Skip to main content

Big Data Analytics of IoT-Based Cloud System Framework: Smart Healthcare Monitoring Systems

  • Chapter
  • First Online:
Artificial Intelligence for Cloud and Edge Computing

Abstract

The field of the Internet of Things (IoT) is continuing in a fashion that will transform the complete landscape of future Internet, and the devices have increased in recent years by providing opportunities into new domains for automation and integration of real-world objects. IoT-based cloud systems have been used, and there is a growing interest in IoT-enabled smart devices to generate big volumes of data, as mass production. Hence, there is a need for an integrated IoT-cloud-based big data analytics (BDA) framework to increase the performance of IoT-based device utilizations. Therefore, this paper presents a BDA IoT-based cloud system storage for real-time data generated from IoT sensors and analysis of the stored data from the smart devices. The framework will be tested using a big data Cloudera platform for database storage, and Python will be used for the system design. The applicability of the framework is tested in real-time analysis of healthcare monitoring of patients’ data for automatic managing of body temperature, blood glucose, and blood pressure. The integration of the system shows improvement in patients’ health monitoring situations. The system alerts the physicians and medical experts to advise in real-time about the changing of the health condition of patients to suggest preventive measures in saving lives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. ur Rehman MH, Yaqoob I, Salah K, Imran M, Jayaraman PP, Perera C (2019) The role of big data analytics in the industrial internet of things. Futur Gener Comput Syst 99:247–259

    Article  Google Scholar 

  2. Ahmed E, Yaqoob I, Gani A, Imran M, Guizani M (2016) Internet-of-things-based smart environments: state of the art, taxonomy, and open research challenges. IEEE Wirel Commun 23(5):10–16

    Article  Google Scholar 

  3. Kashyap R (2020) Applications of wireless sensor networks in healthcare. In: IoT and WSN applications for modern agricultural advancements: emerging research and opportunities. IGI Global, Hershey, pp 8–40

    Chapter  Google Scholar 

  4. Vijay P (2015) Evolution of internet of things go-to-market strategies for semiconductor companies. Doctoral dissertation, Massachusetts Institute of Technology

    Google Scholar 

  5. Priyanka EB, Thangavel S (2020) Influence of internet of things (IoT) in association of data mining towards the development smart cities-a review analysis. J Eng Sci Technol Rev 13(4):1–21

    Article  Google Scholar 

  6. Yaqoob I, Hashem IAT, Gani A, Mokhtar S, Ahmed E, Anuar NB, Vasilakos AV (2016) Big data: from beginning to future. Int J Inf Manag 36(6):1231–1247

    Article  Google Scholar 

  7. Pramanik PKD, Upadhyaya BK, Pal S, Pal T (2019) Internet of things, smart sensors, and pervasive systems: enabling connected and pervasive healthcare. In: Healthcare data analytics and management. Academic Press, London, pp 1–58

    Google Scholar 

  8. Darwish A, Ismail Sayed G, Ella Hassanien A (2019) The impact of implantable sensors in biomedical technology on the future of healthcare systems. In: Intelligent pervasive computing systems for smarter healthcare. Wiley, Hoboken, pp 67–89

    Chapter  Google Scholar 

  9. Awotunde JB, Bhoi AK, Barsocchi P (2021) Hybrid Cloud/Fog Environment for Healthcare: An Exploratory Study, Opportunities, Challenges, and Future Prospects. Intelligent Systems Reference Library, 2021, 209, pp. 1–20.

    Google Scholar 

  10. Manogaran G, Chilamkurti N, Hsu CH (2018) Emerging trends, issues, and challenges on the internet of medical things and wireless networks. Pers Ubiquit Comput 22(5–6):879–882

    Article  Google Scholar 

  11. Qadri YA, Nauman A, Zikria YB, Vasilakos AV, Kim SW (2020) The future of healthcare internet of things: a survey of emerging technologies. IEEE Commun Surv Tutor 22(2):1121–1167

    Article  Google Scholar 

  12. Akhtar P, Khan Z, Rao-Nicholson R, Zhang M (2019) Building relationship innovation in global collaborative partnerships: big data analytics and traditional organizational powers. R&D Manag 49(1):7–20

    Article  Google Scholar 

  13. Chan MM, Plata RB, Medina JA, Alario-Hoyos C, Rizzardini RH, de la Roca M (2018) Analysis of behavioral intention to use cloud-based tools in a MOOC: a technology acceptance model approach. J UCS 24(8):1072–1089

    Google Scholar 

  14. Riggins FJ, Wamba SF (2015) Research directions on the adoption, usage, and impact of the internet of things through the use of big data analytics. In: 2015 48th Hawaii international conference on system sciences. IEEE, pp 1531–1540

    Chapter  Google Scholar 

  15. Firouzi F, Rahmani AM, Mankodiya K, Badaroglu M, Merrett GV, Wong P, Farahani B (2018) Internet-of-Things and big data for smarter healthcare: from device to architecture, applications, and analytics. Futur Gener Comput Syst 78:583–586

    Article  Google Scholar 

  16. Ayeni F, Omogbadegun Z, Omoregbe NA, Misra S, Garg L (2018) Overcoming barriers to healthcare access and delivery. EAI Endorsed Trans Pervasive Health Technol 4(15):e2

    Article  Google Scholar 

  17. Paradiso R, Loriga G, Taccini N (2005) A wearable health care system based on knitted integrated sensors. IEEE Trans Inf Technol Biomed 9(3):337–344

    Article  Google Scholar 

  18. Lorincz K, Malan DJ, Fulford-Jones TR, Nawoj A, Clavel A, Shnayder V et al (2004) Sensor networks for emergency response: challenges and opportunities. IEEE Pervasive Comput 3(4):16–23

    Article  Google Scholar 

  19. Ng JW, Lo BP, Wells O, Sloman M, Peters N, Darzi A et al (2004) Ubiquitous monitoring environment for wearable and implantable sensors (UbiMon). In: International conference on ubiquitous computing (Ubicomp)

    Google Scholar 

  20. Connelly K, Mayora O, Favela J, Jacobs M, Matic A, Nugent C, Wagner S (2017) The future of pervasive health. IEEE Pervasive Comput 16(1):16–20

    Article  Google Scholar 

  21. Kutia S, Chauhdary SH, Iwendi C, Liu L, Yong W, Bashir AK (2019) Socio-technological factors affecting user’s adoption of eHealth functionalities: a case study of China and Ukraine eHealth systems. IEEE Access 7:90777–90788

    Article  Google Scholar 

  22. Minerva R, Biru A, Rotondi D (2015) Towards a definition of the internet of things (IoT). IEEE Internet Initiat 1(1):1–86

    Google Scholar 

  23. Zahoor S, Mir RN (2018) Resource management in pervasive internet of things: a survey. J King Saud Univ Comput Inf Sci 33(8):921–935

    Google Scholar 

  24. Manogaran G, Chilamkurti N, Hsu CH (2018) Emerging trends, issues, and challenges on the medical internet of things and wireless networks. Pers Ubiquit Comput 22(5–6):879–882

    Article  Google Scholar 

  25. Haughey J, Taylor K, Dohrmann M, Snyder G (2018) Medtech and the medical internet of things: how connected medical devices are transforming health care. Deloitte

    Google Scholar 

  26. Patel N (2017) Internet of things in healthcare: applications, benefits, and challenges. Internet: https://www.permits.com/blog/internet-of-things-healthcare-applications-benefits-andchallenges. HTML. Accessed 21 Oct 2020

  27. Manogaran G, Varatharajan R, Priyan MK (2018) Hybrid recommendation system for heart disease diagnosis based on multiple kernel learning with an adaptive neuro-fuzzy inference system. Multimed Tools Appl 77(4):4379–4399

    Article  Google Scholar 

  28. Aceto G, Persico V, Pescapé A (2020) Industry 4.0 and health: the internet of things, big data, and cloud computing for healthcare 4.0. J Ind Inf Integr 18:100129

    Google Scholar 

  29. Al-Turjman F, Nawaz MH, Ulusar UD (2020) Intelligence on the medical internet of things era: a systematic review of current and future trends. Comput Commun 150:644–660

    Article  Google Scholar 

  30. Awotunde JB, Jimoh RG, Folorunso SO, Adeniyi EA, Abiodun KM, Banjo OO (2021) Privacy and security concerns in IoT-based healthcare systems. Internet of Things, 2021, pp. 105–134

    Google Scholar 

  31. Orsini M, Pacchioni M, Malagoli A, Guaraldi G (2017) My smart age with HIV: an innovative mobile and MIoT framework for patient empowerment. In: 2017 IEEE 3rd international forum on research and technologies for society and industry (RTSI). IEEE, pp 1–6

