Skip to main content

Internet of Things and Cloud Activity Monitoring Systems for Elderly Healthcare

  • Chapter
  • First Online:
Internet of Things for Human-Centered Design

Abstract

According to the World Health Organization, people aged 60 years and above globally will be 2 billion in 2050 by increasing from its present 841 million populaces. With the recent advances in smart healthcare systems that make treatment available for all, it is expected that longevity becomes the norm for humans. Providing a convenient platform for elderly patients has therefore become the attraction of various researchers from different fields, and this makes the smart healthcare system become a point of desirability for many. The advancement in information technology especially in the area of Internet of Things (IoT), cloud computing, and wearable devices has helped bring healthcare nearer to the rural areas and improve elderly care globally. Ambient Assisted Living (AAL) makes it possible to incorporate emerging technology into our everyday activities. Therefore, this chapter explains the important role of IoT and Cloud activity monitoring systems for elderly healthcare in medicine to reduce caregivers’ needs and help the aged live an active life. Also, proposes a framework of an intelligent IoT and cloud activity monitoring system for elderly healthcare using a wearable body sensor network. The suggested system educates and warns healthcare workers in real-time about changes in the health status of aged patients in order to recommend preventative steps that can save lives. The proposed system can accommodate any number of wearable sensors devices and a huge number of applications. The platform also enables remote health monitoring, and real-time monitoring, thus reduce the workload on the medical personnel. IoT and cloud activity monitoring system is a quick and rapid way of monitoring, and diagnosis of elderly patients by depriving them of diffusion of the infection to others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. European Commission: Directorate-general for economic and financial affairs. In: The 2012 Ageing Report: Economic and Budgetary Projections for the 27 EU Member States (2010–60). Publications Office of the European Union (2012)

    Google Scholar 

  2. Ianculescu, M., Stanciu, A., Bica, O., Florian, V., Neagu, G.: Shaping a person-centric eHealth system for an age-friendly community. A case study. Int. J. Comput. 1 (2016)

    Google Scholar 

  3. Weck, M., Tamminen, P., Ferreira, F.A.: Knowledge management in an open innovation ecosystem: building an age-friendly smart living environment. In: ISPIM Conference Proceedings, pp. 1–14. The International Society for Professional Innovation Management (ISPIM) (2020)

    Google Scholar 

  4. Davoodi, L., Merilä, S.: Smart Living Environment for Aging Well (2019)

    Google Scholar 

  5. Neagu, G., Preda, Ş., Stanciu, A., Florian, V.: A cloud-IoT based sensing service for health monitoring. In: 2017 E-Health and Bioengineering Conference (EHB), pp. 53–56. IEEE (2017)

    Google Scholar 

  6. Bates, J.: Thingalytics: Smart Big Data Analytics for the Internet of Things. Software AG (2015)

    Google Scholar 

  7. Mell, P., Grance, T.: The NIST Definition of Cloud Computing (2011)

    Google Scholar 

  8. Griebel, L., Prokosch, H.U., Köpcke, F., Toddenroth, D., Christoph, J., Leb, I., Sedlmayr, M.: A scoping review of cloud computing in healthcare. BMC Med. Inform. Decis. Mak. 15(1), 1–16 (2015)

    Article  Google Scholar 

  9. Awotunde, J.B., Adeniyi, A.E., Ogundokun, R.O., Ajamu, G.J., Adebayo, P.O.: MIoT-based big data analytics architecture, opportunities and challenges for enhanced telemedicine systems. Stud. Fuzziness Soft Comput. 2021(410), 199–220 (2021)

    Article  Google Scholar 

  10. Adeniyi, E.A., Ogundokun, R.O., Awotunde, J.B. IoMT-based wearable body sensors network healthcare monitoring system. In: IoT in Healthcare and Ambient Assisted Living, pp. 103–121. Springer, Singapore (2021)

    Google Scholar 

  11. Adly, A.S. Technology trade-offs for IIoT systems and applications from a developing country perspective: case of Egypt. In: The Internet of Things in the Industrial Sector, pp. 299–319. Springer, Cham (2019)

    Google Scholar 

  12. Kumar, S., Nilsen, W., Pavel, M., Srivastava, M.: Mobile health: revolutionizing healthcare through transdisciplinary research. Computer 46(1), 28–35 (2012)

    Article  Google Scholar 

  13. Darwish, A., Ismail Sayed, G., Ella Hassanien, A.: The impact of implantable sensors in biomedical technology on the future of healthcare systems. Intell. Pervasive Comput. Syst. Smart. Healthc. 67–89 (2019)

