O., Mustapha, I.O., Olusanya, O.O., Akanbi, M.B., Abiodun, K.M. (2023). An Enhanced Internet of Things Enabled Type-2 Fuzzy Logic for Healthcare System Applications. In: Castillo, O., Kumar, A. (eds) Recent Trends on Type-2 Fuzzy Logic Systems: Theory, Methodology and Applications. Studies in Fuzziness and Soft Computing, vol 425. Springer, Cham. https://doi.org/10.1007/978-3-031-26332-3_9

Download citation

Publish with us

Policies and ethics