Skip to main content

II–VI Semiconductor-Based Optical Gas Sensors

  • Chapter
  • First Online:
Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors
  • 590 Accesses

Abstract

Optical gas sensors are the one which utilize optical properties of materials that responds by the infusion of gas in the environment. Optical gas sensors play an important role in detecting, controlling and reducing air pollution. Also, these optical-based gas sensors are used to prevent workers from fire and explosions. II–VI semiconductors are the most promising ones for optical gas sensors owing to their band gap, size and shape-dependent optical properties, facile synthesis methods and ability to form colloidal solution of nanostructures. This chapter discusses about the various optical methods viz. photoluminescence (PL), fluorescence (FL), fibre optics, surface plasmon resonance (SPR), etc., based gas sensors utilizing different morphologies like 1D, quantum dots, core-shell, embedded in matrix, etc. The introduction is about the need for optical gas sensors, the suitability of II–VI semiconductors, and the parameters used for optical gas sensors. The next section deals with different PL-based gas sensors with different morphologies of II–VI semiconductor materials followed by FL-based gas sensors. Some other optical methods like chemiluminescence, cataluminescence and optical absorption are mentioned in the next section. Further, two sections deal with SPR-based and fibre optics-based gas sensors, respectively, followed by a concrete conclusion that explains the challenges of II–VI materials-based optical gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou D, Victor DG, Ahmed EHM, Dadhich PK, Olivier JGJ, Rogner H-H, Sheikho K, Yamaguchi M. Introductory chapter. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani ESK, Seyboth K, Adler A, et al., editors. Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK; New York: Cambridge University Press; 2014. p. 111–68.

    Google Scholar 

  2. Each Country’s Share of CO2 Emissions. 2008. https://www.ucsusa.org/resources/each-countrys-share-co2-emissions. Accessed 25 Apr 2022.

  3. Korotcenkov G, Cho BK. Metal oxide composites in conductometric gas sensors: achievements and challenges. Sensors Actuators B Chem. 2017;244:182–210.

    Article  Google Scholar 

  4. Korotcenkov G, Han SD, Stetter JR. Review of electrochemical hydrogen sensors. Chem Rev. 2009;109:1402–33.

    Article  Google Scholar 

  5. Yadav K, Gahlaut SK, Mehta BR, Singh JP. Photoluminescence based H2 and O2 gas sensing by ZnO nanowires. Appl Phys Lett. 2016;108(7):071602.

    Article  ADS  Google Scholar 

  6. Duong HD, Rhee JI. Development of ratiometric fluorescence sensors based on CdSe/ZnS quantum dots for the detection of hydrogen peroxide. Sensors (Basel). 2019;19(22):4977.

    Article  ADS  Google Scholar 

  7. Xu S, Dong K, Wen J, Jiang N, Wang J, Zheng C, Zhao S, Zhang J. CdTe quantum dots/poly (diallyl dimethyl ammonium chloride) multilayer films: preparation and application for gaseous sensors. Int J Environ Agric Res (IJOEAR). 2017;3(3):7–14.

    Google Scholar 

  8. Yesudasu V, Pradhan HS, Pandya RJ. Recent progress in surface plasmon resonance based sensors: a comprehensive review. Heliyon. 2021;7(3):e06321.

    Article  Google Scholar 

  9. Szunerits S, Shalabney A, Boukherroub R, Abdulhalim I. Dielectric coated plasmonic interfaces: their interest for sensitive sensing of analyte-ligand interactions. Rev Anal Chem. 2012;31(1):15–28.

    Article  Google Scholar 

  10. Saxena N, Kumar P, Gupta V. CdS : SiO2 nanocomposite as a luminescence-based wide range temperature sensor. RSC Adv. 2015;5(90):73545–51.

    Article  ADS  Google Scholar 

  11. Paek K, Chung S, Cho CH, Kim BJ. Fluorescent and pH-responsive diblock copolymer-coated core-shell CdSe/ZnS particles for a color-displaying, ratiometric pH sensor. Chem Commun (Camb). 2011;47(37):10272–4.

    Article  Google Scholar 

  12. Chu C-S, Chuang C-Y. Optical fiber sensor for dual sensing of dissolved oxygen and Cu2+ ions based on PdTFPP/CdSe embedded in sol–gel matrix. Sensors Actuators B Chem. 2015;209:94–9.

    Article  Google Scholar 

  13. Xue S, Jiang XF, Zhang G, Wang H, Li Z, Hu X, Chen M, Wang T, Luo A, Ho HP, He S, Xing X. Surface plasmon-enhanced optical formaldehyde sensor based on CdSe@ZnS quantum dots. ACS Sens. 2020;5(4):1002–9.

    Article  Google Scholar 

  14. Buiculescu R, Hatzimarinaki M, Chaniotakis NA. Biosilicated CdSe/ZnS quantum dots as photoluminescent transducers for acetylcholinesterase-based biosensors. Anal Bioanal Chem. 2010;398(7–8):3015–21.

    Article  Google Scholar 

  15. Hu J, Wu P, Deng D, Jiang X, Hou X, Lv Y. An optical humidity sensor based on CdTe nanocrystals modified porous silicon. Microchem J. 2013;108:100–5.

    Article  Google Scholar 

  16. Bismuto A, Lettieri S, Maddalena P, Baratto C, Comini E, Faglia G, Sberveglieri G, Zanotti L. Room-temperature gas sensing based on visible photoluminescence properties of metal oxide nanobelts. J Opt A Pure Appl Opt. 2006;8(7):S585–8.

    Article  ADS  Google Scholar 

  17. Liu X, Sun Y, Yu M, Yin Y, Yang B, Cao W, Ashfold MNR. Incident fluence dependent morphologies, photoluminescence and optical oxygen sensing properties of ZnO nanorods grown by pulsed laser deposition. J Mater Chem C. 2015;3(11):2557–62.

    Article  Google Scholar 

  18. Ip KM, Liu Z, Ng CM, Hark SK. Effects of passivation and ambient gases on the photoluminescence of ZnSe nanowires. Nanotechnology. 2005;16(8):1144–7.

    Article  ADS  Google Scholar 

  19. Ganesan M, Nagaraaj P. Quantum dots as nanosensors for detection of toxics: a literature review. Anal Methods. 2020;12(35):4254–75.

    Article  Google Scholar 

  20. Proceedings of International Conference on Metamaterials and Nanophotonics (METANANO-2017) AIP Conf. Proc. 1874, 030032-1–030032-4.

    Google Scholar 

  21. Sergeev AA, Sergeeva KA, Leonov AA, Postnova IV, Voznesenskiy SS, Kulchin YN. Manganese-doped zinc sulfide quantum dots for methane detection in aqueous media. Defect Diffus Forum. 2018;386:229–35.

    Article  Google Scholar 

  22. Sergeev AA, Leonov AA, Galkina AN, Voznesenskiy SS. Application of zinc sulfide quantum dots for optical sensing. Key Engin Mater. 2019;806:186–91.

    Article  Google Scholar 

  23. Sotelo-Gonzalez E, Fernandez-Arguelles MT, Costa-Fernandez JM, Sanz-Medel A. Mn-doped ZnS quantum dots for the determination of acetone by phosphorescence attenuation. Anal Chim Acta. 2012;712:120–6.

    Article  Google Scholar 

  24. Poeplau M, Ester S, Henning B, Wagner T. Recombination mechanisms of luminescence type gas sensors. Phys Chem Chem Phys. 2020;22(35):19948–56.

    Article  Google Scholar 

  25. Ando M, Kamimura T, Uegaki K, Biju V, Shigeri Y. Sensing of ozone based on its quenching effect on the photoluminescence of CdSe-based core-shell quantum dots. Microchim Acta. 2016;183(11):3019–24.

    Article  Google Scholar 

  26. Ando M, Kamimura T, Uegaki K, Biju V, Damasco Ty JT, Shigeri Y. Reversible photoluminescence sensing of gaseous alkylamines using CdSe-based quantum dots. Sensors Actuators B Chem. 2017;246:1074–9.

    Article  Google Scholar 

  27. Amelia M, Lavie-Cambot A, McClenaghan ND, Credi A. A ratiometric luminescent oxygen sensor based on a chemically functionalized quantum dot. Chem Commun (Camb). 2011;47(1):325–7.

    Article  Google Scholar 

  28. Rodríguez-Cantó PJ, Abargues R, Gordillo H, Suarez I, Chirvony V, Albert S, Martínez-Pastor J. UV-patternable nanocomposite containing CdSe and PbS quantum dots as miniaturized luminescent chemo-sensors. RSC Adv. 2015;5:19874–83.

    Article  ADS  Google Scholar 

  29. Nazzal AY, Qu L, Peng X, Xiao M. Photoactivated CdSe nanocrystals as nanosensors for gases. Nano Lett. 2003;3(6):819–22.

    Article  ADS  Google Scholar 

  30. Sung T-W, Lo Y-L. Ammonia vapor sensor based on CdSe/SiO2 core/shell nanoparticles embedded in sol–gel matrix. Sensors Actuators B Chem. 2013;188:702–8.

    Article  Google Scholar 

  31. Orlova AO, Gromova YA, Maslov VG, Andreeva OV, Baranov AV, Fedorov AV, Prudnikau AV, Artemyev MV, Berwick K. Reversible photoluminescence quenching of CdSe/ZnS quantum dots embedded in porous glass by ammonia vapor. Nanotechnology. 2013;24(33):335701.

    Article  Google Scholar 

  32. Yao Q, Brock SL. Optical sensing of triethylamine using CdSe aerogels. Nanotechnology. 2010;21(11):115502.

    Article  ADS  Google Scholar 

  33. Zhao Z, Dansereau TM, Petrukhina MA, Carpenter MA. Nanopore-array-dispersed semiconductor quantum dots as nanosensors for gas detection. Appl Phys Lett. 2010;97(11):113105.

    Article  ADS  Google Scholar 

  34. Wu D, Sedgwick AC, Gunnlaugsson T, Akkaya EU, Yoon J, James TD. Fluorescent chemosensors: the past, present and future. Chem Soc Rev. 2017;46(23):7105–23.

    Article  Google Scholar 

  35. Xia H, Geng T, Zhao X, Li F, Wang F, Gao L. Preparation and sensing properties of organic gel fluorescence films based on ZnS nanoparticles. Acta Phys -Chim Sin. 2019;35(3):337–44.

    Article  Google Scholar 

  36. Xia H, Hu J, Tang J, Xu K, Hou X, Wu P. A RGB-type quantum dot-based sensor Array for sensitive visual detection of trace formaldehyde in air. Sci Rep. 2016;6:36794.

    Article  ADS  Google Scholar 

  37. Ahmad I, Zhou Z, Li H-Y, Zang S-Q. Crafting CdTe/CdS QDs surface for the selective recognition of formaldehyde gas via ratiometric contrivance. Sensors Actuators B Chem. 2020;304:127379.

    Article  Google Scholar 

  38. Saren AA, Kuznetsov SN, Kuznetsov AS, Gurtov VA. Excitonic chemiluminescence in Si and CdSe nanocrystals induced by their interaction with ozone. ChemPhysChem. 2011;12(4):846–53.

    Article  Google Scholar 

  39. Jiao X, Zhang L, Lv Y, Su Y. A new alcohols sensor based on cataluminescence on nano-CdS. Sensors Actuators B Chem. 2013;186:750–4.

    Article  Google Scholar 

  40. Xia H, Zhou R, Zheng C, Wu P, Tian Y, Hou X. Solution-free, in situ preparation of nano/micro CuO/ZnO in dielectric barrier discharge for sensitive cataluminescence sensing of acetic acid. Analyst. 2013;138(13):3687–91.

    Article  ADS  Google Scholar 

  41. Tan CH, Tan ST, Lee HB, Ginting RT, Oleiwi HF, Yap CC, Jumali MHH, Yahaya M. Automated room temperature optical absorbance CO sensor based on in-doped ZnO nanorod. Sensors Actuators B Chem. 2017;248:140–52.

    Article  Google Scholar 

  42. Gaspera ED, Guglielmi M, Martucci A, Giancaterini L, Cantalini C. Enhanced optical and electrical gas sensing response of sol–gel based NiO–Au and ZnO–Au nanostructured thin films. Sensors Actuators B Chem. 2012;164:54–63.

    Article  Google Scholar 

  43. Paliwal A, Sharma A, Tomar M, Gupta V. Carbon monoxide (CO) optical gas sensor based on ZnO thin films. Sensors Actuators B Chem. 2017;250:679–85.

    Article  Google Scholar 

  44. Zayats M, Kharitonov AB, Pogorelova SP, Lioubashevski O, Katz E, Willner I. Probing photoelectrochemical processes in Au-CdS nanoparticle arrays by surface plasmon resonance: application for the detection of acetylcholine esterase inhibitors. J Am Chem Soc. 2003;125:16006–14.

    Article  Google Scholar 

  45. Wu M-C, Kao C-K, Lin T-F, Chan S-H, Chen S-H, Lin C-H, Huang Y-C, Zhou Z, Wang K, Lai C-S. Surface plasmon resonance amplified efficient polarization-selective volatile organic compounds CdSe-CdS/Ag/PMMA sensing material. Sensors Actuators B Chem. 2020;309:127760.

    Article  Google Scholar 

  46. Mariammal RN, Stella C, Ramachandran K. Chunk-shaped ZnO nanoparticles for ethanol sensing. AIP Conf Proc. 2013;1512:368–9.

    Article  ADS  Google Scholar 

  47. Narasimman S, Balakrishnan L, Alex ZC. Fiber-optic ammonia sensor based on amine functionalized ZnO nanoflakes. IEEE Sensors J. 2018;18(1):201–8.

    Article  ADS  Google Scholar 

  48. Narasimman S, Balakrishnan L, Alex ZC. ZnO nanorods based fiber optic hexane sensor. AIP Conf Proc. 2019;2162:020105.

    Article  Google Scholar 

  49. Narasimman S, Balakrishnan L, Meher SR, Sivacoumar R, Alex ZC. ZnO nanoparticles based fiber optic gas sensor. AIP Conf Proc. 2016;1731:050052.

    Article  Google Scholar 

  50. Narasimman S, Balakrishnan L, Meher SR, Sivacoumar R, Alex ZC. Influence of surface functionalization on the gas sensing characteristics of ZnO nanorhombuses. J Alloys Compd. 2017;706:186–97.

    Article  Google Scholar 

  51. Renganathan B, Ganesan AR. Fiber optic gas sensor with nanocrystalline ZnO. Opt Fiber Technol. 2014;20(1):48–52.

    Article  ADS  Google Scholar 

  52. Renganathan B, Sastikumar D, Gobi G, Rajeswari Yogamalar N, Chandra Bose A. Nanocrystalline ZnO coated fiber optic sensor for ammonia gas detection. Opt Laser Technol. 2011;43(8):1398–404.

    Article  ADS  Google Scholar 

  53. Devendiran S, Sastikumar D. Gas sensing based on detection of light radiation from a region of modified cladding (nanocrystalline ZnO) of an optical fiber. Opt Laser Technol. 2017;89:186–91.

    Article  ADS  Google Scholar 

  54. Dikovska AO, Atanasova GB, Nedyalkov NN, Stefanov PK, Atanasov PA, Karakoleva EI, Andreev AT. Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber. Sensors Actuators B Chem. 2010;146(1):331–6.

    Article  Google Scholar 

  55. Noel JL, Udayabhaskar R, Renganathan B, Muthu Mariappan S, Sastikumar D, Karthikeyan B. Spectroscopic and fiber optic ethanol sensing properties Gd doped ZnO nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc. 2014;132:634–8.

    Article  ADS  Google Scholar 

  56. Saidin N, Idris NF, Yaacob MH, Harun SW, Ralib AAM, Hasbullah NF. Single-mode fiber coated with zinc oxide (ZnO) nanorods for H2 gas sensor applications. In: Proceedings of IEEE international conference on sensors and nanotechnology, 24–25 July 2019, Penang, Malaysia, 19258786.

    Google Scholar 

  57. Cameron Theoderaj AK, Inbaraj DJ, Mangalaraj C. CdS coated clad-modified fiber optic sensor for detection of NO2 gas. Mater Res Express. 2019;6(10):1050c8.

    Article  Google Scholar 

  58. de Oliveira HJB, Filho JFM, do Nascimento JF. Computational modeling of H2S gas sensor using surface plasmon resonance in a D-shaped optical fiber. In: Proceedings of SBFoton international optics and photonics conference (SBFoton IOPC), 08–10 October 2018, Campinas, Brazil, 18403526.

    Google Scholar 

  59. Charlton C, de Melas F, Inberg A, Croitoru N, Mizaikoff B. Hollow-waveguide gas sensing with room-temperature quantum cascade lasers. IEE Proc Optoelectron. 2003;150(4):306–9.

    Article  Google Scholar 

  60. Fu H, Jiang Y, Ding J, Zhang J, Zhang M, Zhu Y, Li H. Zinc oxide nanoparticle incorporated graphene oxide as sensing coating for interferometric optical microfiber for ammonia gas detection. Sensors Actuators B Chem. 2018;254:239–47.

    Article  Google Scholar 

  61. Coelho L, Viegas D, Santos JL, de Almeida JMMM. Characterization of zinc oxide coated optical fiber long period gratings with improved refractive index sensing properties. Sensors Actuators B Chem. 2016;223:45–51.

    Article  Google Scholar 

  62. Konstantaki M, Klini A, Anglos D, Pissadakis S. An ethanol vapor detection probe based on a ZnO nanorod coated optical fiber long period grating. Opt Express. 2012;20:8472–84.

    Article  ADS  Google Scholar 

  63. Tabassum R, Mishra SK, Gupta BD. Surface plasmon resonance-based fiber optic hydrogen sulphide gas sensor utilizing Cu-ZnO thin films. Phys Chem Chem Phys. 2013;15(28):11868–74.

    Article  Google Scholar 

  64. Usha S, Mishra S, Gupta B. Fabrication and characterization of a SPR based fiber optic sensor for the detection of chlorine gas using silver and zinc oxide. Materials. 2015;8(5):2204–16.

    Article  ADS  Google Scholar 

  65. Usha SP, Mishra SK, Gupta BD. Fiber optic hydrogen sulfide gas sensors utilizing ZnO thin film/ZnO nanoparticles: a comparison of surface plasmon resonance and lossy mode resonance. Sensors Actuators B Chem. 2015;218:196–204.

    Article  Google Scholar 

  66. Del Villar I, Arregui FJ, Zamarreño CR, Corres JM, Bariain C, Goicoechea J, et al. Optical sensors based on lossy-mode resonances. Sensors Actuators B Chem. 2017;240:174–85.

    Article  Google Scholar 

  67. Rajeswari Yogamalar N, Sadhanandham K, Chandra Bose A, Jayavel R. Band alignment and depletion zone at ZnO/CdS and ZnO/CdSe hetero-structures for temperature independent ammonia vapor sensing. Phys Chem Chem Phys. 2016;18(47):32057–71.

    Article  Google Scholar 

  68. Bakar NA, Rahmi A, Umar AA, Salleh MM, Yahaya M. Fluorescence gas sensor using CdTe quantum dots film to detect volatile organic compounds. Mater Sci Forum. 2010;663–665:276–9.

    Article  Google Scholar 

  69. Chu C-S, Hsieh M-W. Optical fiber carbon dioxide sensor based on colorimetric change of α-naphtholphthalein and CIS/ZnS quantum dots incorporated with a polymer matrix. Opt Mater Express. 2019;9(7):2937–45.

    Article  ADS  Google Scholar 

  70. Ding L, Ruan Y, Li T, Huang J, Warren-Smith SC, Ebendorff-Heidepriem H, Monro TM. Nitric oxide optical fiber sensor based on exposed core fibers and CdTe/CdS quantum dots. Sensors Actuators B Chem. 2018;273:9–17.

    Article  Google Scholar 

  71. Sundaray M, Das C, Tripathy SK. Sensing application of an optical fiber dip coated with L-Cystein ethyl ester hydrochloride capped ZnTe quantum dots. Mater Sci-Pol. 2016;34(3):665–8.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, S., Paliwal, A., Kumar, P., Saxena, N. (2023). II–VI Semiconductor-Based Optical Gas Sensors. In: Korotcenkov, G. (eds) Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors. Springer, Cham. https://doi.org/10.1007/978-3-031-24000-3_12

Download citation

Publish with us

Policies and ethics