    Google Scholar 

  14. Awotunde, J.B., Jimoh, R.G., AbdulRaheem, M., Oladipo, I.D., Folorunso, S.O., Ajamu, G.J.: IoT-based wearable body sensor network for COVID-19 pandemic. Adv. Data Sci. Intell. Data Commun. Technol. COVID-19, 253–275 (2022)

    Google Scholar 

  15. Manogaran, G., Chilamkurti, N., Hsu, C.H.: Emerging trends, issues, and challenges on internet of medical things and wireless networks. Pers. Ubiquit. Comput. 22(5–6), 879–882 (2018)

    Article  Google Scholar 

  16. Varshney, U. Pervasive healthcare computing: EMR/EHR, wireless, and health monitoring. Springer Science & Business Media (2009)

    Google Scholar 

  17. Awotunde, J. B., Ajagbe, S. A., Oladipupo, M. A., Awokola, J. A., Afolabi, O. S., Mathew, T. O., Oguns, Y. J.: An Improved Machine Learnings Diagnosis Technique for COVID-19 Pandemic Using Chest X-ray Images. Communications in Computer and Information Science, 1455, pp. 319–330, (2021)

    Article  Google Scholar 

  18. Awotunde, J.B., Folorunso, S.O., Bhoi, A.K., Adebayo, P.O., Ijaz, M.F.: Disease diagnosis system for IoT-based wearable body sensors with machine learning algorithm. Hybrid Artif. Intell. IoT Healthc. 201

    Google Scholar 

  19. Kaw, J.A., Loan, N.A., Parah, S.A., Muhammad, K., Sheikh, J.A., Bhat, G.M.: A reversible and secure patient information hiding system for IoT driven e-health. Int. J. Inf. Manage. 45, 262–275 (2019)

    Article  Google Scholar 

  20. Syed, L., Jabeen, S., Manimala, S., Alsaeedi, A.: Smart healthcare framework for ambient assisted living using IoMT and big data analytics techniques. Futur. Gener. Comput. Syst. 101, 136–151 (2019)

    Article  Google Scholar 

  21. Azimi, I., Rahmani, A.M., Liljeberg, P., Tenhunen, H.: Internet of things for remote elderly monitoring: a study from user-centered perspective. J. Ambient. Intell. Humaniz. Comput. 8(2), 273–289 (2017)

    Article  Google Scholar 

  22. Downer, M.B., Wallack, E.M., Ploughman, M.: Octogenarians with multiple sclerosis: lessons for aging in place. Can. J. Aging/La Revue canadienne du vieillissement 39(1), 107–116 (2020)

    Article  Google Scholar 

  23. Jeannotte, L., Moore, M.J.: The state of aging and health in America 2007 (2007)

    Google Scholar 

  24. Rashidi, P., Mihailidis, A.: A survey on ambient-assisted living tools for older adults. IEEE J. Biomed. Health Inform. 17(3), 579–590 (2012)

    Article  Google Scholar 

  25. Awotunde, J.B., Folorunso, S.O., Jimoh, R.G., Adeniyi, E.A., Abiodun, K.M., Ajamu, G.J.: Application of artificial intelligence for COVID-19 epidemic: an exploratory study, opportunities, challenges, and future prospects. Stud. Syst. Decis. Control 2021(358), 47–61 (2021)

    Article  Google Scholar 

  26. Folorunso, S.O., Awotunde, J.B., Ayo, F.E., Abdullah, K.K.A.: RADIoT: the unifying framework for IoT, radiomics and deep learning modeling. Hybrid Artif. Intell. IoT Healthc. 109

    Google Scholar 

  27. Maarala, A.I., Su, X., Riekki, J.: Semantic data provisioning and reasoning for the internet of things. In: 2014 International Conference on the Internet of Things (IOT), pp. 67–72. IEEE (2014)

    Google Scholar 

  28. da Costa, K.A., Papa, J.P., Lisboa, C.O., Munoz, R., de Albuquerque, V.H.C.: Internet of things: a survey on machine learning-based intrusion detection approaches. Comput. Netw. 151, 147–157 (2019)

    Article  Google Scholar 

  29. Wang, Y., Yan, J., Yang, Z., Zhao, Y., Liu, T.: Optimizing GIS partial discharge pattern recognition in the ubiquitous power internet of things context: A MixNet deep learning model. Int. J. Electric. Power Energy Syst. 125, 106484 (2021)

