Skip to main content
Log in

Biosilicated CdSe/ZnS quantum dots as photoluminescent transducers for acetylcholinesterase-based biosensors

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

CdSe/ZnS core/shell quantum dots (QDs) are functionalized with mercaptoundecanoic acid (MUA) and subsequently covered with poly-l-lysine (PLL) as the template for the formation of the silica outer shell. This nanocomposite is used as a transduction and stabilization system for optical biosensor development. The covalent immobilization of the enzyme acetylcholinesterase from Drosophila melanogaster (AChE) during the formation of the biomimetically synthesized silica is used here as a model, relatively unstable enzyme, as a proof of principle. The enzyme is successfully immobilized onto the QDs and then stabilized by the PLL capping and the subsequent formation of the outer nanoporous silica thin shell, giving rise to the QD/AChE/PLL/silica biosensor. It is shown that the poly-l-lysine templated silica outer shell does not modify the optical properties of the quantum dots, while it protects the enzyme from unfolding and denaturation. The small pores of the silica shell allow for the free diffusion of the analyte to the active center of the enzyme, while it does not allow for the proteases to reach the enzyme. The response of the QD/AChE/PLL/silica nano-biosensor to its substrate, acetylcholine chloride, is evaluated by monitoring the changes in the QDs’ photoluminescence which are related to the changes in pH. These pH changes of the surrounding environment of the QDs are induced by the enzymatic reaction, and are associated with the analyte concentration in the solution. The biodetection system proposed is shown to be stable with a storage lifetime of more than 2 months. The data presented provides the grounds for the application of this nanostructured biosensor for the detection of AChE inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kulzer F, Kummer S, Matzke R, Bräuchle C, Basche T (1997) Nature 387:688–691

    Article  CAS  Google Scholar 

  2. Satsoura D, Leber B, Andrews DW, Fradin C (2007) Chemphyschem 8:834–848

    Article  CAS  Google Scholar 

  3. Dickson RM, Cubitt AB, Tsien RY, Moerner WE (1997) Nature 388:355–358

    Article  CAS  Google Scholar 

  4. Yu WW, Chang E, Drezek R, Colvin VL (2006) Biochem Biophys Res Commun 348

  5. Neeleshwar S, Chen CL, Tsai CB, Chen YY, Chen CC, Shyu SG, Seehra MS (2005) Phys Rev B 71:201307(R)

    Article  Google Scholar 

  6. Danek M, Jensen KF, Murray CB, Bawendi MG (1996) Chem Mater 8(1):173–180

    Article  CAS  Google Scholar 

  7. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Nat Mater 4:435–446

    Article  CAS  Google Scholar 

  8. Chan WCW, Nie S (1998) Science 281:2016–2018

    Article  CAS  Google Scholar 

  9. Willard DM, Carillo LL, Jung J, Van Orden A (2001) Nano Lett 1(9):469–474, 781–786

    Article  CAS  Google Scholar 

  10. Patolski F, Gill R, Weizmann Y, Mokari T, Banin U, Willner I (2003) J Am Chem Soc 125:13918–13919

    Article  Google Scholar 

  11. Clapp AR, Medintz IL, Mauro JM, Fisher BR, Bawendi MG, Mattoussi H (2004) J Am Chem Soc 126:301–310

    Article  CAS  Google Scholar 

  12. Hering VR, Gibson G, Schumacher RI, Faljoni-Alario A, Politi MJ (2007) Bioconjug Chem 18:1705–1708

    Article  CAS  Google Scholar 

  13. Liu YS, Sun Y, Vernier PT, Liang CH, Chong SYC, Gundersen MA (2007) J Phys Chem C 111:2872–2878

    Article  CAS  Google Scholar 

  14. Huang CP, Li YK, Chen TM (2007) Biosens Bioelectron 22:1835–1838

    Article  CAS  Google Scholar 

  15. Huang CP, Liu SW, Chen TM, Li YK (2008) Sens Actuators B 130:338–342

    Article  Google Scholar 

  16. Du D, Chen S, Song D, Li H, Chen X (2008) Biosens Bioelectron 24:475–479

    Article  CAS  Google Scholar 

  17. Tang L, Zhu Y, Yang X, Sun J, Li C (2008) Biosens Bioelectron 24:319–323

    Article  CAS  Google Scholar 

  18. Zhelev Z, Bakalova R, Ohba H, Jose R, Imai Y, Baba Y (2006) Anal Chem 78(1):321–330

    Article  CAS  Google Scholar 

  19. Kaul Z, Yaguchi T, Kaul SC, Hirano T, Wadhwa R, Taira K (2003) Cell Res 13:503–507

    Article  Google Scholar 

  20. Rosenthal SJ, Tomlinson I, Adkins EM, Schroeter S, Adams S, Swafford L, McBride J, Wang Y, DeFelice LJ, Blakely RD (2002) J Am Chem Soc 124:4586–4594

    Article  CAS  Google Scholar 

  21. Derfus AM, Chen WCW, Bhatia SN (2004) Nano Lett 4:11–18

    Article  CAS  Google Scholar 

  22. Cho SJ, Maysinger D, Jain M, Röder B, Hackbarth S, Winnik FM (2007) Langmuir 23:1974–1980

    Article  CAS  Google Scholar 

  23. Graf C, Dembski S, Kruger T, Gbureck U, Ewald A, Bock A, Ruhl E (2008) Small 4(9):1516–1526

    Article  Google Scholar 

  24. Kirchner C, Liedl T, Kudera S, Pellegrino T, Javier AM, Gaub HE, Stolzle S, Fertig N, Parak WJ (2005) Nano Lett 5:331–338

    Article  CAS  Google Scholar 

  25. Daou TJ, Li L, Reiss P, Josserand V, Texier I (2009) Langmuir 25:3040–3044

    Article  CAS  Google Scholar 

  26. Correa-Duarte MA, Giersig M, Liz-Marzan LM (1998) Chem Phys Lett 286:497–501

    Article  CAS  Google Scholar 

  27. Rogach AL, Nagesha D, Ostrander JW, Giersig M, Kotov NA (2000) Chem Mater 12:2676–2685

    Article  CAS  Google Scholar 

  28. Yang Y, Jing L, Yu X, Yan D, Gao M (2007) Chem Mater 19:4123–4128

    Article  CAS  Google Scholar 

  29. Chang SY, Liu L, Asher SA (1994) J Am Chem Soc 116:6739–6744

    Article  CAS  Google Scholar 

  30. Selvan ST, Tan TT, Ying JY (2005) Adv Mater 17:1620–1625

    Article  CAS  Google Scholar 

  31. Darbandi M, Thomann R, Nann T (2005) Chem Mater 17:5720–5725

    Article  CAS  Google Scholar 

  32. Shukoor MI, Natalio F, Therese HA, Tahir MN, Ksenofontov V, Panthöfer M, Eberhardt M, Theato P, Schröder HC, Müller WEG, Tremel W (2008) Chem Mater 20:3567–3573

    Article  CAS  Google Scholar 

  33. Leng B, Chen X, Shao Z, Ming W (2008) Small 4(6):755–758

    Article  CAS  Google Scholar 

  34. Zhang Q, Zhang L, Liu B, Lu X, Li J (2007) Biosens Bioelectron 23:695–700

    Article  CAS  Google Scholar 

  35. Wolcott A, Gerion D, Visconte M, Sun J, Schwartzberg A, Chen S, Zhang JZ (2006) J Phys Chem B 110(11):5779–5789

    Article  CAS  Google Scholar 

  36. Avnir D, Braun S, Lev O, Ottolenghi M (1994) Chem Mater 6:1605–1614

    Article  CAS  Google Scholar 

  37. Lei C, Shin Y, Liu J, Ackerman EJ (2002) J Am Chem Soc 124:11242–11243

    Article  CAS  Google Scholar 

  38. Fan J, Lei J, Wang L, Yu C, Tu B, Zhao D (2003) Chem Commun 2140–2141

  39. Naik RR, Tomczak MM, Luckarift HR, Spain JC, Stone MO (2004) Chem Commun 1684–1685

  40. Vamvakaki V, Hatzimarinaki M, Chaniotakis N (2008) Anal Chem 80:5970–5975

    Article  CAS  Google Scholar 

  41. Hatzimarinaki M, Vamvakaki V, Chaniotakis N (2009) J Mater Chem 19:1–7

    Article  Google Scholar 

  42. Patwardhan SV, Mukherjee N, Steinitz-Kannan M, Clarson SJ (2003) Chem Commun 10:1122–1123

    Article  Google Scholar 

  43. Dembski S, Graf C, Krüger T, Gbureck U, Ewald A, Bock A, Rühl E (2008) Small 4(9):1516–1526

    Article  CAS  Google Scholar 

  44. Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) Biochem Pharmacol 7:88–95

    Article  CAS  Google Scholar 

  45. Krimm S, Bandekar J (1986) Adv Protein Chem 38:181–364

    Article  CAS  Google Scholar 

  46. Bandekar J (1992) Biochim Biophys Acta 1120:123–143

    CAS  Google Scholar 

  47. Barth A, Zscherp C (2002) Q Rev Biophys 35:369–430

    Article  CAS  Google Scholar 

  48. Sotiropoulou S, Chaniotakis NA (2005) Biomaterials 26:6771–6779

    Article  CAS  Google Scholar 

  49. Wu S, Ju H, Liu Y (2007) Adv Funct Mater 17:585–592

    Article  CAS  Google Scholar 

  50. Almeida RM, Guiton TA, Pantano CG (1990) J Non-Cryst Solids 121:193–197

    Article  CAS  Google Scholar 

  51. Perry CC, Li X, Waters DN (1991) Spectrochim Acta 47A:1487–1494

    CAS  Google Scholar 

  52. Innocenzi P (2003) J Non-Cryst Solids 316:309–319

    Article  CAS  Google Scholar 

  53. Fidalgo A, Cirimanna R, Ilharco LM, Pagliaro M (2005) Chem Mater 17:6686–6694

    Article  CAS  Google Scholar 

  54. Bertoluzza A, Fagnano C, Morelli MA, Gottardi V, Guglielmi M (1982) J Non-Cryst Solids 48:117–128

    Article  CAS  Google Scholar 

  55. Martinez JR, Ruiz F, Vorobiev YV, Perez-Robles F, Gonzalez-Hernandez J (1998) J Chem Phys 109:7511–7514

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is being supported by the programs NANOMYC (Contract No. 036812) and SANTS (Contract No. 033254) of the European Commission. The authors would like to thank Mrs. Sevasti Papadogiorgaki and Mrs. Alexandra Siakouli from the “Vassilis Galanopoulos” Electron Microscopy Laboratory, for assistance with the transmission electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos A. Chaniotakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buiculescu, R., Hatzimarinaki, M. & Chaniotakis, N.A. Biosilicated CdSe/ZnS quantum dots as photoluminescent transducers for acetylcholinesterase-based biosensors. Anal Bioanal Chem 398, 3015–3021 (2010). https://doi.org/10.1007/s00216-010-4253-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4253-z

Keywords

Navigation