Skip to main content

Ecology and Mechanisms of Plant Growth Promoting Rhizobacteria

  • Chapter
  • First Online:
Sustainable Agriculture Reviews 60

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 60))

Abstract

The rapid increase in population and climate change is calling for sustainable methods to improve food production such as soil microbial management. Here we review the ecology and mechanisms of action of plant growth-promoting rhizobacteria. Rhizosphere comprises both symbiotic and non-symbiotic microorganisms that influence plant growth positively by their effect on mineral nutrient uptake and bioavailability. Plant growth-promoting rhizobacteria facilitate resource acquisition and modulate phytohormone levels. Indirect mechanisms include production of antibiotics, lytic enzymes and siderophores, competition to harmful organisms, regulation of ethylene production, and induced systemic resistance. Plant growth-promoting substances suppress plant pathogens through competition for nutrients and space. Application of plant growth-promoting rhizobacterial increases crop yields. Numerous plant growth-promoting rhizobacteria are already marketed and are actually replacing mineral fertilizers and pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACC:

1-amino cyclopropane-1-carboxylic acid

DAPG:

2,4 diacetyl phloroglucinol

IAA:

Indole Acetic Acid

PGPR:

Plant Growth-Promoting Rhizobacteria

References

  • Abdel-Salam MS, Hoda HA, Gaziea MS, Elkelany US, Amira MA (2018) Improving the nematicidal potential of Bacillus amyloliquefaciens and Lysinibacillus sphaericus against the root-knot nematode Meloidogyne incognita using protoplast fusion technique. Egyptian J Biol Pest Control 28(31):1–6. https://doi.org/10.1186/s41938-018-0034-3

    Article  Google Scholar 

  • Abedinzadeh M, Etesami H, Alikhani HA (2019) Characterization of rhizosphere and endophytic bacteria from roots of maize (Zea mays L.) plant irrigated with wastewater with biotechnological potential in agriculture. Biotechnol Rep 21:e00305

    Article  Google Scholar 

  • Annapurna K, Kumar AL, Kumar VV, Govindasamy PB, Ramadoss D (2013) PGPR-induced systemic resistance (ISR) in plant disease management. In: Maheshwari DK (ed) Bacteria in agrobiology: disease management. Springer, Berlin/Heidelberg, pp 405–425

    Chapter  Google Scholar 

  • Antoun H, Prévost D (2005) Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 1–38. https://doi.org/10.1007/1-4020-4152-7_1

    Chapter  Google Scholar 

  • Anwar F, Alkharfy KM, Rehman N-U, Adam EHK, Gilani AH (2017) Chemo-geographical variations in the composition of volatiles and the biological attributes of Mentha longifolia (L.) essential oils from Saudi Arabia. Int J Pharmacol 13:408–424. https://doi.org/10.3923/ijp.2017.408.424

    Article  CAS  Google Scholar 

  • Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E et al (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473. https://doi.org/10.3389/fpls.2018.01473

    Article  PubMed  PubMed Central  Google Scholar 

  • Basaglia M, Casella S, Peruch U, Poggiolini S, Vamerali T, Mosca G, Vanderleyden J, De TP, Nuti MP (2003) Field release of genetically marked Azospirillum brasilense in association with Sorghum bicolor L. Plant Soil 256:281–290

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G (1997) Azospirillum-plant relationships: environmental and physiological advances. Can J Microbiol 43:103–121

    Article  CAS  Google Scholar 

  • Batool S, Iqbal A (2019) Phosphate solubilizing rhizobacteria as alternative of chemical fertilizer for growth and yield of Triticum aestivum (Var. Galaxy 2013). Saudi J Biol Sci 26:1400–1410

    Article  CAS  PubMed  Google Scholar 

  • Baudoin E, Lerner A, Mirza MS, El Zemrany H, Prigent-Combaret C, Jurkevich E, Spaepen S, Vanderleyden J, Nazaret S, Okon Y, Moënne-Loccoz Y (2010) Effects of Azospirillum brasilense with genetically modified auxin biosynthesis gene ipdC upon the diversity of the indigenous microbiota of the wheat rhizosphere. Res Microbiol 161:219–226

    Article  CAS  PubMed  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4 Suppl):1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beneduzi A, Moreira F, Costa PB, Vargas LK, Lisboa BB, Favreto R, Baldani JI, Passaglia LMP (2013) Diversity and plant growth promoting evaluation abilities of bacteria isolated from sugarcane cultivated in the South of Brazil. Appl Soil Ecol 63:94–104. https://doi.org/10.1016/j.apsoil.2012.08.010

    Article  Google Scholar 

  • Burr TJ, Caesar A (1984) Beneficial plant bacteria. Crit Rev Plant Sci 2:1–20

    Article  Google Scholar 

  • Bushra T, Anwar K, Muhammad T, Memoona R, Muhammad SIK, Naila S, Khadija A (2017) Bottlenecks in commercialisation and future prospects of PGPR. Appl Soil Ecol 121:102–117

    Article  Google Scholar 

  • Canarini A, Kaiser C, Merchant A, Richter A, Wanek W (2019) Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front Plant Sci 10:157. https://doi.org/10.3389/fpls.2019.00157

    Article  PubMed  PubMed Central  Google Scholar 

  • Carlos MH, Ferreira S, Helena MVM, Soares EV (2019) Promising bacterial genera for agricultural practices: an insight on plant growth-promoting properties and microbial safety aspects. Sci Total Environ 682:779–799

    Article  Google Scholar 

  • Carolina G, César A, Jose MB, Rosario A (2000) Growth promoting effect of two Sinorhizobium meliloti strains (a wild type and its genetically modified derivative) on a non-legume plant species in specific interaction with two arbuscular mycorrhizal fungi. Plant Sci. 159:57–63

    Article  Google Scholar 

  • Cely MVT, Siviero MA, Emiliano J, Spago FR, Freitas VF, Barazetti AR, Goya ET, Lamberti GS, dos Santos IMO, De Oliveira AG, Andrade G (2016) Inoculation of Schizolobium parahyba with mycorrhizal fungi and plant growth-promoting rhizobacteria increases wood yield under field conditions. Front Plant Sci 7:1708. https://doi.org/10.3389/fpls.2016.01708

    Article  PubMed  PubMed Central  Google Scholar 

  • Cetintas R, Kusek M, Ameen Fateh S (2018) Effect of some plant growth-promoting rhizobacteria strains on root-knot nematode, Meloidogyne incognita, on tomatoes. Egyptian Biol Pest Contr 28:7–11

    Article  Google Scholar 

  • Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fert Soils 48:489–499. https://doi.org/10.1007/s00374-012-0691-4

    Article  Google Scholar 

  • Cheng D, Tian Z, Feng L, Xu L, Wang H (2019) Diversity analysis of the rhizospheric and endophytic bacterial communities of Senecio vulgaris L. (Asteraceae) in an invasive range. Peer J. 6:e6162. https://doi.org/10.7717/peerj.6162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cummings SP (2009) The application of plant growth promoting rhizobacteria (PGPR) in low input and organic cultivation of graminaceous crops: potential and problems. Environ Biotechnol 5(2):43–50

    Google Scholar 

  • Dilfuza E, Stephan JW, Abdulaziz AA, Elsayed FA, Abeer H (2017) Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front Microbiol 8:1–14

    Google Scholar 

  • Du N, Shi L, Yuan Y, Li B, Shu S, Sun J, Guo S (2016) Proteomic analysis reveals the positive roles of the plant-growth-promoting rhizobacterium NSY50 in the response of cucumber roots to Fusarium oxysporum f. sp. cucumerinum inoculation. Front. Plant Sci. 7:1859. https://doi.org/10.3389/fpls.2016.01859

    Article  Google Scholar 

  • Dweipayan G, Janki NT, Pinakin CD, Manuel TM (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food & Agri 2(1):127500. https://doi.org/10.1080/23311932.2015.1127500

    Article  CAS  Google Scholar 

  • Elizabeth TA, Bernard RG, Olubukola OB (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971. https://doi.org/10.3389/fmicb.2017.00971

    Article  Google Scholar 

  • Galleguillos C, Aguirre C, Barea JM, Azcon R (2000) Growth promoting effect of two Sinorhizobium meliloti strains (a wild type and its genetically modified derivative) on a non-legume plant species in specific interaction with two arbuscular mycorrhizal fungi. Plant Sci 159(1):57–63. https://doi.org/10.1016/S0168-9452(00)00321-6

    Article  CAS  PubMed  Google Scholar 

  • Glandorf DCM (2019) Re-evaluation of biosafety questions on genetically modified biocontrol bacteria. Eur J Plant Pathol 154:43–51. https://doi.org/10.1007/s10658-018-1598-1

    Article  Google Scholar 

  • Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140

    Article  PubMed  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Gupta S, Pandey S (2019) ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Front Microbiol 10:1506. https://doi.org/10.3389/fmicb.2019.01506

    Article  PubMed  PubMed Central  Google Scholar 

  • Hol GWH, Martijn BT, Arjen B (2013) Getting the ecology into interactions between plants and the plant growth-promoting bacterium Pseudomonas fluorescens. Front Plant Sci 4(81):1–9. https://doi.org/10.3389/fpls.2013.00081

    Article  Google Scholar 

  • Innerebner G, Knief C, Vorholt JA (2011) Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl Environ Microbiol. 77(10):3202–3210. https://doi.org/10.1128/AEM.00133-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong JS, Kim YS, Baek KH, Jung H, Ha S-H, Choi YD, Kim M, Reuzeau C, Kim JK (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153(1):185–197. https://doi.org/10.1104/pp.110.154773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin CW, Ye YQ, Zheng SJ (2014) An underground tale: contribution of microbial activity to plant iron acquisition via ecological processes. Annals Bot 113:7–18

    Article  CAS  Google Scholar 

  • Kang SM, Khana AL, Waqasa M, You YH, Kim JH, Kim JG et al (2014) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9:673–682. https://doi.org/10.1080/17429145.2014.894587

    Article  CAS  Google Scholar 

  • Kannahi M, Senbagam N (2014) Studies on siderophore production by microbial isolates obtained from rhizosphere soil and its antibacterial activity. J Chem Pharma Res 6(4):1142–1145

    CAS  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol. 18:355–364

    Article  CAS  PubMed  Google Scholar 

  • Khan N, Zandi P, Ali S, Mehmood A, Adnan Shahid M, Yang J (2018) Impact of salicylic acid and PGPR on the drought tolerance and phytoremediation potential of Helianthus annus. Front Microbiol 9:2507. https://doi.org/10.3389/fmicb.2018.02507

    Article  PubMed  PubMed Central  Google Scholar 

  • Kloepper JW (2003) A review of mechanisms for plant growth promotion by PGPR. In: Reddy MS, Anandaraj M, Eapen SJ, Sarma YR, Kloepper JW (eds) Abstracts and short papers. 6th International PGPR workshop, 5–10 October 2003. Indian Institute of Spices Research, Calicut, India, pp 81–92

    Google Scholar 

  • Kooli WM, Comensoli L, Maillard L, Albini M, Gelb A, Junier P, Joseph E (2018) Bacterial iron reduction and biogenic mineral formation for the stabilization of corroded iron objects. Sci Rep 8:764. https://doi.org/10.1038/s41598-017-19020-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korir H, Mungai NW, Thuita M, Hamba Y, Masso C (2017) Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Front Plant Sci 8:141. https://doi.org/10.3389/fpls.2017.00141

    Article  PubMed  PubMed Central  Google Scholar 

  • Kundan R, Pant G, Jadon N, Agrawal PK (2015) Plant growth promoting rhizobacteria: mechanism and current prospective. J Fertil Pestic 6:2. https://doi.org/10.4172/2471-2728.1000155

    Article  Google Scholar 

  • Kusum S, Swati S, Rajendra PS (2019) PGPR: renewable tool for sustainable agriculture. Int J Curr Microbiol Appl Sci. 8(1):525–530. https://doi.org/10.20546/ijcmas.2019.801.058

    Article  CAS  Google Scholar 

  • Lally RD, Galbally P, Moreira AS, Spink J, Ryan D, Germaine KJ, Dowling DN (2017) Application of endophytic Pseudomonas fluorescens and a bacterial consortium to Brassica napus can increase plant height and biomass under greenhouse and field conditions. Front Plant Sci 8:2193. https://doi.org/10.3389/fpls.2017.02193

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Jiang X, He X, Zhao W, Cao Y, Guo T et al (2019) Phosphate-solubilizing pseudomonas sp. strain P34-L promotes wheat growth by colonizing the wheat rhizosphere and improving the wheat root system and soil phosphorus nutritional status. J Plant Growth Regul 38:1–11

    Article  Google Scholar 

  • Mahmood S, Daur I, Al-Solaimani SG, Ahmad S, Madkour MH, Yasir M, Hirt H, Ali S, Ali Z (2016) Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Front Plant Sci. 7:876. https://doi.org/10.3389/fpls.2016.00876

    Article  PubMed  PubMed Central  Google Scholar 

  • Maurhofer M, Reimmann C, Schmidli SP, Heeb S, Haas D, Défago G (1998) Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology 88(7):678–684

    Article  CAS  PubMed  Google Scholar 

  • Maxime B, Claire PC, Daniel M, Yvan ML (2014) Analysis of genes contributing to plant-beneficial functions in plant growth-promoting rhizobacteria and related Proteobacteria. Sci Rep 4:6261. https://doi.org/10.1038/srep06261

    Article  CAS  Google Scholar 

  • Meldau DG, Meldau S, Hoang LH, Underberg S, Wunsche H, Baldwin IT (2013) Dimethyl disulfide produced by the naturally associated bacterium Bacillus sp B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition. Plant Cell 25:2731–2747. https://doi.org/10.1105/tpc.113.114744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesa-Marín J, Del-Saz NF, Rodríguez-Llorente ID, Redondo-Gómez S, Pajuelo E, Ribas-Carbó M, Mateos-Naranjo E (2018) PGPR reduce root respiration and oxidative stress enhancing Spartina maritima root growth and heavy metal rhizoaccumulation. Front Plant Sci 9:1500. https://doi.org/10.3389/fpls.2018.01500

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohamed I, Eid KE, Abbas MHH, Salem AA, Ahmed N, Ali M, Shah GM, Fang C (2019) Use of plant growth promoting rhizobacteria (PGPR) and mycorrhizae to improve the growth and nutrient utilization of common bean in a soil infected with white rot fungi. Ecotoxicol Environ Saf 171:539–548

    Article  CAS  PubMed  Google Scholar 

  • Mohd AB, Rehana R, Shazia R (2019) Plant Growth Promoting Rhizobacteria (PGPR) for sustainable and eco-friendly agriculture. Acta Sci Agri. 3(1):23–25

    Google Scholar 

  • Muhammad S, Muhammad A, Sarfraz H, Ahmad SB (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34(10):635–648. https://doi.org/10.1007/s10295-007-0240-6

    Article  CAS  Google Scholar 

  • Munees A, Mulugeta K (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Uni Sci 26(1):1–20

    Article  Google Scholar 

  • Nadeem SM, Naveed M, Ahmad M, Zahir ZA (2015) Rhizosphere bacteria for crop production and improvement of stress tolerance: mechanisms of action, applications, and future prospects. In: Arora NK (ed) Plant microbes’ symbiosis: applied facets. Springer, India, pp 1–36

    Google Scholar 

  • Nailwal S, Anwar MS, Budhani K, Verma A, Nailwal T (2014) Burkholderia sp. from rhizosphere of Rhododendron arboretum: isolation, identification and plant growth promotory (PGP) activities. J Appl Nat Sci. 6(2):473–479. https://doi.org/10.31018/jans.v6i2.485

    Article  CAS  Google Scholar 

  • Nascimento FX, Clarisse B, Bernard RG, Márcio JR (2016) The role of rhizobial ACC deaminase in the nodulation process of leguminous plants. Int J Agron 1369472:9. https://doi.org/10.1155/2016/1369472

    Article  CAS  Google Scholar 

  • Niu X, Song L, Xiao Y, Ge W (2018) Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front Microbiol. 8:2580. https://doi.org/10.3389/fmicb.2017.02580

    Article  PubMed  PubMed Central  Google Scholar 

  • Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14(12):1504. https://doi.org/10.3390/ijerph14121504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel PR, Shaikh SS, Sayyed RZ (2016) Dynamism of PGPR in bioremediation and plant growth promotion in heavy metal contaminated soil. Indian J Exp Biol 54(4):286–290

    CAS  PubMed  Google Scholar 

  • Polgari M, Gyollai I, Fintor K, Horvath H, Palmolnar E, Biondi JC (2019) Microbially mediated ore-forming processes and cell mineralization. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.02731

  • Pravin V, Rosazlin A, Tumirah K, Salmah I, Amru NB (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability. Molecules 21(5):573–590. https://doi.org/10.3390/molecules21050573

    Article  CAS  Google Scholar 

  • Probanza A, Lucas JA, Acero N, Gutiérrez-Mañero FJ (1996) The influence of native bacteria on European alder (Alnusglutinosa [L.] Gaertn.) growth. I. Characterization of growth-promoting and growth-inhibiting bacterial strains. Plant Soil 182:59–66

    Article  CAS  Google Scholar 

  • Queen J, Rajalakshmi G, Komathi S, Bharathi D, Sithara NV, Mythili S (2016) Strain improvement of bacteria isolated from rhizosphere soil and its effect in seed germination. Eur J Biotechnol Biosci 4(12):27–28

    Google Scholar 

  • Rachel B, Stefan R, Gayathri I, John L, Dana P, Emily R, Sowmyalakshmi S, Donald LS (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of bio stimulants for sustainable agriculture. Front Plant Sci 9:1473. https://doi.org/10.3389/fpls.2018.01473

    Article  Google Scholar 

  • Raklami A, Bechtaoui N, Tahiri A, Anli M, Meddich A, Oufdou K (2019) Use of rhizobacteria and mycorrhizae consortium in the open field as a strategy for improving crop nutrition, productivity and soil fertility. Front Microbiol 10:1106. https://doi.org/10.3389/fmicb.2019.01106

    Article  PubMed  PubMed Central  Google Scholar 

  • Rathaur P, Waseem R, Ramteke PW, John SA (2012) Effect of UV-B tolerant plant growth promoting rhizobacteria (PGPR) on seed germination and growth of Withania somnifera. Adv Appl Sci Res 3(3):1399–1404

    CAS  Google Scholar 

  • Rocheli D, Adriana A, Luciane MPP (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38(4):401–419. https://doi.org/10.1590/S1415-475738420150053

    Article  Google Scholar 

  • Romera FJ, Garcia MJ, Lucena C, Medina AM, Aparicio MA, Ramos J, Alcantara E, Angulo M, Vicente RP (2019) Induced systemic resistance (ISR) and Fe deficiency response in dicot plants. Front Plant Sci 10:287. https://doi.org/10.3389/fpls.2019.00287

    Article  PubMed  PubMed Central  Google Scholar 

  • Rondon MR, Raffel SJ, Goodman RM, Handelsman J (1999) Toward functional genomics in bacteria: analysis of gene expression in Escherichia coli from a bacterial artificial chromosome library of Bacillus cereus. Proc Natl Acad Sci U S A 96(11):6451–6455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saia S, Rappa V, Ruisi P, Abenavoli MR, Sunseri F, Giambalvo D, Frenda AS, Martinelli F (2015) Soil inoculation with symbiotic microorganisms promotes plant growth and nutrient transporter genes expression in durum wheat. Front Plant Sci 6:815. https://doi.org/10.3389/fpls.2015.00815

    Article  PubMed  PubMed Central  Google Scholar 

  • Saif S, Khan MS (2018) Assessment of toxic impact of metals on proline, antioxidant enzymes, and biological characteristics of Pseudomonas aeruginosa inoculated Cicer arietinum grown in chromium and nickel-stressed sandy clay loam soils. Environ Monit Assess 190:1–18

    Article  CAS  Google Scholar 

  • Saima S, Mohammad S (2017) Assessment of heavy metals toxicity on plant growth promoting rhizobacteria and seedling characteristics of Pseudomonas putida SFB3 inoculated greengram. Acta Sci Agri 1(2):47–56

    Google Scholar 

  • Sayyed RZ, Gangurde NS, Patel PR, Josh SA, Chincholkar SB (2010) Siderophore production by Alcaligenes faecalis and its application for plant growth promotion by Arachis hypogea. Indian J Biotechnol 9:302–307

    CAS  Google Scholar 

  • Sayyed RZ, Chincholkar SB, Reddy MS, Gangurde NS, Patel PR (2013) Siderophore producing PGPR for crop nutrition and phytopathogen suppression. In: Maheshwari DK (ed) Bacteria in agrobiology: disease management. Springer, pp 449–471. https://doi.org/10.1007/978-3-642-33639-3_17

    Chapter  Google Scholar 

  • Shahbaz A, Mona U, Nazia F, Verma A, Paliwal A, Veena P (2017) Multi-trait activity of Enterobacter Sp. strain MHR4 towards Fluorene degradation as well as in plant growth promotion. SOJ Microbiol. Infect Dis. 5(5):1–10. https://doi.org/10.15226/sojmid/5/5/00186

    Article  Google Scholar 

  • Shukla KP, Sharma S, Singh NK, Singh V, Tiwari K, Singh S (2011) Nature and role of root exudates: efficacy in bioremediation. Afr J Biotechnol 10:9717–9724. https://doi.org/10.5897/AJB10.2552

    Article  Google Scholar 

  • Sivasakthi S, Saranraj P, Sujitha D (2015) Mutation based strain improvement of PGPR isolates (Pseudomonas fluorescens & Bacillus subtilis) for the improvement of growth and yield of paddy (Oryza sativa L.). American-Eurasian J Agric Environ Sci 15(8):1591–1601

    Google Scholar 

  • Sood SG (2003) Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. FEMS Microbiol Ecol 45:219–227

    Article  Google Scholar 

  • Su F, Jacquard C, Villaume S, Michel J, Rabenoelina F, Clément C, Barka EA, Dhondt-Cordelier S, Vaillant-Gaveau N (2015) Burkholderia phytofirmans PsJN reduces impact of freezing temperatures on photosynthesis in Arabidopsis thaliana. Front Plant Sci 6:810. https://doi.org/10.3389/fpls.2015.00810

    Article  PubMed  PubMed Central  Google Scholar 

  • Subramaniam G, Arumugam S, Rajendran V, Rajeev KV, Laxmipathi GCL, Lakshmanan K (2015) Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 5:355–377. https://doi.org/10.1007/s13205-014-0241-x

    Article  Google Scholar 

  • Sushanto G, Rout GK, Gitishree D, Spiros P, Han-Seung S, Jayanta KP (2017) Revitalization of plant growth-promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140

    Google Scholar 

  • Tajini F, Trabelsi M, Drevon JJ (2012) Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.). Saudi J Biol Sci. 19:157–163. https://doi.org/10.1016/j.sjbs.2011.11.003

    Article  CAS  PubMed  Google Scholar 

  • Tariq M, Hameed A, Manzoor N (2017) Antagonistic features displayed by Plant Growth Promoting Rhizobacteria (PGPR): a review. J Plant Sci Phytopathol 1:038–043

    Article  Google Scholar 

  • Tiwari S, Prasad V, Chauhan PS, Lata C (2017) Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice. Front Plant Sci 8:1510. https://doi.org/10.3389/fpls.2017.01510

    Article  PubMed  PubMed Central  Google Scholar 

  • Vacheron J, Moënne-Loccoz Y, Dubost A, Gonçalves-Martins M, Muller D, Prigent-Combaret C (2016) Fluorescent Pseudomonas strains with only few plant-beneficial properties are favored in the maize rhizosphere. Front Plant Sci 7:1212. https://doi.org/10.3389/fpls.2016.01212

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma A, Hukum S, Anwar MS, Kumar S, Ansari MW, Agrawal S (2016) Production of thermostable organic solvent tolerant keratinolytic protease from Thermoactinomyces sp. RM4: IAA production and plant growth promotion. Front Microbiol. 7:1189. https://doi.org/10.3389/fmicb.2016.01189

    Article  PubMed  PubMed Central  Google Scholar 

  • Vessey J (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586

    Article  CAS  Google Scholar 

  • Vinayarani G, Prakash HS (2018) Growth promoting Rhizospheric and endophytic bacteria from Curcuma longa L. as biocontrol agents against rhizome rot and leaf blight diseases. Plant Pathol J 34(3):218–235. https://doi.org/10.5423/PPJ.OA.11.2017.0225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenjuan Z, Saiqi Z, Harsh B, Jacob ML, Daniel SH, David LJ, Yan J (2018) Plant Growth-Promoting Rhizobacteria (PGPR) reduce evaporation and increase soil water retention. Adv Earth Space Sci 54(5):3673–3687. https://doi.org/10.1029/2018WR022656

    Article  Google Scholar 

  • Zhang LN, Wang D-C, Hu Q, Dai X-Q, Xie Y-S, Li Q, Liu H-M, Guo J-H (2019) Consortium of plant growth-promoting rhizobacteria strains suppresses sweet pepper disease by altering the rhizosphere microbiota. Front Microbiol 10:1668. https://doi.org/10.3389/fmicb.2019.01668

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shulbhi Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verma, A., Verma, S., Singh, M., Mudila, H., Saini, J.K. (2023). Ecology and Mechanisms of Plant Growth Promoting Rhizobacteria. In: Singh, N., Chattopadhyay, A., Lichtfouse, E. (eds) Sustainable Agriculture Reviews 60. Sustainable Agriculture Reviews, vol 60. Springer, Cham. https://doi.org/10.1007/978-3-031-24181-9_4

Download citation

Publish with us

Policies and ethics