    Article  Google Scholar 

  30. Tan, H.X., Tan, H.P.: Early detection of mild cognitive impairment in elderly through IoT: Preliminary findings. In: 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), pp. 207–212. IEEE (2018)

    Google Scholar 

  31. Pfuntner, A., Wier, L.M., Steiner, C.: Costs for hospital stays in the United States, 2011: statistical brief# 168 (2014)

    Google Scholar 

  32. Spinsante, S., Gambi, E.: Remote health monitoring for elderly through interactive television. Biomed. Eng. Online 11(1), 1–18 (2012)

    Article  Google Scholar 

  33. Macis, S., Loi, D., Angius, G., Pani, D., Raffo, L.: Towards an integrated tv-based system for active ageing and tele-care. In: Quarto Congresso Nazionale di Bioingegneria, GNB2014. Patron Editore (2014)

    Google Scholar 

  34. Macis, S., Loi, D., Pani, D., Raffo, L., La Manna, S., Cestone, V., Guerri, D.: Home telemonitoring of vital signs through a TV-based application for elderly patients. In: 2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA) Proceedings, pp. 169–174. IEEE (2015)

    Google Scholar 

  35. Van Kasteren, T.L.M., Englebienne, G., Kröse, B.J.: An activity monitoring system for elderly care using generative and discriminative models. Pers. Ubiquit. Comput. 14(6), 489–498 (2010)

    Article  Google Scholar 

  36. Stratton, R.J., Green, C.J., Elia, M.: Disease-related malnutrition: an evidence-based approach to treatment. Cabi (2003)

    Google Scholar 

  37. Hickson, M.: Malnutrition and ageing. Postgrad. Med. J. 82(963), 2–8 (2006)

    Article  Google Scholar 

  38. Lattanzio, F., Abbatecola, A.M., Bevilacqua, R., Chiatti, C., Corsonello, A., Rossi, L., Bernabei, R.: Advanced technology care innovation for older people in Italy: necessity and opportunity to promote health and wellbeing. J. Am. Med. Dir. Assoc. 15(7), 457–466 (2014)

    Article  Google Scholar 

  39. Sanchez, J., Sanchez, V., Salomie, I., Taweel, A., Charvill, J., Araujo, M.: Dynamic nutrition behaviour awareness system for the elders. In: Proceedings of the 5th AAL Forum Norrkoping, Impacting Individuals, Society and Economic Growth (2013)

    Google Scholar 

  40. Chifu, V.R., Salomie, I., Chifu, E.Ş., Izabella, B., Pop, C.B., Antal, M.: Cuckoo search algorithm for clustering food offers. In: 2014 IEEE 10th International Conference on Intelligent Computer Communication and Processing (ICCP), pp. 17–22. IEEE (2014)

    Google Scholar 

  41. Awotunde, J.B., Jimoh, R.G., Oladipo, I.D., Abdulraheem, M., Jimoh, T.B., Ajamu, G.J.: Big data and data analytics for an enhanced COVID-19 epidemic management. Stud. Syst. Decis. Control 2021(358), 11–29 (2021)

    Article  Google Scholar 

  42. Bai, Y., Li, C., Yue, Y., Jia, W., Li, J., Mao, Z.H., Sun, M.: Designing a wearable computer for lifestyle evaluation. In: 2012 38th Annual Northeast Bioengineering Conference (NEBEC), pp. 93–94. IEEE (2012)

    Google Scholar 

  43. WHO: Falls. Retrieved on May 2021. http://www.who.int/mediacentre/factsheets/fs344/en/ (2016b)

  44. Igual, R., Medrano, C., Plaza, I.: Challenges, issues and trends in fall detection systems. Biomed. Eng. Online 12(1), 1–24 (2013)

    Article  Google Scholar 

  45. Fang, S.H., Liang, Y.C., Chiu, K.M.: Developing a mobile phone-based fall detection system on android platform. In: 2012 Computing, Communications and Applications Conference, pp. 143–146. IEEE (2012)

    Google Scholar 

  46. Sposaro, F., Tyson, G.: iFall: an Android application for fall monitoring and response. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6119–6122. IEEE (2009)

    Google Scholar 

  47. Habib, M.A., Mohktar, M.S., Kamaruzzaman, S.B., Lim, K.S., Pin, T.M., Ibrahim, F.: Smartphone-based solutions for fall detection and prevention: challenges and open issues. Sensors 14(4), 7181–7208 (2014)

    Article  Google Scholar 

  48. Cheng, S.H.: An intelligent fall detection system using triaxial accelerometer integrated by active RFID. In: 2014 International Conference on Machine Learning and Cybernetics, vol 2, pp. 517–522. IEEE (2014)

    Google Scholar 

  49. Odunmbaku, A., Rahmani, A.M., Liljeberg, P., Tenhunen, H.: Elderly monitoring system with sleep and fall detector. In: International Internet of Things Summit, pp. 473–480. Springer, Cham (2015)

    Google Scholar 

  50. Bian, Z.P., Hou, J., Chau, L.P., Magnenat-Thalmann, N.: Fall detection based on body part tracking using a depth camera. IEEE J. Biomed. Health Inform. 19(2), 430–439 (2014)

    Article  Google Scholar 

  51. Juang, L.H., Wu, M.N.: Fall down detection under smart home system. J. Med. Syst. 39(10), 1–12 (2015)

    Article  Google Scholar 

  52. Planinc, R., Kampel, M.: Emergency system for elderly–a computer vision based approach. In International Workshop on Ambient Assisted Living, pp. 79–83. Springer, Berlin, Heidelberg (2011)

    Google Scholar 

  53. Planinc, R., Kampel, M.: Introducing the use of depth data for fall detection. Pers. Ubiquit. Comput. 17(6), 1063–1072 (2013)

    Article  Google Scholar 

  54. Planinc, R., Kampel, M.: Robust fall detection by combining 3D data and fuzzy logic. In: Asian Conference on Computer Vision, pp. 121–132. Springer, Berlin, Heidelberg (2012)

    Google Scholar 

  55. Berndt, R.D., Takenga, M.C., Kuehn, S., Preik, P., Berndt, S., Brandstoetter, M., Kampel, M., et al.: An assisted living system for the elderly FEARLESS concept. In: Proceedings of the IADIS Multi Conference on Computer Science and Information Systems, pp. 131–138 (2012)

    Google Scholar 

  56. Mao, Y., Bhuse, V., Zhou, Z., Pichappan, P., Abdel-Aty, M., Hayafuji, Y.: Applied Mathematics and Algorithms for Cloud Computing and Iot (2014)

    Google Scholar 

  57. Wang, Y., Wang, X.: The novel analysis model of cloud computing based on RFID internet of things. J. Chem. Pharm. Res. 6(6), 661–668 (2014)

    Google Scholar 

  58. Bonomi, F., Milito, R., Natarajan, P., Zhu, J.: Fog computing: a platform for internet of things and analytics. In: Big Data and Internet of Things: A Roadmap for Smart Environments, pp. 169–186. Springer, Cham (2014)

    Google Scholar 

  59. Soldatos, J., Kefalakis, N., Serrano, M., Hauswirth, M.: Design principles for utility-driven services and cloud-based computing modelling for the Internet of Things. Int. J. Web Grid Serv. 6, 10(2–3), 139–167 (2014)

    Article  Google Scholar 

  60. Fang, S., Da Xu, L., Zhu, Y., Ahati, J., Pei, H., Yan, J., Liu, Z.: An integrated system for regional environmental monitoring and management based on internet of things. IEEE Trans. Ind. Inf. 10(2), 1596–1605 (2014)

    Article  Google Scholar 

  61. Atlam, H.F., Alenezi, A., Alharthi, A., Walters, R.J., Wills, G.B. Integration of cloud computing with internet of things: challenges and open issues. In: 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), pp. 670–675. IEEE (2017)

    Google Scholar 

  62. Gebremeskel, G.B., Chai, Y., Yang, Z. The paradigm of big data for augmenting internet of vehicle into the intelligent cloud computing systems. In International Conference on Internet of Vehicles, pp. 247–261. Springer, Cham (2014)

    Google Scholar 

  63. Choudhary, V., Vithayathil, J.: The impact of cloud computing: should the IT department be organized as a cost center or a profit center? J. Manag. Inf. Syst. 30(2), 67–100 (2013)

    Article  Google Scholar 

  64. Suciu, G., Vulpe, A., Halunga, S., Fratu, O., Todoran, G., Suciu, V.: Smart cities built on resilient cloud computing and secure internet of things. In: 2013 19th International Conference on Control Systems and Computer Science, pp. 513–518. IEEE (2013)

    Google Scholar 

  65. Mousavi, S.K., Ghaffari, A., Besharat, S., Afshari, H.: Security of internet of things based on cryptographic algorithms: a survey. Wireless Netw. 27(2), 1515–1555 (2021)

    Article  Google Scholar 

  66. Alenezi, A., Zulkipli, N.H.N., Atlam, H.F., Walters, R.J., Wills, G.B.: The impact of cloud forensic readiness on security. In: CLOSER, pp. 511–517 (2017)

    Google Scholar 

  67. Dar, K.S., Taherkordi, A., Eliassen, F.: Enhancing dependability of cloud-based iot services through virtualization. In: 2016 IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI), pp. 106–116. IEEE (2016)

    Google Scholar 

  68. Doukas, C., Maglogiannis, I. Bringing IoT and cloud computing towards pervasive healthcare. In: 2012 Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, pp. 922–926. IEEE (2012)

    Google Scholar 

  69. Puthal, D., Obaidat, M.S., Nanda, P., Prasad, M., Mohanty, S.P., Zomaya, A.Y.: Secure and sustainable load balancing of edge data centers in fog computing. IEEE Commun. Mag. 56(5), 60–65 (2018)

    Article  Google Scholar 

  70. Li, Q., Wang, C., Wu, J., Li, J., Wang, Z.Y.: Towards the business–information technology alignment in cloud computing environment: anapproach based on collaboration points and agents. Int. J. Comput. Integr. Manuf. 24(11), 1038–1057 (2011)

    Article  Google Scholar 

  71. Mocnej, J., Pekar, A., Seah, W.K., Papcun, P., Kajati, E., Cupkova, D., Zolotova, I.: Quality-enabled decentralized IoT architecture with efficient resources utilization. Robot. Comput. Integr. Manuf. 67, 102001 (2021)

    Article  Google Scholar 

  72. Aceto, G., Persico, V., Pescapé, A.: Industry 4.0 and health: internet of things, big data, and cloud computing for healthcare 4.0. J. Ind. Inf. Integr. 18, 100129 (2020)

    Google Scholar 

  73. Diène, B., Rodrigues, J.J., Diallo, O., Ndoye, E.H.M., Korotaev, V.V.: Data management techniques for Internet of Things. Mech. Syst. Sig. Proc. 138, 106564 (2020)

    Article  Google Scholar 

  74. ALmarwani, R., Zhang, N., Garside, J.: An effective, secure and efficient tagging method for integrity protection of outsourced data in a public cloud storage. Plos one, 15(11), e0241236 (2020)

    Google Scholar 

  75. Ramalingam, C., Mohan, P.: Addressing semantics standards for cloud portability and interoperability in multi cloud environment. Symmetry 13(2), 317 (2021)

    Article  Google Scholar 

  76. Yi, S., Li, C., Li, Q.: A survey of fog computing: concepts, applications, and issues. In: Proceedings of the 2015 Workshop on Mobile Big Data, pp. 37–42 (2015)

    Google Scholar 

  77. Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R.H., Morrow, M.J., Polakos, P.A.: A comprehensive survey on fog computing: state-of-the-art and research challenges. IEEE Commun. Surv. Tutorials 20(1), 416–464 (2017)

    Article  Google Scholar 

  78. Kumari, A., Tanwar, S., Tyagi, S., Kumar, N.: Fog computing for healthcare 4.0 environment: opportunities and challenges. Comput. Electr. Eng. 72, 1–13 (2018)

    Article  Google Scholar 

  79. Teece, D.J.: Profiting from innovation in the digital economy: enabling technologies, standards, and licensing models in the wireless world. Res. Policy 47(8), 1367–1387 (2018)

    Article  Google Scholar 

  80. Kristiani, E., Yang, C.T., Huang, C.Y., Wang, Y.T., Ko, P.C. The implementation of a cloud-edge computing architecture using OpenStack and Kubernetes for air quality monitoring application. Mob. Networks Appl. 1–23 (2020)

    Google Scholar 

  81. Simić, M., Perić, M., Popadić, I., Perić, D., Pavlović, M., Vučetić, M., Stanković, M.S.: Big data and development of smart city: system architecture and practical public safety example. Serbian J. Electric. Eng. 17(3), 337–355 (2020)

    Article  Google Scholar 

  82. Folorunso, S.O., Awotunde, J.B., Adeboye, N.O., Matiluko, O.E.: Data classification model for COVID-19 pandemic. In: Advances in Data Science and Intelligent Data Communication Technologies for COVID-19: Innovative Solutions Against COVID-19, vol. 378, pp. 93 (2021)

    Google Scholar 

  83. Wu, Y.: Cloud-edge orchestration for the internet-of-things: architecture and ai-powered data processing. IEEE Internet of Things J. (2020)

    Google Scholar 

  84. Jiang, D.: The construction of smart city information system based on the Internet of Things and cloud computing. Comput. Commun. 150, 158–166 (2020)

    Article  Google Scholar 

  85. Usak, M., Kubiatko, M., Shabbir, M.S., Viktorovna Dudnik, O., Jermsittiparsert, K., Rajabion, L.: Health care service delivery based on the Internet of things: a systematic and comprehensive study. Int. J. Commun. Syst. 33(2), e4179 (2020)

    Article  Google Scholar 

  86. Darwish, A., Hassanien, A.E., Elhoseny, M., Sangaiah, A.K., Muhammad, K.: The impact of the hybrid platform of internet of things and cloud computing on healthcare systems: opportunities, challenges, and open problems. J. Ambient. Intell. Humaniz. Comput. 10(10), 4151–4166 (2019)

    Article  Google Scholar 

  87. Azad, P., Navimipour, N.J., Rahmani, A.M., Sharifi, A.: The role of structured and unstructured data managing mechanisms in the Internet of things. Cluster Comput. 1–14 (2019)

    Google Scholar 

  88. Mayer‐Schönberger, V., Ingelsson, E.: Big Data and medicine: a big deal? (2018)

    Google Scholar 

  89. Nienhold, D., Dornberger, R., Korkut, S.: Sensor-based tracking and big data processing of patient activities in ambient assisted living. In: 2016 IEEE International Conference on Healthcare Informatics (ICHI), pp. 473–482. IEEE (2016)

    Google Scholar 

  90. Banos, O., Garcia, R., Holgado-Terriza, J.A., Damas, M., Pomares, H., Rojas, I., Villalonga, C.: mHealthDroid: a novel framework for agile development of mobile health applications. In: International Workshop on Ambient Assisted Living, pp. 91–98. Springer, Cham (2014)

    Google Scholar 

  91. Nguyen, L.T., Zeng, M., Tague, P., Zhang, J.: Recognizing new activities with limited training data. In: Proceedings of the 2015 ACM International Symposium on Wearable Computers, pp. 67–74 (2015)

    Google Scholar 

  92. Cao, L., Wang, Y., Zhang, B., Jin, Q., Vasilakos, A.V.: GCHAR: an efficient group-based context—aware human activity recognition on smartphone. J. Parallel Distrib. Comput. 118, 67–80 (2018)

    Article  Google Scholar 

  93. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM sigkdd International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

    Google Scholar 

  94. Chetty, G., White, M., Akther, F.: Smart phone based data mining for human activity recognition. Procedia Comput. Sci. 46, 1181–1187 (2015)

    Article  Google Scholar 

  95. Ignatov, A.: Real-time human activity recognition from accelerometer data using convolutional neural networks. Appl. Soft Comput. 62, 915–922 (2018)

    Article  Google Scholar 

  96. Davis, K., Owusu, E., Bastani, V., Marcenaro, L., Hu, J., Regazzoni, C., Feijs, L.: Activity recognition based on inertial sensors for ambient assisted living. In: 2016 19th International Conference on Information Fusion (fusion), pp. 371–378. IEEE (2016)

    Google Scholar 

  97. Ronaoo, C.A., Cho, S.B.: Evaluation of deep convolutional neural network architectures for human activity recognition with smartphone sensors. 한국정보과학회 학술발표논문집, 858–860 (2015)

    Google Scholar 

  98. Ha, S., Choi, S.: Convolutional neural networks for human activity recognition using multiple accelerometer and gyroscope sensors. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 381–388. IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Bamidele Awotunde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Awotunde, J.B., Ayoade, O.B., Ajamu, G.J., AbdulRaheem, M., Oladipo, I.D. (2022). Internet of Things and Cloud Activity Monitoring Systems for Elderly Healthcare. In: Scataglini, S., Imbesi, S., Marques, G. (eds) Internet of Things for Human-Centered Design. Studies in Computational Intelligence, vol 1011. Springer, Singapore. https://doi.org/10.1007/978-981-16-8488-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8488-3_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8487-6

  • Online ISBN: 978-981-16-8488-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics