Skip to main content
Log in

Shear-thickening behaviour of concentrated polymer dispersions under steady and oscillatory shear

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The rheological behaviour of a 58 vol.% dispersion of styrene/acrylate particles in ethylene glycol was investigated using a plate-on-plate rheometer. Experimental results showed that the concentrated polymer dispersion exhibited a strong shear-thickening transition under both steady shear and dynamic oscillatory conditions. The low-frequency dynamic oscillatory behaviour could be reasonably interpreted in terms of the steady shear behaviour. Accordingly, the critical dynamic shear rate \( \dot{\gamma }_{{{\text{c\_d}}}} , \) agreed well with the critical shear rate obtained in steady flow \( \dot{\gamma }_{{{\text{c\_s}}}} , \) where \( \dot{\gamma }_{{{\text{c\_d}}}} \) was calculated as the maximum shear rate by the critical dynamic shear strain γ c and the frequency ω, i.e. \( \dot{\gamma }_{{{\text{c\_d}}}} = \omega \gamma_{\text{c}} . \) However, during high-frequency dynamic oscillation, it was observed that the shear thickening occurred only when an apparent critical shear strain was reached, which could not be fully explained by the wall-slipping effect. Based on freeze fracture microscopic observations, the effect of the micro-sized flocculation of particles on the rheology of concentrated dispersions was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hoffman RL (1972) Trans Soc Rheol 16:155

    Article  CAS  Google Scholar 

  2. Hoffman RL (1974) J Colloid Interface Sci 46:491

    Article  CAS  Google Scholar 

  3. Barnes HA (1997) J Non-Newton Fluid Mech 70:1

    Article  CAS  Google Scholar 

  4. Raghavan SR, Khan SA (1997) J Colloid Interface Sci 185:57

    Article  CAS  Google Scholar 

  5. Lee YS, Wagner NJ (2003) Rheol Acta 142:199

    Google Scholar 

  6. Fall A, Huang N, Bertrand F, Ovarlez G, Bonn D (2008) Phys Rev Lett 100:018301

    Article  Google Scholar 

  7. Helber R, Doncker F, Bung R (1990) J Sound Vib 138:47

    Article  Google Scholar 

  8. Lee YS, Wetzel ED, Wagner NJ (2003) J Mater Sci 38:2825. doi:10.1023/A:1024424200221

    Article  CAS  Google Scholar 

  9. Fischer C, Braun SA, Bourban PE, Michaud C, Plummer C, Manson J (2006) Smart Mater Struct 15:1467

    Article  Google Scholar 

  10. Vermant J, Solomon MJ (2005) J Phys Condens Matter 17:187

    Article  Google Scholar 

  11. Doraiswamy D, Mujumdar AN, Tsao I, Beris AN, Danforth SC, Metzner AB (1991) J Rheol 35:647

    Article  CAS  Google Scholar 

  12. Laun HM, Bung R, Schmidt F (1991) J Rheol 35:999

    Article  CAS  Google Scholar 

  13. Bender JW, Wagner NJ (1995) J Colloid Interface Sci 172:171

    Article  CAS  Google Scholar 

  14. Bossis G, Brady JF (1989) J Chem Phys 91:1866

    Article  CAS  Google Scholar 

  15. Boersma WH, Laven J, Stein HN (1992) J Colloid Interface Sci 149:10

    Article  CAS  Google Scholar 

  16. Farr RS, Melrose JR, Ball RC (1997) Phys Rev E 55:7203

    Article  CAS  Google Scholar 

  17. O’brien VT, Mackay ME (2000) Langmuir 16:7931

    Article  Google Scholar 

  18. Holmes CB, Fuchs M, Cates ME (2003) Europhys Lett 63:240

    Article  CAS  Google Scholar 

  19. Brown E, Jaeger HM (2009) Phys Rev Lett 103:086001

    Article  Google Scholar 

  20. Singh A, Nott PR (2003) J Fluid Mech 490:293

    Article  CAS  Google Scholar 

  21. Singh A, Nott PR (2000) J Fluid Mech 412:279

    Article  CAS  Google Scholar 

  22. Laun HM (1994) J Non-Newton Fluid Mech 54:87

    Article  CAS  Google Scholar 

  23. Jomha AI, Reynolds PA (1993) Rheol Acta 32:457

    Article  CAS  Google Scholar 

  24. Negi AS, Osuji CO (2009) Rheol Acta 48:871

    Article  CAS  Google Scholar 

  25. Kanai H, Amari T (1995) Rheol Acta 34:303

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Institute for Composite Material (IVW GmbH, Germany) where most of the results were generated. Dr.-Ing L. Chang wishes to thank the Alexander von Humboldt-Foundation for his research fellowship at IVW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, L., Friedrich, K., Schlarb, A.K. et al. Shear-thickening behaviour of concentrated polymer dispersions under steady and oscillatory shear. J Mater Sci 46, 339–346 (2011). https://doi.org/10.1007/s10853-010-4817-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4817-5

Keywords

Navigation