Skip to main content

Mechatronic Devices for Upper Limb Tremor

  • Chapter
  • First Online:
Mechanisms and Emerging Therapies in Tremor Disorders

Abstract

Pathological tremor, such as parkinsonian and essential tremor, can significantly affect the quality of life of the individuals who suffer from it. Traditional medicines may be ineffective, induce side effects, and surgery is invasive with significant risks. The emergence of wearable technology has led to the externally worn mechatronic tremor suppression device as a potential alternative approach for tremor management. Although end users have not widely adopted wearable tremor suppression devices (WTSDs) due to the lack of commercially available devices, there is increasing evidence that these can suppress up to 99% of the user’s tremor. There are four core components in the design of a WTSD. These are the motion sensing system, the tremor estimation/prediction algorithm, the actuation system, and the control system. In this chapter, each of the four core components is reviewed separately, followed by the state-of-the-art for WTSDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adelstein BD. Peripheral mechanical loading and the mechanism of abnormal intention tremor. Master’s dissertation. Massachusetts Institute of Technology; 1981.

    Google Scholar 

  • Adhikari K, Tatinati S, Ang WT, Veluvolu KC, Nazarpour K. A quaternion weighted Fourier linear combiner for modeling physiological tremor. IEEE Trans Biomed Eng. 2016;63(11):2336–46.

    Article  PubMed  Google Scholar 

  • Adhikari K, Tatinati S, Veluvolu KC, Chambers JA. Physiological tremor filtering without phase distortion for robotic microsurgery. IEEE Trans Autom Sci Eng. 2022;19(1):497–509.

    Article  Google Scholar 

  • Ando T, Watanabe M, Fujie MG. Extraction of voluntary movement for an EMG controlled exoskeltal robot of tremor patients. In: Proceedings of the 4th international IEEE/EMBS conference on neural engineering; 2009 Apr 29–May 2. Antalya, Turkey. p. 120–3.

    Google Scholar 

  • Ando T, Watanabe M, Nishimoto K, Matsumoto Y, Seki M, Fujie MG. Myoelectric-controlled exoskeletal elbow robot to suppress essential tremor: extraction of elbow flexion movement using STFTs and TDNN. J Rob Mechatron. 2012;24(1):141–9.

    Article  Google Scholar 

  • Ang KK, Guan C. EEG-based strategies to detect motor imagery for control and rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2016;25(4):392–401.

    Article  PubMed  Google Scholar 

  • Ang WT, Krichane M, Sim T. Zero phase filtering for active compensation of periodic physiological motion. In: Proceedings of the first IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics; 2006 Feb 20–22. Pisa, Italy. p. 182–7.

    Google Scholar 

  • Arnold AS, Rosen MJ, Aisen ML. Evaluation of a controlled-energy-dissipation orthosis for tremor suppression. J Electromyogr Kinesiol. 1993;3(3):131–48.

    Article  CAS  PubMed  Google Scholar 

  • As’arry A, Md Zain MZ, Musa M, Hussein M. Hybrid learning control for improving suppression of hand tremor. In: Proceedings of the Institution of Mechanical Engineers. Part H: Journal of Engineering in Medicine. 2013;227(11):1171–1180.

    Google Scholar 

  • Atashzar SF, Shahbazi M, Samotus O, Tavakoli M, Jog MS, Patel RV. Characterization of upper-limb pathological tremors: application to design of an augmented haptic rehabilitation system. IEEE J Sel Top Sign Proces. 2016;10(5):888–903.

    Article  Google Scholar 

  • Avizzano CA, Rogni A, Bergamasco M. Application of filtering strategies to Multiple Sclerosis tremor: analysis of results. In: Proceedings of the 8th IEEE international workshop on robot and human interaction; 1999 Sept 27–29. Pisa, Italy. p. 254–60.

    Google Scholar 

  • Awantha WV, Wanasinghe AT, Kavindya AG, Kulasekera AL, Chathuranga DS. A novel soft glove for hand tremor suppression: evaluation of layer jamming actuator placement. In: Proceedings of the 3rd IEEE international conference on soft robotics; 2020 May 15–July 15. New Haven, CT, USA. p. 440–445.

    Google Scholar 

  • Belda-Lois JM, Martinez-Reyero AI, Castillo A, Rocon E, Pons JL, Loureiro R, Manto M, Normie L, Soede M. Controllable mechanical tremor reduction. Assessment of two orthoses. Technol Disabil. 2007;19(4):169–78.

    Article  Google Scholar 

  • Bó APL, Poignet P, Widjaja F, Ang WT. Online pathological tremor characterization using extended Kalman filtering. In: Proceedings of the 30th annual international conference of the IEEE Engineering in Medicine and Biology Society; 2008 Aug 20–24. Vancouver, BC, Canada. p. 1753–6.

    Google Scholar 

  • Bó APL, Azevedo-Coste C, Geny C, Poignet P, Fattal C. On the use of fixed-intensity functional electrical stimulation for attenuating essential tremor. Artif Organs. 2014;38(11):984–91.

    Article  PubMed  Google Scholar 

  • Case D, Taheri B, Richer E. Design and characterization of a small-scale magnetorheological damper for tremor suppression. IEEE/ASME Trans Mechatron. 2011;18(1):96–103.

    Article  Google Scholar 

  • Case D, Taheri B, Richer E. Active control of MR wearable robotic orthosis for pathological tremor suppression. In: Proceedings of the dynamic systems and control conference; 2015 Oct 28–30. Columbus, Ohio, USA. p. V003T42A004.

    Google Scholar 

  • Cheng SS, Desai JP. Towards high frequency actuation of SMA spring for the neurosurgical robot-MINIR-II. In: Proceedings of the IEEE international conference on robotics and automation; 2015 May 26–30. Seattle, Washington, USA. p. 2580–5.

    Google Scholar 

  • Daemi P, Zhou Y, Inzunza K, Naish MD, Price AD, Trejos AL. Kinematic modeling and characterization of a wearable tremor suppression device for pathological tremor reduction. In: Proceedings of the 8th IEEE RAS/EMBS international conference for biomedical robotics and biomechatronics; 2020 Nov 29–Dec 3. New York, USA. p. 1236–41.

    Google Scholar 

  • Daemi P, Kamel M, Gharibo J, Naish MD, Trejos AL, Price AD. Control of twisted-coiled actuators via multi-DOF PID. In: Proceedings of the electroactive polymer actuators and devices XXIII. Virtual, vol 11587; 2021 Mar 22–26. p. 115870M.

    Google Scholar 

  • Dai J, Du Z, Yan Z, Liang Y. Least squares support vector machine Kalman filter for physiological tremor suppression in minimally invasive surgical robot. J Harbin Inst Technol. 2020;27:22–8.

    Google Scholar 

  • Davison E. Multivariable tuning regulators: the feedforward and robust control of a general servomechanism problem. IEEE Trans Autom Control. 1976;21(1):35–47.

    Article  Google Scholar 

  • Dideriksen JL, Laine CM, Dosen S, Muceli S, Rocon E, Pons JL, Benito-Leon J, Farina D. Electrical stimulation of afferent pathways for the suppression of pathological tremor. Front Neurosci. 2017;11:178.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dosen S, Muceli S, Dideriksen JL, Romero JP, Rocon E, Pons J, Farina D. Online tremor suppression using electromyography and low-level electrical stimulation. IEEE Trans Neural Syst Rehabil Eng. 2015;23(3):385–95.

    Article  PubMed  Google Scholar 

  • Duchaine V, St-Onge BM, Gao D, Gosselin C. Stable and intuitive control of an intelligent assist device. IEEE Trans Haptic. 2012;5(2):148–59.

    Article  CAS  Google Scholar 

  • Edmonds BP. Feasibility of twisted coiled polymer actuators for use in upper limb wearable rehabilitation devices. Doctoral dissertation. University of Western Ontario; 2020.

    Google Scholar 

  • Flash T, Mussa-Ivaldi F. Human arm stiffness characteristics during the maintenance of posture. Exp Brain Res. 1990;82(2):315–26.

    Article  CAS  PubMed  Google Scholar 

  • Fraden J. Handbook of modern sensors: physics, designs, and applications. 5th ed. Cham: Springer; 2016.

    Book  Google Scholar 

  • Fromme NP, Camenzind M, Riener R, Rossi RM. Need for mechanically and ergonomically enhanced tremor-suppression orthoses for the upper limb: a systematic review. J Neuroeng Rehabil. 2019;16(1):1–5.

    Article  Google Scholar 

  • Gallego JA, Rocon E, Roa JO, Moreno JC, Pons JL. Real-time estimation of pathological tremor parameters from gyroscope data. Sensors. 2010;10(3):2129–49.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gallego JÁ, Ibanez J, Dideriksen JL, Serrano JI, del Castillo MD, Farina D, Rocon E. A multimodal human–robot interface to drive a neuroprosthesis for tremor management. IEEE Trans Syst Man Cybern Part C Appl Rev. 2012;42(6):1159–68.

    Article  Google Scholar 

  • Gallego JA, Rocon E, Belda-Lois JM, Koutsou AD, Mena S, Castillo A, Pons JL. Design and validation of a neuroprosthesis for the treatment of upper limb tremor. In: Proceedings of the 35th annual international conference of the IEEE Engineering in Medicine and Biology Society; 2013a July 3–7. Osaka, Japan. p. 3606–9.

    Google Scholar 

  • Gallego JÁ, Rocon E, Belda-Lois JM, Pons JL. A neuroprosthesis for tremor management through the control of muscle co-contraction. J Neuroeng Rehabil. 2013b;10(1):36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gillard DM, Cameron T, Prochazka A, Gauthier MJA. Tremor suppression using functional electrical stimulation: a comparison between digital and analog controllers. IEEE Trans Rehabil Eng. 1999;7(3):385–8.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez JG, Heredia EA, Rahman T, Barner KE, Arce GR. Filtering involuntary motion of people with tremor disability using optimal equalization. In: Proceedings of the IEEE international conference on systems, man and cybernetics. Intelligent systems for the 21st century; 1995 Oct 22–25. Vancouver, BC, Canada. p. 2402–7.

    Google Scholar 

  • Grimaldi G, Camut S, Manto M. Functional electrical stimulation effect on upper limb tremor. Int J Bioelectromagn. 2011;13(3):123–4.

    Google Scholar 

  • Haines CS, Lima MD, Li N, Spinks GM, Foroughi J, Madden JD, Kim SH, Fang S, De Andrade MJ, Göktepe F, Göktepe Ö. Artificial muscles from fishing line and sewing thread. Science. 2014;343(6173):868–72.

    Article  CAS  PubMed  Google Scholar 

  • Hao MZ, Xu SQ, Hu ZX, Xu FL, Niu CX, Xiao Q, Lan N. Inhibition of Parkinsonian tremor with cutaneous afferent evoked by transcutaneous electrical nerve stimulation. J Neuroeng Rehabil. 2017;14(1):1–3.

    Article  Google Scholar 

  • Hashemi SM, Golnaraghi MF, Patla AE. Tuned vibration absorber for suppression of rest tremor in Parkinson's disease. Med Biol Eng Comput. 2004;42(1):61–70.

    Article  CAS  PubMed  Google Scholar 

  • Heo JH, Kim JW, Kwon Y, Lee SK, Eom GM, Kwon DY, et al. Sensory electrical stimulation for suppression of postural tremor in patients with essential tremor. Biomed Mater Eng. 2015;26:S803–9.

    PubMed  Google Scholar 

  • Heo J-H, Kwon Y, Jeon H-M, Kwon D-Y, Lee C-N, Park K-W, et al. Suppression of action tremor by sensory electrical stimulation in patients with essential tremor. J Mech Med Biol. 2016;16(08):1640026.

    Article  Google Scholar 

  • Heo JH, Jeon HM, Choi EB, Kwon DY, Eom GM. Continuous sensory electrical stimulation for the suppression of parkinsonian rest tremor. J Mech Med Biol. 2018;18(7):1840006.

    Article  Google Scholar 

  • Heo JH, Jeon HM, Choi EB, Kwon DY, Eom GM. Effect of sensory electrical stimulation on resting tremors in patients with Parkinson’s disease and SWEDDs. J Mech Med Biol. 2019;19(7):1940033.

    Article  Google Scholar 

  • Herrnstadt G, Menon C. On-off tremor suppression orthosis with electromagnetic brake. Int J Mech Eng Mechatron. 2012;1(2):7–14.

    Google Scholar 

  • Herrnstadt G, Menon C. Voluntary-driven elbow orthosis with speed-controlled tremor suppression. Front Bioeng Biotechnol. 2016a;4:29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrnstadt G, Menon C. Admittance-based voluntary-driven motion with speed-controlled tremor rejection. IEEE/ASME Trans Mechatron. 2016b;21(4):2108–19.

    Article  Google Scholar 

  • Herrnstadt G, Menon C. Elbow orthosis for tremor suppression–a torque based input case. In: Proceedings of the international conference on bioinformatics and biomedical engineering; 2017 Apr 26–28. Granada, Spain. p. 292–302.

    Google Scholar 

  • Herrnstadt G, McKeown MJ, Menon C. Controlling a motorized orthosis to follow elbow volitional movement: tests with individuals with pathological tremor. J Neuroeng Rehabil. 2019;16(1):1–4.

    Article  Google Scholar 

  • Hogan N. Impedance control: an approach to manipulation. In: Proceedings of the American control conference; 1984 June 6–8. San Diego, CA, USA. p. 304–13.

    Google Scholar 

  • Hosseini SM. Tremor suppression in the human hand and forearm. Doctoral dissertation. University of Technology Sydney; 2019.

    Google Scholar 

  • Hsu DS, Huang WM, Thakor NV. StylPen: on-line adaptive canceling of pathological tremor for computer pen handwriting. In: Proceedings of the IEEE 22nd annual Northeast bioengineering conference; 1996 Mar 14–15. New Brunswick, NJ, USA. p. 113–4.

    Google Scholar 

  • Huen D, Liu J, Lo B. An integrated wearable robot for tremor suppression with context aware sensing. In: Proceedings of the IEEE 13th international conference on wearable and implantable body sensor networks; 2016 June 14–17. San Francisco, CA, USA. p. 312–7.

    Google Scholar 

  • Ibrahim A, Zhou Y, Jenkins ME, Trejos AL, Naish MD. The design of a Parkinson’s tremor predictor and estimator using a hybrid convolutional-multilayer perceptron neural network. In: Proceedings of the 42nd annual international conference of the IEEE Engineering in Medicine & Biology Society; 2020 July 20–24. Montreal, QC, Canada. p. 5996–6000.

    Google Scholar 

  • Ibrahim A, Zhou Y, Jenkins ME, Trejos AL, Naish MD. Real-time voluntary motion prediction and Parkinson’s tremor reduction using deep neural networks. IEEE Trans Neural Syst Rehabil Eng. 2021;29:1413–23.

    Article  PubMed  Google Scholar 

  • Isaacson SH, Peckham E, Tse W, Waln O, Way C, Petrossian MT, et al. Prospective home-use study on non-invasive neuromodulation therapy for essential tremor. Tremor Other Hyperkinet Mov. 2020;10(29):1–16.

    Google Scholar 

  • Javidan M, Elek J, Prochazka A. Attenuation of pathological tremors by functional electrical stimulation II: clinical evaluation. Ann Biomed Eng. 1992;20(2):225–36.

    Article  CAS  PubMed  Google Scholar 

  • Jitkritsadakul O, Thanawattano C, Anan C, Bhidayasiri R. Exploring the effect of electrical muscle stimulation as a novel treatment of intractable tremor in Parkinson’s disease. J Neurol Sci. 2015;358(1–2):146–52.

    Article  PubMed  Google Scholar 

  • Jitkritsadakul O, Thanawattano C, Anan C, Bhidayasiri R. Tremor’s glove-an innovative electrical muscle stimulation therapy for intractable tremor in Parkinson’s disease: a randomized sham-controlled trial. J Neurol Sci. 2017;381:331–40.

    Article  PubMed  Google Scholar 

  • Johnson C. Accomodation of external disturbances in linear regulator and servomechanism problems. IEEE Trans Autom Control. 1971;16(6):635–44.

    Article  Google Scholar 

  • Kalaiarasi A, Kumar LA. Sensor based portable tremor suppression device for stroke patients. Acupunct Electrother Res. 2018;43(1):29–37.

    Article  Google Scholar 

  • Kazi S, As’Arry A, Zain MM, Mailah M, Hussein M. Experimental implementation of smart glove incorporating piezoelectric actuator for hand tremor control. WSEAS Trans Syst Control. 2010;5(6):443–53.

    Google Scholar 

  • Kelley CR, Kauffman JL. Towards wearable tremor suppression using dielectric elastomer stack actuators. Smart Mater Struct. 2020;30(2):025006.

    Article  Google Scholar 

  • Khalil HK. Nonlinear Systems. 3rd ed. Upper Saddle River: Prentice-Hall; 2002.

    Google Scholar 

  • Kiguchi K, Hayashi Y. Upper-limb tremor suppression with a 7DOF exoskeleton power-assist robot. In: Proceedings of the 35th annual international conference of the IEEE Engineering in Medicine and Biology Society; 2013 July 3–7. Osaka, Japan. p. 6679–82.

    Google Scholar 

  • Kim J, Wichmann T, Inan OT, De Weerth SP. A wearable system for attenuating essential tremor based on peripheral nerve stimulation. IEEE J Transl Eng Health Med. 2020;8:1–11.

    Google Scholar 

  • Kobayashi Y, Matsumoto Y, Kawasaki M, Kato A, Ando T, Nagaoka M, Fujie MG. Development of a Soft Exosuit for suppressing essential tremor. IEEE Trans Med Rob Bionics. 2021;3(3):783–90.

    Article  Google Scholar 

  • Lavu SS, Gupta A. Active vibration control of essential tremor. In: Proceedings of the 14th national conference on machines and mechanisms; 2009 Dec 17–18. Durgapur, India. p. 446–9.

    Google Scholar 

  • LeBlanc J. Design proposal for a mechanical tremor suppression device. Doctoral dissertation. Tufts University; 2005.

    Google Scholar 

  • Lee CC. Fuzzy logic in control systems: fuzzy logic controller. I. IEEE Trans Syst Man Cybern. 1990;20(2):404–18.

    Article  Google Scholar 

  • Liapunov AM. On the general problem of stability of motion. Soviet Union: Kharkov Mathematical Society; 1892.

    Google Scholar 

  • Lidka M, Price AD, Trejos AL. Development and evaluation of dielectric elastomer actuators for assistive wearable devices. In: Proceedings of the 2018 IEEE Canadian conference on electrical & computer engineering (CCECE); 2018 May 13–16. Quebec, QC, Canada. p. 1–4.

    Google Scholar 

  • Lin PT, Ross EK, Chidester P, Rosenbluth KH, Hamner SR, Wong SH, et al. Noninvasive neuromodulation in essential tremor demonstrates relief in a sham-controlled pilot trial. Mov Disord. 2018;33(7):1182–3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu W, Kai T, Kiguchi K. Tremor suppression with mechanical vibration stimulation. IEEE Access. 2020;8:226199–212.

    Article  Google Scholar 

  • Lora-Millán JS, López-Blanco R, Gallego JÁ, Méndez-Guerrero A, de la Aleja JG, Rocon E. Mechanical vibration does not systematically reduce the tremor in essential tremor patients. Sci Rep. 2019;9(1):16476.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lora-Millán JS, Delgado-Oleas G, Benito-León J, Rocon E. A review on wearable technologies for tremor suppression. Front Neurol. 2021;12:700600.

    Article  PubMed  PubMed Central  Google Scholar 

  • Loureiro RC, Belda-Lois JM, Lima ER, Pons JL, Sanchez-Lacuesta JJ, Harwin WS. Upper limb tremor suppression in ADL via an orthosis incorporating a controllable double viscous beam actuator. In: Proceedings of the 9th international conference on rehabilitation robotics; 2005 June 28–July 1. Chicago, IL, USA. p. 119–22.

    Google Scholar 

  • Mailah M. Intelligent active force control of a rigid robot arm using neural network and iterative learning algorithms. Doctoral dissertation. University of Dundee; 1998.

    Google Scholar 

  • Maneski LP, Jorgovanović N, Ilić V, Došen S, Keller T, Popović MB, Popović DB. Electrical stimulation for the suppression of pathological tremor. Med Biol Eng Comput. 2011;49(10):1187–93.

    Article  Google Scholar 

  • Manto M, Rocon E, Pons J, Belda JM, Camut S. Evaluation of a wearable orthosis and an associated algorithm for tremor suppression. Physiol Meas. 2007;28(4):415.

    Article  PubMed  Google Scholar 

  • Matsumoto Y, Seki M, Ando T, Kobayashi Y, Nakashima Y, Iijima H, Nagaoka M, Fujie MG. Development of an exoskeleton to support eating movements in patients with essential tremor. J Rob Mechatron. 2013;25(6):949–58.

    Article  Google Scholar 

  • Matsumoto Y, Amemiya M, Kaneishi D, Nakashima Y, Seki M, Ando T, Kobayashi Y, Iijima H, Nagaoka M, Fujie MG. Development of an elbow-forearm interlock joint mechanism toward an exoskeleton for patients with essential tremor. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems; 2014 Sept 14–18. Chicago, IL, USA. p. 2055–62.

    Google Scholar 

  • Mengüç EC. Adaptive Fourier linear combiner based on modified least mean Kurtosis algorithm for the processing of sinusoidal signals. Trans Inst Meas Control. 2021;43(5):1039–47.

    Article  Google Scholar 

  • Merletti R, Parker PJ, editors. Electromyography: physiology, engineering, and non-invasive applications. Wiley; 2004.

    Google Scholar 

  • Morrice BL, Becker WJ, Hoffer JA, Lee RG. Manual tracking performance in patients with cerebellar incoordination: effects of mechanical loading. Can J Neurol Sci. 1990;17(3):275–85.

    Article  CAS  PubMed  Google Scholar 

  • Muceli S, Poppendieck W, Hoffmann KP, Dosen S, Benito-León J, Barroso FO, et al. A thin-film multichannel electrode for muscle recording and stimulation in neuroprosthetics applications. J Neural Eng. 2019;16(2):026035.

    Article  PubMed  Google Scholar 

  • Nazmi N, Rahman MA, Mazlan SA, Zamzuri H, Mizukawa M. Electromyography (EMG) based signal analysis for physiological device application in lower limb rehabilitation. In: Proceedings of the 2nd international conference on biomedical engineering; 2015 Mar 30–31. Penang, Malaysia. p. 1–6.

    Google Scholar 

  • Nguyen HS, Luu TP. Tremor-suppression orthoses for the upper limb: current developments and future challenges. Front Hum Neurosci. 2021;15:186.

    Article  Google Scholar 

  • Nho W. Development and evaluation of an enhanced weighted frequency Fourier linear combiner algorithm using bandwidth information. Doctoral dissertation. University of Pittsburgh; 2006.

    Google Scholar 

  • Ou J. Simulation study of tremor suppression and experiment of energy harvesting with piezoelectric materials. Master’s thesis. University of North Texas; 2012.

    Google Scholar 

  • Pahwa R, Dhall R, Ostrem J, Gwinn R, Lyons K, Ro S, et al. An acute randomized controlled trial of noninvasive peripheral nerve stimulation in essential tremor. Neuromodulation. 2019;22(5):537–45.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pascual-Valdunciel A, Gonzalez-Sanchez M, Muceli S, Adan-Barrientos B, Escobar-Segura V, Perez-Sanchez JR, et al. Intramuscular stimulation of muscle afferents attains prolonged tremor reduction in essential tremor patients. IEEE Trans Biomed Eng. 2021;68(6):1768–76.

    Article  PubMed  Google Scholar 

  • Pledgie S, Barner KE, Agrawal SK, Rahman T. Tremor suppression through impedance control. IEEE Trans Rehabil Eng. 2000;8(1):53–9.

    Article  CAS  PubMed  Google Scholar 

  • Popović LZ, Šekara TB, Popović MB. Adaptive band-pass filter (ABPF) for tremor extraction from inertial sensor data. Comput Methods Prog Biomed. 2010;99(3):298–305.

    Article  Google Scholar 

  • Poulo SR. Adaptive filtering: algorithms and practical implementations. Int Ser Eng Comput Sci. 2008;694:23–50.

    Google Scholar 

  • Priyandoko G, Mailah M, Jamaluddin H. Vehicle active suspension system using skyhook adaptive neuro active force control. Mech Syst Signal Process. 2009;23(3):855–68.

    Article  Google Scholar 

  • Prochazka A, Elek J, Javidan M. Attenuation of pathological tremors by functional electrical stimulation. I: method. Ann Biomed Eng. 1992;20(2):205–24.

    Article  CAS  PubMed  Google Scholar 

  • Riley PO, Rosen MJ. Evaluating manual control devices for those with tremor disability. J Rehabil Res Dev. 1987;24(2):99–110.

    CAS  PubMed  Google Scholar 

  • Riviere CN, Rader RS, Thakor NV. Adaptive cancelling of physiological tremor for improved precision in microsurgery. IEEE Trans Biomed Eng. 1998;45(7):839–46.

    Article  CAS  PubMed  Google Scholar 

  • Riviere CN, Thakral A, Iordachita II, Mitroi G, Stoianovici D. Predicting respiratory motion for active canceling during percutaneous needle insertion. In: Proceedings of the 23rd annual international conference of the IEEE Engineering in Medicine and Biology Society; 2001 Oct 25–28. Istanbul, Turkey. p. 3477–80.

    Google Scholar 

  • Rocon E, Pons JL. Upper limb exoskeleton for tremor suppression: validation. In: Exoskeletons in Rehabilitation Robotics. Berlin, Heidelberg: Springer; 2011. p. 99–111.

    Chapter  Google Scholar 

  • Rocon E, Ruiz AF, Pons JL. On the use of ultrasonic motors in orthotic rehabilitation of pathologic tremor. In: Proceedings of the ACTUATOR 2004 conference; 2004 June 14–16. Bremen, Germany. p. 387–90.

    Google Scholar 

  • Rocon E, Ruiz AF, Pons JL. Biomechanical modelling of the upper limb for robotics-based orthotic tremor suppression. Appl Bionics Biomech. 2005a;2(2):81–5.

    Article  Google Scholar 

  • Rocon E, Ruiz AF, Pons JL, Belda-Lois JM, Sánchez-Lacuesta JJ. Rehabilitation robotics: a wearable exo-skeleton for tremor assessment and suppression. In: Proceedings of the 2005 IEEE international conference on robotics and automation; 2005b Apr 18–22. Barcelona, Spain. p. 2271–6.

    Google Scholar 

  • Rocon E, Ruiz AF, Brunetti F, Pons JL, Belda-Lois JM, Sánchez-Lacuesta JJ. On the use of an active wearable exoskeleton for tremor suppression via biomechanical loading. In: Proceedings of the 2006 IEEE international conference on robotics and automation; 2006 May 15–19. Orlando, FL, USA. p. 3140–5.

    Google Scholar 

  • Rocon E, Belda-Lois JM, Ruiz AF, Manto M, Moreno JC, Pons JL. Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. IEEE Trans Neural Syst Rehabil Eng. 2007a;15(3):367–78.

    Article  CAS  PubMed  Google Scholar 

  • Rocon E, Manto M, Pons J, Camut S, Belda JM. Mechanical suppression of essential tremor. Cerebellum. 2007b;6(1):73–8.

    Article  PubMed  Google Scholar 

  • Rocon E, Gallego JA, Barrios L, Victoria AR, Ibánez J, Farina D, Negro F, Dideriksen JL, Conforto S, D’Alessio T, Severini G. Multimodal BCI-mediated FES suppression of pathological tremor. In: Proceedings of the 2010 annual international conference of the IEEE engineering in medicine and biology; 2010 Aug 31–Sept 4. Buenos Aires, Argentina. p. 3337–40.

    Google Scholar 

  • Rocon E, Gallego JA, Belda-Lois JM, Pons JL. Assistive robotics as alternative treatment for tremor. In: Proceedings of the ROBOT2013: first Iberian robotics conference; 2014 Nov 28–29. Madrid, Spain. p. 173–9.

    Google Scholar 

  • Rosen MJ, Arnold AS, Baiges IJ, Aisen ML, Eglowstein SR. Design of a controlled-energy-dissipation orthosis (CEDO) for functional suppression of intention tremors. J Rehabil Res Dev. 1995;32:1–16.

    CAS  PubMed  Google Scholar 

  • Seki M, Matsumoto Y, Ando T, Kobayashi Y, Fujie MG, Iijima H, Nagaoka M. Development of robotic upper limb orthosis with tremor suppressibility and elbow joint movability. In: Proceedings of the 2011 IEEE international conference on systems, man, and cybernetics; 2011a Oct 9–12. Anchorage, AK, USA. p. 729–35.

    Google Scholar 

  • Seki M, Matsumoto Y, Ando T, Kobayashi Y, Iijima H, Nagaoka M, Fujie MG. The weight load inconsistency effect on voluntary movement recognition of essential tremor patient. In: Proceedings of the 2011 IEEE international conference on robotics and biomimetics; 2011b Dec 7–11. Phuket, Thailand. p. 901–7.

    Google Scholar 

  • Shahtalebi S, Atashzar SF, Patel RV, Mohammadi A. HMFP-DBRNN: real-time hand motion filtering and prediction via deep bidirectional RNN. IEEE Robot Autom Lett. 2019a Jan;4(2):1061–8.

    Article  Google Scholar 

  • Shahtalebi S, Atashzar SF, Patel RV, Mohammadi A. Wake: wavelet decomposition coupled with adaptive kalman filtering for pathological tremor extraction. Biomed Signal Process Control. 2019b;48:179–88.

    Article  Google Scholar 

  • Shahtalebi S, Atashzar SF, Samotus O, Patel RV, Jog MS, Mohammadi A. Phtnet: characterization and deep mining of involuntary pathological hand tremor using recurrent neural network models. Sci Rep. 2020;10(1):1–9.

    Article  Google Scholar 

  • Shamroukh M, Kalimullah IQ, Chacko A, Barlingay SS, Kalaichelvi V, Chattopadhyay AB. Evaluation of control strategies in semi-active orthosis for suppression of upper limb pathological tremors. In: Proceedings of the international conference on innovations in electrical, electronics, instrumentation and media technology; 2017 Feb 3–4. Coimbatore, India. p. 75–80.

    Google Scholar 

  • Skaramagkas V, Andrikopoulos G, Manesis S. An experimental investigation of essential hand tremor suppression via a soft exoskeletal glove. In: Proceedings of the 2020 European control conference; 2020 May 12–15. Saint Petersburg, Russia. p. 889–94.

    Google Scholar 

  • Skaramagkas V, Andrikopoulos G, Manesis S. Towards essential hand tremor suppression via pneumatic artificial muscles. Actuators. 2021;10(9):206.

    Article  Google Scholar 

  • Stroeve S. Impedance characteristics of a neuromusculoskeletal model of the human arm I. Posture Control Biol Cybern. 1999;81(5):475–94.

    Article  CAS  PubMed  Google Scholar 

  • Swallow L, Siores E. Tremor suppression using smart textile fibre systems. J Fiber Bioeng Inform. 2009;1(4):261–6.

    Google Scholar 

  • Taheri B. Real-time pathological tremor identification and suppression in human arm via active orthotic devices. Doctoral dissertation. Southern Methodist University; 2013.

    Google Scholar 

  • Taheri B, Case D, Richer E. Active tremor estimation and suppression in human elbow joint. In: Proceedings of the dynamic systems and control conference; 2011a Oct 31–Nov 2. Arlington, VA, USA. p. 115–20.

    Google Scholar 

  • Taheri B, Case D, Richer E. Robust tremor attenuation for single DOF model of human elbow joint with parametric uncertainties. In: Proceedings of the ASME international mechanical engineering congress and exposition; 2011b Nov 11–17. Denver, Colorado, USA. p. 595–600.

    Google Scholar 

  • Taheri B, Case D, Richer E. Theoretical development and experimental validation of an adaptive controller for tremor suppression at musculoskeletal level. In: Proceedings of the dynamic systems and control conference; 2013a Oct 21–23. Palo Alto, CA, USA. p. V002T22A005.

    Google Scholar 

  • Taheri B, Case D, Richer E. Robust controller for tremor suppression at musculoskeletal level in human wrist. IEEE Trans Neural Syst Rehabil Eng. 2013b;22(2):379–88.

    Article  Google Scholar 

  • Taheri B, Case D, Richer E. Adaptive suppression of severe pathological tremor by torque estimation method. IEEE/ASME Trans Mechatron. 2014;20(2):717–27.

    Article  Google Scholar 

  • Vaz CA, Thakor NV. Adaptive Fourier estimation of time-varying evoked potentials. IEEE Trans Biomed Eng. 1989;36(4):448–55.

    Article  CAS  PubMed  Google Scholar 

  • Vaz CA, Kong X, Thakor NV. An adaptive estimation of periodic signals using a Fourier linear combiner. IEEE Trans Signal Process. 1994;42(1):1–10.

    Article  Google Scholar 

  • Veluvolu KC, Ang WT. Estimation of physiological tremor from accelerometers for real-time applications. Sensors. 2011;11(3):3020–36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Veluvolu KC, Tan UX, Latt WT, Shee CY, Ang WT. Bandlimited multiple Fourier linear combiner for real-time tremor compensation. In: Proceedings of the 29th annual international conference of the IEEE Engineering in Medicine and Biology Society; 2007 Aug 22–26. Lyon, France. p. 2847–2850.

    Google Scholar 

  • Veluvolu KC, Latt WT, Ang WT. Double adaptive bandlimited multiple Fourier linear combiner for real-time estimation/filtering of physiological tremor. Biomed Signal Process Control. 2010;5(1):37–44.

    Article  Google Scholar 

  • Wang J, Barry OR. Multibody analysis and control of a full-wrist exoskeleton for tremor alleviation. J Biomech Eng. 2020;142(12):121008.

    Article  PubMed  Google Scholar 

  • Wang S, Gao Y, Zhao J, Cai H. Adaptive sliding bandlimited multiple Fourier linear combiner for estimation of pathological tremor. Biomed Signal Process Control. 2014;10:260–74.

    Article  Google Scholar 

  • Wang Y, Tatinati S, Adhikari K, Huang L, Nazarpour K, Ang WT, Veluvolu KC. Multi-step prediction of physiological tremor with random quaternion neurons for surgical robotics applications. IEEE Access. 2018;6:42216–26.

    Article  Google Scholar 

  • Widjaja F, Shee CY, Zhang D, Ang WT, Poignet P, Bo A, Guiraud D. Current progress on pathological tremor modeling and active compensation using functional electrical stimulation. In: Proceedings of the 6th conference of the International Society for Gerontechnology; 2008 June 4–7. Pisa, Italy. p. 1–6.

    Google Scholar 

  • Widjaja F, Shee CY, Ang WT, Au WL, Poignet P. Sensing of pathological tremor using surface electromyography and accelerometer for real-time attenuation. J Mech Med Biol. 2011;11(05):1347–71.

    Article  Google Scholar 

  • Xu FL, Hao MZ, Xu SQ, Hu ZX, Xiao Q, Lan N. Development of a closed-loop system for tremor suppression in patients with Parkinson’s disease. In: Proceedings of the 38th annual international conference of the IEEE Engineering in Medicine and Biology Society; 2016 Aug 16–20. Orlando, FL, USA. p. 1782–5.

    Google Scholar 

  • Yi A, Zahedi A, Wang Y, Tan UX, Zhang D. A novel exoskeleton system based on magnetorheological fluid for tremor suppression of wrist joints. In: Proceedings of the IEEE 16th international conference on rehabilitation robotics; 2019 June 24–28. Toronto, ON, Canada. p. 1115–20.

    Google Scholar 

  • Yu JY, Rajagopal A, Syrkin-Nikolau J, Shin S, Rosenbluth KH, Khosla D, et al. Transcutaneous afferent patterned stimulation therapy reduces hand tremor for one hour in essential tremor patients. Front Neurosci. 2020;14:1180.

    Article  Google Scholar 

  • Zahedi A, Wang Y, Martinez-Hernandez U, Zhang D. A wearable elbow exoskeleton for tremor suppression equipped with rotational semi-active actuator. Mech Syst Signal Process. 2021a;157:107674.

    Article  Google Scholar 

  • Zahedi A, Zhang B, Yi A, Zhang D. A soft exoskeleton for tremor suppression equipped with flexible semiactive actuator. Soft Rob. 2021b;8(4):432–47.

    Article  Google Scholar 

  • Zamanian AH, Richer E. Adaptive disturbance rejection controller for pathological tremor suppression with permanent magnet linear motor. In: Proceedings of the dynamic systems and control conference; 2017 Oct 11–13. Tysons, VA, USA. p. V001T37A003.

    Google Scholar 

  • Zamanian AH, Richer E. Adaptive notch filter for pathological tremor suppression using permanent magnet linear motor. Mechatronics. 2019;63:102273.

    Article  Google Scholar 

  • Zhang D, Ang WT. Reciprocal EMG controlled FES for pathological tremor suppression of forearm. In: Proceedings of the 29th annual international conference of the IEEE Engineering in Medicine and Biology Society; 2007 Aug 22–26. Lyon, France. p. 4810–3.

    Google Scholar 

  • Zhang JZ, Price BT, Adams RD, Burbank K, Knaga TJ. Detection of involuntary human hand motions using Empirical Mode Decomposition and Hilbert-Huang Transform. In: Proceedings of the 51st Midwest symposium on circuits and systems; 2008 Aug 10–13. Knoxville, TN, USA. p. 157–60.

    Google Scholar 

  • Zhang D, Poignet P, Widjaja F, Ang WT. Neural oscillator-based control for pathological tremor suppression via functional electrical stimulation. Control Eng Pract. 2011;19(1):74–88.

    Article  CAS  Google Scholar 

  • Zhou Y, Jenkins ME, Naish MD, Trejos AL. Design and validation of a high-order weighted-frequency Fourier linear combiner-based Kalman filter for parkinsonian tremor estimation. In: Proceedings of the 38th annual international conference of the IEEE Engineering in Medicine and Biology Society; 2016 Aug 16–20. Orlando, FL, USA. p. 5893–6.

    Google Scholar 

  • Zhou Y, Naish MD, Jenkins ME, Trejos AL. Design and validation of a novel mechatronic transmission system for a wearable tremor suppression device. Robot Auton Syst. 2017;91:38–48.

    Article  Google Scholar 

  • Zhou Y, Jenkins ME, Naish MD, Trejos AL. Impact of suppressed tremor: is suppression of proximal joints sufficient? In: Proceedings of the IEEE EMBS international conference on biomedical & health informatics; 2018a Mar 4–7. Las Vegas, NV, USA. p. 58–61.

    Google Scholar 

  • Zhou Y, Jenkins ME, Naish MD, Trejos AL. Characterization of parkinsonian hand tremor and validation of a high-order tremor estimator. IEEE Trans Neural Syst Rehabil Eng. 2018b;26(9):1823–34.

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Jenkins ME, Naish MD, Trejos AL. Development of a wearable tremor suppression glove. In: Proceedings of the 7th IEEE international conference on biomedical robotics and biomechatronics; 2018c Aug 26–29. Enschede, The Netherlands. p. 640–5.

    Google Scholar 

  • Zhou Y, Ibrahim A, Hardy KG, Jenkins ME, Naish MD, Trejos AL. Design and preliminary performance assessment of a wearable tremor suppression glove. IEEE Trans Biomed Eng. 2021;68(9):2846–57.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Luisa Trejos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, Y. et al. (2023). Mechatronic Devices for Upper Limb Tremor. In: Grimaldi, G., Manto, M. (eds) Mechanisms and Emerging Therapies in Tremor Disorders. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-031-26128-2_22

Download citation

Publish with us

Policies and ethics