    Google Scholar 

  32. Verma P, Sood SK (2018) Cloud-centric IoT based disease diagnosis healthcare framework. J Parallel Distrib Comput 116:27–38

    Article  Google Scholar 

  33. Guarda T, Augusto MF, Barrionuevo O, Pinto FM (2018) Internet of things in pervasive healthcare systems. In: Next-generation mobile and pervasive healthcare solutions. IGI Global, Hershey, pp 22–31

    Chapter  Google Scholar 

  34. Janet B, Raj P (2019) Smart city applications: the smart leverage of the internet of things (IoT) paradigm. In: Novel practices and trends in grid and cloud computing. IGI Global, Hershey, pp 274–305

    Chapter  Google Scholar 

  35. Raj P, Pushpa J (2018) Expounding the edge/fog computing infrastructures for data science. In: Handbook of research on cloud and fog computing infrastructures for data science. IGI Global, Hershey, pp 1–32

    Chapter  Google Scholar 

  36. Rehman HU, Khan A, Habib U (2020) Fog computing for bioinformatics applications. In: Fog computing: theory and practice. Wiley, Hoboken, pp 529–546

    Chapter  Google Scholar 

  37. Devarajan M, Subramaniyaswamy V, Vijayakumar V, Ravi L (2019) Fog-assisted personalized healthcare-support system for remote patients with diabetes. J Ambient Intell Humaniz Comput 10(10):3747–3760

    Article  Google Scholar 

  38. Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI (2015) Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 13:8–17

    Article  Google Scholar 

  39. Ayo FE, Awotunde JB, Ogundokun RO, Folorunso SO, Adekunle AO (2020) A decision support system for multi-target disease diagnosis: a bioinformatics approach. Heliyon 6(3):e03657

    Article  Google Scholar 

  40. Sundararajan K, Georgievska S, Te Lindert BH, Gehrman PR, Ramautar J, Mazzotti DR et al (2021) Sleep classification from wrist-worn accelerometer data using random forests. Sci Rep 11(1):1–10

    Article  Google Scholar 

  41. Xu M, Ouyang L, Han L, Sun K, Yu T, Li Q et al (2021) Accurately differentiating between patients with COVID-19, patients with other viral infections, and healthy individuals: multimodal late fusion learning approach. J Med Internet Res 23(1):e25535

    Article  Google Scholar 

  42. Awotunde JB, Ogundokun RO, Misra S (2021) Cloud and IoMT-based Big Data Analytics system during COVID-19 pandemic. Internet of Things, 2021, pp. 181–201

    Google Scholar 

  43. Liberti L, Lavor C, Maculan N, Mucherino A (2014) Euclidean distance geometry and applications. SIAM Rev 56(1):3–69

    Article  MathSciNet  MATH  Google Scholar 

  44. Caballero-Ruiz E, García-Sáez G, Rigla M, Balsells M, Pons B, Morillo M et al (2014) Automatic blood glucose classification for gestational diabetes with feature selection: decision trees vs. neural networks. In: Paper presented at the XIII Mediterranean conference on medical and biological engineering and computing 2013

    Google Scholar 

  45. Feizollah A, Anuar NB, Salleh R, Wahab AWA (2015) A review on feature selection in mobile malware detection. Digit Investig 13:22–37

    Article  Google Scholar 

  46. Berglund E, Sitte J (2006) The parameterless self-organizing map algorithm. IEEE Trans Neural Netw 17(2):305–316

    Article  Google Scholar 

  47. Awotunde JB, Folorunso SO, Jimoh RG, Adeniyi EA, Abiodun KM, Ajamu GJ (2021) Application of Artificial Intelligence for COVID-19 Epidemic: An Exploratory Study, Opportunities, Challenges, and Future Prospects. Studies in Systems, Decision and Control, 2021, 358, pp. 47–61

    Google Scholar 

  48. Amato F, López A, Peña-Méndez EM, Vaňhara P, Hampl A, Havel J (2013) Artificial neural networks in medical diagnosis. Elsevier

    Book  Google Scholar 

  49. Al-Qaness MA, Ewees AA, Fan H, Abd El Aziz M (2020) Optimization method for forecasting confirmed cases of COVID-19 in China. J Clin Med 9(3):674

    Article  Google Scholar 

  50. Jang JS (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665–685

    Article  Google Scholar 

  51. Adeniyi EA, Ogundokun RO, Awotunde JB (2021) IoMT-based wearable body sensors network healthcare monitoring system. In: IoT in healthcare and ambient assisted living. Springer, Singapore, pp 103–121

    Chapter  Google Scholar 

  52. Yang P, Stankevicius D, Marozas V, Deng Z, Liu E, Lukosevicius A et al (2016) The lifelogging data validation model for the internet of things enabled personalized healthcare. IEEE Trans Syst Man Cybern Syst 48(1):50–64

    Article  Google Scholar 

  53. Samuel V, Adewumi A, Dada B, Omoregbe N, Misra S, Odusami M (2019) Design and development of a cloud-based electronic medical records (EMR) system. In: Data, engineering, and applications. Springer, Singapore, pp 25–31

    Google Scholar 

  54. Lopez D, Sekaran G (2016) Climate change and disease dynamics-a big data perspective. Int J Infect Dis 45:23–24

    Article  Google Scholar 

  55. Bates DW, Saria S, Ohno-Machado L, Shah A, Escobar G (2014) Big data in health care: using analytics to identify and manage high-risk and high-cost patients. Health Aff 33(7):1123–1131

    Article  Google Scholar 

  56. Ajayi P, Omoregbe N, Misra S, Adeloye D (2017) Evaluation of a cloud-based health information system. In: Innovation and interdisciplinary solutions for underserved areas. Springer, Cham, pp 165–176

    Google Scholar 

  57. Yan H, Xu LD, Bi Z, Pang Z, Zhang J, Chen Y (2015) An emerging technology–wearable wireless sensor networks with applications in human health condition monitoring. J Manage Anal 2(2):121–137

    Google Scholar 

  58. Riba M, Sala C, Toniolo D, Tonon G (2019) Big data in medicine, the present, and hopefully the future. Front Med 6

    Google Scholar 

  59. Dinh-Le C, Chuang R, Chokshi S, Mann D (2019) Wearable health technology and electronic health record integration: scoping review and future directions. JMIR Mhealth Uhealth 7(9):e12861

    Article  Google Scholar 

  60. McCue ME, McCoy AM (2017) The scope of big data in one medicine: unprecedented opportunities and challenges. Front Vet Sci 4:194

    Article  Google Scholar 

  61. Lacroix P (2019) Big data privacy and ethical challenges. In: Big data, big challenges: a healthcare perspective. Springer, Cham, pp 101–111

    Chapter  Google Scholar 

  62. Manogaran G, Thota C, Lopez D, Vijayakumar V, Abbas KM, Sundarsekar R (2017) Big data knowledge system in healthcare. In: Internet of things and big data technologies for next-generation healthcare. Springer, Cham, pp 133–157

    Chapter  Google Scholar 

  63. Kitchin R (2017) Big data-hype or revolution. In: The SAGE handbook of social media research methods. Sage Publications, Los Angeles/Thousand Oaks, pp 27–39

    Google Scholar 

  64. Ge M, Bangui H, Buhnova B (2018) Big data for the internet of things: a survey. Futur Gener Comput Syst 87:601–614

    Article  Google Scholar 

  65. Hofdijk J, Séroussi B, Lovis C, Sieverink F, Ehrler F, Ugon A (2016) Transforming healthcare with the internet of things. In: Proceedings of the EFMI special topic conference 2016

    Google Scholar 

  66. Mital R, Coughlin J, Canaday M (2015) Using big data technologies and analytics to predict sensor anomalies. Amos 84

    Google Scholar 

  67. Berman E, Felter JH, Shapiro JN (2020) Small wars, big data: the information revolution in modern conflict. Princeton University Press, Princeton

    Google Scholar 

  68. Raghupathi W, Raghupathi V (2014) Big data analytics in healthcare: promise and potential. Health Inf Sci Syst 2(1):3

    Article  Google Scholar 

  69. Teijeiro D, Pardo XC, González P, Banga JR, Doallo R (2018) Towards cloud-based parallel metaheuristics: a case study in computational biology with differential evolution and spark. Int J High-Perform Comput Appl 32(5):693–705

    Article  Google Scholar 

  70. Candela L, Castelli D, Pagano P (2012) Managing big data through hybrid data infrastructures. ERCIM News 89:37–38

    Google Scholar 

  71. Marjani M, Nasaruddin F, Gani A, Karim A, Hashem IAT, Siddiqa A, Yaqoob I (2017) Big IoT data analytics: architecture, opportunities, and open research challenges. IEEE Access 5:5247–5261

    Article  Google Scholar 

  72. Assuncao MD, Calheiros RN, Bianchi S, Netto MA, Buyya R (2013) Big data computing and clouds: challenges, solutions, and future directions. arXiv preprint arXiv:1312.4722, 10

    Google Scholar 

  73. Hashem IAT, Yaqoob I, Anuar NB, Mokhtar S, Gani A, Khan SU (2015) The rise of “big data” on cloud computing: review and open research issues. Inf Syst 47:98–115

    Article  Google Scholar 

  74. Ajayi P, Omoregbe NA, Adeloye D, Misra S (2016) Development of a secure cloud-based health information system for antenatal and postnatal Clinic in an African Country. In: ICADIWT, pp 197–210

    Google Scholar 

  75. Siddiqa A, Hashem IAT, Yaqoob I, Marjani M, Shamshirband S, Gani A, Nasaruddin F (2016) A survey of big data management: taxonomy and state-of-the-art. J Netw Comput Appl 71:151–166

    Article  Google Scholar 

  76. Steed CA, Ricciuto DM, Shipman G, Smith B, Thornton PE, Wang D et al (2013) Big data visual analytics for exploratory earth system simulation analysis. Comput Geosci 61:71–82

    Article  Google Scholar 

  77. Hammou BA, Lahcen AA, Mouline S (2020) Towards a real-time processing framework based on improved distributed recurrent neural network variants with fast text for social big data analytics. Inf Process Manag 57(1):102122

    Article  Google Scholar 

  78. Lozada N, Arias-Pérez J, Perdomo-Charry G (2019) Big data analytics capability and co-innovation: an empirical study. Heliyon 5(10):e02541

    Article  Google Scholar 

  79. Xiao X, Hou X, Chen X, Liu C, Li Y (2019) Quantitative analysis for capabilities of vehicular fog computing. Inf Sci 501:742–760

    Article  Google Scholar 

  80. He J, Wei J, Chen K, Tang Z, Zhou Y, Zhang Y (2017) Multitier fog computing with large-scale iot data analytics for smart cities. IEEE Internet Things J 5(2):677–686

    Article  Google Scholar 

  81. Kolajo T, Daramola O, Adebiyi A (2019) Big data stream analysis: a systematic literature review. J Big Data 6(1):47

    Article  Google Scholar 

  82. Matsebula F, Mnkandla E (2017) A big data architecture for learning analytics in higher education. In: 2017 IEEE AFRICON. IEEE, pp 951–956

    Chapter  Google Scholar 

  83. Spanò E, Di Pascoli S, Iannaccone G (2016) Low-power wearable ECG monitoring system for multiple-patient remote monitoring. IEEE Sensors J 16(13):5452–5462

    Article  Google Scholar 

  84. Chang SH, Chiang RD, Wu SJ, Chang WT (2016) A context-aware, interactive M-health system for diabetics. IT Prof 18(3):14–22

    Article  Google Scholar 

  85. Cheng HT, Zhuang W (2010) Bluetooth-enabled in-home patient monitoring system: early detection of Alzheimer's disease. IEEE Wirel Commun 17(1):74–79

    Article  Google Scholar 

  86. Milici S, Lázaro A, Villarino R, Girbau D, Magnarosa M (2018) Wireless wearable magnetometer-based sensor for sleep quality monitoring. IEEE Sensors J 18(5):2145–2152

    Article  Google Scholar 

  87. Pasluosta CF, Gassner H, Winkler J, Klucken J, Eskofier BM (2015) An emerging era in the management of Parkinson's disease: wearable technologies and the internet of things. IEEE J Biomed Health Inform 19(6):1873–1881

    Article  Google Scholar 

  88. Elgendy N, Elragal A (2014) Big data analytics: a literature review paper. In: Industrial conference on data mining. Springer, Cham, pp 214–227

    Google Scholar 

  89. Ahmed E, Yaqoob I, Hashem IAT, Khan I, Ahmed AIA, Imran M, Vasilakos AV (2017) The role of big data analytics in the internet of things. Comput Netw 129:459–471

    Article  Google Scholar 

  90. Bröring A, Schmid S, Schindhelm CK, Khelil A, Käbisch S, Kramer D et al (2017) Enabling IoT ecosystems through platform interoperability. IEEE Softw 34(1):54–61

    Article  Google Scholar 

  91. Chen XW, Lin X (2014) Big data deep learning: challenges and perspectives. IEEE Access 2:514–525

    Article  Google Scholar 

  92. Qiu J, Wu Q, Ding G, Xu Y, Feng S (2016) A survey of machine learning for big data processing. EURASIP J Adv Signal Process 2016(1):67

    Article  Google Scholar 

  93. Subiksha KP, Ramakrishnan M (2021) Smart healthcare analytics solutions using deep learning AI. In: Proceedings of international conference on recent trends in machine learning, IoT, smart cities and applications. Springer, Singapore, pp 707–714

    Chapter  Google Scholar 

  94. Vidal-García J, Vidal M, Barros RH (2019) Computational business intelligence, big data, and their role in business decisions in the age of the internet of things. In: Web services: concepts, methodologies, tools, and applications. IGI Global, Hershey, pp 1048–1067

    Google Scholar 

  95. Jeong Y, Joo H, Hong G, Shin D, Lee S (2015) AVIoT: web-based interactive authoring and visualization of indoor internet of things. IEEE Trans Consum Electron 61(3):295–301

    Article  Google Scholar 

  96. Strohbach M, Ziekow H, Gazis V, Akiva N (2015) Towards a big data analytics framework for IoT and smart city applications. In: Modeling and processing for next-generation big-data technologies. Springer, Cham, pp 257–282

    Chapter  Google Scholar 

  97. Schorn MA, Verhoeven S, Ridder L, Huber F, Acharya DD, Aksenov AA et al (2021) A community resource for paired genomic and metabolomic data mining. Nat Chem Biol 17:1–6

    Article  Google Scholar 

  98. Okuda M, Yasuda A, Tsumoto S (2021) An approach to exploring associations between hospital structural measures and patient satisfaction by distance-based analysis. BMC Health Serv Res 21(1):1–13

    Article  Google Scholar 

  99. Ramírez-Gallego S, Fernández A, García S, Chen M, Herrera F (2018) Big data: tutorial and guidelines on information and process fusion for analytics algorithms with MapReduce. Inf Fusion 42:51–61

    Article  Google Scholar 

  100. Huang Y, Gao P, Zhang Y, Zhang J (2018) A cloud computing solution for big imagery data analytics. In: 2018 international workshop on big geospatial data and data science (BGDDS). IEEE, pp 1–4

    Google Scholar 

  101. Yang S (2017) IoT stream processing and analytics in the fog. IEEE Commun Mag 55(8):21–27

    Article  Google Scholar 

  102. Anawar MR, Wang S, Azam Zia M, Jadoon AK, Akram U, Raza S (2018) Fog computing: an overview of big IoT data analytics. Wirel Commun Mob Comput 2018

    Google Scholar 

  103. Nagarajan SM, Gandhi UD (2019) Classifying streaming of twitter data based on sentiment analysis using hybridization. Neural Comput & Applic 31(5):1425–1433

    Article  Google Scholar 

  104. Murugan NS, Devi GU (2019) Feature extraction using LR-PCA hybridization on twitter data and classification accuracy using machine learning algorithms. Clust Comput 22(6):13965–13974

    Article  Google Scholar 

  105. Mehdipour F, Javadi B, Mahanti A (2016) FOG-engine: towards big data analytics in the fog. In: 2016 IEEE 14th Intl Conf on dependable, autonomic and secure computing, 14th Intl Conf on pervasive intelligence and computing, 2nd Intl Conf on big data intelligence and computing and cyber science and technology congress (DASC/PiCom/DataCom/CyberSciTech). IEEE, pp 640–646

    Google Scholar 

  106. Din S, Paul A (2019) Smart health monitoring and management system: toward autonomous wearable sensing for internet of things using big data analytics. Futur Gener Comput Syst 91:611–619

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Bamidele Awotunde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Awotunde, J.B., Jimoh, R.G., Ogundokun, R.O., Misra, S., Abikoye, O.C. (2022). Big Data Analytics of IoT-Based Cloud System Framework: Smart Healthcare Monitoring Systems. In: Misra, S., Kumar Tyagi, A., Piuri, V., Garg, L. (eds) Artificial Intelligence for Cloud and Edge Computing. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-80821-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80821-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80820-4

  • Online ISBN: 978-3-030-80821-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics