Skip to main content

Taxonomy, Biodiversity, and Physiology of Sourdough Yeasts

  • Chapter
  • First Online:
Handbook on Sourdough Biotechnology

Abstract

Yeasts are unicellular fungi found in many fermented foods. They play an important role in sourdough, by producing CO2 allowing the dough to rise as well as formation of aroma. This chapter describes yeasts usually found in sourdough, including their ecology, evolution, and metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nagy LG, Ohm RA, Kovács GM, Floudas D, Riley R, Gácser A et al (2014) Latent homology and convergent regulatory evolution underlies the repeated emergence of yeasts. Nat Commun 5:4471

    Article  CAS  PubMed  Google Scholar 

  2. Vu D, Groenewald M, Szöke S, Cardinali G, Eberhardt U, Stielow B et al (2016) DNA barcoding analysis of more than 9000 yeast isolates contributes to quantitative thresholds for yeast species and genera delimitation. Stud Mycol 85:91–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kurtzman C, Robnett C, Basehoar-Powers E (2008) Phylogenetic relationships among species of Pichia, Issatchenkia and Williopsis determined from multigene sequence analysis, and the proposal of Barnettozyma gen. nov., Lindnera gen. nov. and Wickerhamomyces gen. nov. FEMS Yeast Res. https://doi.org/10.1111/j.1567-1364.2008.00419.x

  4. Jacques N, Sarilar V, Urien C, Lopes MR, Morais CG, Uetanabaro APT et al (2016) Three novel ascomycetous yeast species of the Kazachstania clade, Kazachstania saulgeensis sp. nov., Kazachstania serrabonitensis sp. nov. and Kazachstania australis sp. nov. Reassignment of Candida humilis to Kazachstania humilis f.a. comb. nov. and Candida pseudohumilis to Kazachstania pseudohumilis f.a. comb. nov. Int J Syst Evol Microbiol 66:5192–5200

    Article  CAS  PubMed  Google Scholar 

  5. Lachance M-A (2018) C. P. Kurtzman’s evolving concepts of species, genus and higher categories. FEMS Yeast Res. https://doi.org/10.1093/femsyr/foy103

  6. Kurtzman CP, Robnett CJ (1998) Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73:331–371

    Article  CAS  PubMed  Google Scholar 

  7. Libkind D, Čadež N, Opulente DA, Langdon QK, Rosa CA, Sampaio JP et al (2020) Towards yeast taxogenomics: lessons from novel species descriptions based on complete genome sequences. FEMS Yeast Res 20:foaa042

    Article  CAS  PubMed  Google Scholar 

  8. Dujon B (2010) Yeast evolutionary genomics. Nat Rev Genet 11:512–524

    Article  CAS  PubMed  Google Scholar 

  9. Libkind D, Hittinger CT, Valério E, Gonçalves C, Dover J, Johnston M et al (2011) Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proc Natl Acad Sci USA 108:14539–14544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Landis EA, Oliverio AM, McKenney EA, Nichols LM, Kfoury N, Biango-Daniels M et al (2021) The diversity and function of sourdough starter microbiomes. elife 10:e61644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kurtzman CP, Fell JW, Boekhout T (2011) The yeasts. A taxonomic study, volume 1. 539

    Google Scholar 

  12. Carbonetto B, Ramsayer J, Nidelet T, Legrand J, Sicard D (2018) Bakery yeasts, a new model for studies in ecology and evolution. Yeast 35:591–603

    Article  CAS  PubMed  Google Scholar 

  13. Sarilar V, Sterck L, Matsumoto S, Jacques N, Neuvéglise C, Tinsley CR et al (2017) Genome sequence of the type strain CLIB 1764T (= CBS 14374T) of the yeast species Kazachstania saulgeensis isolated from French organic sourdough. Genomics Data 13:41–43

    Article  PubMed  PubMed Central  Google Scholar 

  14. De Vuyst L, Harth H, Van Kerrebroeck S, Leroy F (2016) Yeast diversity of sourdoughs and associated metabolic properties and functionalities. Int J Food Microbiol 239:26–34

    Article  PubMed  Google Scholar 

  15. De Vuyst L, Van Kerrebroeck S, Harth H, Huys G, Daniel H-M, Weckx S (2014) Microbial ecology of sourdough fermentations: diverse or uniform? Food Microbiol 37:11–29

    Article  PubMed  Google Scholar 

  16. Huys G, Daniel H-M, De Vuyst L (2013) Taxonomy and biodiversity of sourdough yeasts and lactic acid bacteria. In: Gobbetti M, Gänzle M (eds) Handbook on Sourdough biotechnology. Springer, Boston, MA, pp 105–154

    Chapter  Google Scholar 

  17. Sugihara TF, Kline L, Miller MW (1971) Microorganisms of the San Francisco sour dough bread process: I. Yeasts responsible for the leavening action. Appl Microbiol 21:456–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Spicher G, Schröder R (1979) Die Mikroflora des Sauerteiges. Z Für Lebensm-Unters Forsch 168:188–192

    Article  CAS  Google Scholar 

  19. Barber S, Baguena R, Martinez-Anaya MA, Torner MJ, Consejo S de IC (1983) Microflora of the sour dough of wheat flour bread, 1: Identification and functional properties of microorganisms of industrial sour doughs. Rev Agroquim Tecnol Aliment Spain

    Google Scholar 

  20. Salovaara H, Savolainen J (1984) Yeast type isolated from Finnish sour rye dough starters. Acta Aliment, Pol, p 10

    Google Scholar 

  21. Barber S, Baguena R, Consejo S de IC (1988) Microflora of the sour dough of wheat flour bread, 5: Isolation, identification and evaluation of functional properties of sour dough’s microorganisms. Rev Agroquim Tecnol Aliment Spain

    Google Scholar 

  22. Hamad SH, Böcker G, Vogel RF, Hammes WP (1992) Microbiological and chemical analysis of fermented sorghum dough for Kisra production. Appl Microbiol Biotechnol 37:728–731

    Article  CAS  Google Scholar 

  23. Infantes M (Institut N de la RA, Schmidt JL (1992) Characterisation of the yeast flora of natural sourdoughs located in various french areas. Sci Aliments Fr

    Google Scholar 

  24. Boraam F, Faid M, Larpent JP, Breton A (1993) Lactic acid bacteria and yeast associated with traditional Moroccan sour-dough bread fermentation. Lact Acid Bact Yeast Assoc Tradit Moroc Sour-Dough Bread Ferment 13:501–509

    Google Scholar 

  25. Iorizzo M, Coppola R, Sorrentino E, Grazia L (1995) Caratterizzazione microbiologica di paste acide Molisane. Caratter Microbiol Paste Acide Molisane 34:1290–1294

    Google Scholar 

  26. Almeida MJ, Pais CS (1996) Characterization of the yeast population from traditional corn and rye bread doughs. Lett Appl Microbiol 23:154–158

    Article  Google Scholar 

  27. Foschino R, Terraneo R, Mora D, Galli A (1999) Microbial characterization of sourdoughs for sweet baked products. Ital J Food Sci 11:19–28

    Google Scholar 

  28. Mäntynen VH, Korhola M, Gudmundsson H, Turakainen H, Alfredsson GA, Salovaara H et al (1999) A polyphasic study on the taxonomic position of industrial sour dough yeasts. Syst Appl Microbiol 22:87–96

    Article  PubMed  Google Scholar 

  29. Paramithiotis S, Müller MRA, Ehrmann MA, Tsakalidou E, Seiler H, Vogel R et al (2000) Polyphasic identification of wild yeast strains isolated from Greek sourdoughs. Syst Appl Microbiol 23:156–164

    Article  CAS  PubMed  Google Scholar 

  30. Rosenquist H, Hansen Å (2000) The microbial stability of two bakery sourdoughs made from conventionally and organically grown rye. Food Microbiol 17:241–250

    Article  CAS  Google Scholar 

  31. Pulvirenti A, Caggia C, Restuccia C, Gullo M, Giudici P (2001) DNA fingerprinting methods used for identification of yeasts isolated from Sicilian sourdoughs. Ann Microbiol 51:107–120

    CAS  Google Scholar 

  32. Gullo M, Romano AD, Pulvirenti A, Giudici P (2003) Candida humilis—dominant species in sourdoughs for the production of durum wheat bran flour bread. Int J Food Microbiol 80:55–59

    Article  CAS  PubMed  Google Scholar 

  33. Succi M, Reale A, Andrighetto C, Lombardi A, Sorrentino E, Coppola R (2003) Presence of yeasts in southern Italian sourdoughs from Triticum aestivum flour. FEMS Microbiol Lett 225:143–148

    Article  CAS  PubMed  Google Scholar 

  34. Foschino R, Gallina S, Andrighetto C, Rossetti L, Galli A (2004) Comparison of cultural methods for the identification and molecular investigation of yeasts from sourdoughs for Italian sweet baked products. FEMS Yeast Res 4:609–618

    Article  CAS  PubMed  Google Scholar 

  35. Gatto V, Torriani S (2004) Microbial population changes during sourdough fermentation monitored by DGGE analysis of 16S and 26S rRNA gene fragments. Ann Microbiol 54:31–42

    CAS  Google Scholar 

  36. Pulvirenti A, Solieri L, Gullo M, Vero LD, Giudici P (2004) Occurrence and dominance of yeast species in sourdough. Lett Appl Microbiol 38:113–117

    Article  CAS  PubMed  Google Scholar 

  37. Vernocchi P, Valmorri S, Gatto V, Torriani S, Gianotti A, Suzzi G et al (2004) A survey on yeast microbiota associated with an Italian traditional sweet-leavened baked good fermentation. Food Res Int 37:469–476

    Article  CAS  Google Scholar 

  38. Garofalo C, Silvestri G, Aquilanti L, Clementi F (2008) PCR-DGGE analysis of lactic acid bacteria and yeast dynamics during the production processes of three varieties of Panettone. J Appl Microbiol 105:243–254

    Article  CAS  PubMed  Google Scholar 

  39. Vrancken G, De Vuyst L, Van der Meulen R, Huys G, Vandamme P, Daniel H-M (2010) Yeast species composition differs between artisan bakery and spontaneous laboratory sourdoughs. FEMS Yeast Res 10:471–481

    Article  CAS  PubMed  Google Scholar 

  40. Iacumin L, Cecchini F, Manzano M, Osualdini M, Boscolo D, Orlic S et al (2009) Description of the microflora of sourdoughs by culture-dependent and culture-independent methods. Food Microbiol 26:128–135

    Article  CAS  PubMed  Google Scholar 

  41. Luangsakul N, Keeratipibul S, Jindamorakot S, Tanasupawat S (2009) Lactic acid bacteria and yeasts isolated from the starter doughs for Chinese steamed buns in Thailand. LWT Food Sci Technol 42:1404–1412

    Article  CAS  Google Scholar 

  42. Osimani A, Zannini E, Aquilanti L, Mannazzu I, Comitini F, Clementi F (2009) Lactic acid bacteria and yeasts from wheat sourdoughs of the Marche Region. https://doi.org/10.1186/1475-2589-8-55

  43. Saeed M, Anjum FM, Zahoor T, Nawaz H, Sajjad-Ur-Rehman (2009) Isolation and characterization of starter culture from spontaneous fermentation of sourdough. Int J Agric Biol 11:329–332

    CAS  Google Scholar 

  44. Paramithiotis S, Tsiasiotou S, Drosinos EH (2010) Comparative study of spontaneously fermented sourdoughs originating from two regions of Greece: Peloponnesus and Thessaly. Eur Food Res Technol 231:883–890

    Article  CAS  Google Scholar 

  45. Valmorri S, Tofalo R, Settanni L, Corsetti A, Suzzi G (2010) Yeast microbiota associated with spontaneous sourdough fermentations in the production of traditional wheat sourdough breads of the Abruzzo region (Italy)

    Google Scholar 

  46. Moroni AV, Arendt EK, Bello FD (2011) Biodiversity of lactic acid bacteria and yeasts in spontaneously-fermented buckwheat and teff sourdoughs. Food Microbiol 28:497–502

    Article  PubMed  Google Scholar 

  47. Zhang J, Liu W, Sun Z, Bao Q, Wang F, Yu J et al (2011) Diversity of lactic acid bacteria and yeasts in traditional sourdoughs collected from western region in Inner Mongolia of China. Food Control 22:767–774

    Article  CAS  Google Scholar 

  48. Nuobariene L, Hansen ÅS, Arneborg N (2012) Isolation and identification of phytase-active yeasts from sourdoughs. LWT Food Sci Technol 48:190–196

    Article  CAS  Google Scholar 

  49. Minervini F, Cagno RD, Lattanzi A, Angelis MD, Antonielli L, Cardinali G et al (2012a) Lactic acid bacterium and yeast microbiotas of 19 sourdoughs used for traditional/typical Italian breads: interactions between ingredients and microbial species diversity. Appl Environ Microbiol 78:1251–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Minervini F, Lattanzi A, De Angelis M, Di Cagno R, Gobbetti M (2012b) Influence of artisan bakery- or laboratory-propagated sourdoughs on the diversity of lactic acid bacterium and yeast microbiotas. Appl Environ Microbiol 78:5328–5340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Desiye A, Abegaz K (2013) Isolation, characterization and identification of lactic acid bacteria and yeast involved in fermentation of Teff (EragrostisTef) Batter. undefined

    Google Scholar 

  52. Lhomme E, Sandra M (2014) A polyphasic approach to study the dynamics of microbial population of an organic wheat sourdough during its conversion to gluten-free sourdough. Int Microbiol:1–9

    Google Scholar 

  53. Zhang G, Sadiq FA, Zhu L, Liu T, Yang H, Wang X et al (2015) Investigation of microbial communities of chinese sourdoughs using culture-dependent and DGGE approaches. J Food Sci 80:M2535–M2542

    Article  CAS  PubMed  Google Scholar 

  54. Minervini F, Lattanzi A, De Angelis M, Celano G, Gobbetti M (2015) House microbiotas as sources of lactic acid bacteria and yeasts in traditional Italian sourdoughs. Food Microbiol 52:66–76

    Article  CAS  PubMed  Google Scholar 

  55. Lhomme E, Lattanzi A, Dousset X, Minervini F, De Angelis M, Lacaze G et al (2015) Lactic acid bacterium and yeast microbiotas of sixteen French traditional sourdoughs. Int J Food Microbiol 215:161–170

    Article  CAS  PubMed  Google Scholar 

  56. Lhomme E, Urien C, Legrand J, Dousset X, Onno B, Sicard D (2016) Sourdough microbial community dynamics: an analysis during French organic bread-making processes. Food Microbiol 53:41–50

    Article  CAS  PubMed  Google Scholar 

  57. Arici M, Ozulku G, Yildirim RM, Sagdic O, Durak MZ (2017) Biodiversity and technological properties of yeasts from Turkish sourdough. Food Sci Biotechnol 27:499–508

    PubMed  PubMed Central  Google Scholar 

  58. Decimo M, Quattrini M, Ricci G, Fortina MG, Brasca M, Silvetti T et al (2017) Evaluation of microbial consortia and chemical changes in spontaneous maize bran fermentation. AMB Express. https://doi.org/10.1186/s13568-017-0506-y

  59. Liu T, Li Y, Sadiq FA, Yang H, Gu J, Yuan L et al (2018) Predominant yeasts in Chinese traditional sourdough and their influence on aroma formation in Chinese steamed bread. Food Chem 242:404–411

    Article  CAS  PubMed  Google Scholar 

  60. Urien C, Legrand J, Montalent P, Casaregola S, Sicard D (2019) Fungal species diversity in French bread sourdoughs made of organic wheat flour. Front Microbiol. https://doi.org/10.3389/fmicb.2019.00201

  61. Reese AT, Madden AA, Joossens M, Lacaze G, Dunn RR (2020) Influences of ingredients and bakers on the bacteria and fungi in sourdough starters and bread. mSphere. https://doi.org/10.1128/mSphere.00950-19

  62. Syrokou MK, Themeli C, Paramithiotis S, Mataragas M, Bosnea L, Argyri AA, et al (2020) Microbial ecology of Greek wheat sourdoughs, identified by a culture-dependent and a culture-independent approach. Foods Basel Switz. https://doi.org/10.3390/foods9111603

  63. Fraberger V, Unger C, Kummer C, Domig KJ (2020) Insights into microbial diversity of traditional Austrian sourdough. LWT 127:109358

    Article  CAS  Google Scholar 

  64. Comasio A, Verce M, Van Kerrebroeck S, De Vuyst L (2020) Diverse microbial composition of sourdoughs from different origins. Front Microbiol. https://doi.org/10.3389/fmicb.2020.01212

  65. Chiva R, Celador-Lera L, Uña JA, Jiménez-López A, Espinosa-Alcantud M, Mateos-Horganero E et al (2021) Yeast biodiversity in fermented doughs and raw cereal matrices and the study of technological traits of selected strains isolated in Spain. Microorganisms 9:47

    Article  CAS  Google Scholar 

  66. Mortimer R, Polsinelli M (1999) On the origins of wine yeast. Res Microbiol 150:199–204

    Article  CAS  PubMed  Google Scholar 

  67. Stefanini I, Dapporto L, Legras J-L, Calabretta A, Di Paola M, De Filippo C et al (2012) Role of social wasps in Saccharomyces cerevisiae ecology and evolution. Proc Natl Acad Sci USA 109:13398–13403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Francesca N, Canale DE, Settanni L, Moschetti G (2012) Dissemination of wine-related yeasts by migratory birds. Environ Microbiol Rep 4:105–112

    Article  PubMed  Google Scholar 

  69. Ricci I, Damiani C, Scuppa P, Mosca M, Crotti E, Rossi P et al (2011) The yeast Wickerhamomyces anomalus (Pichia anomala) inhabits the midgut and reproductive system of the Asian malaria vector Anopheles stephensi. Environ Microbiol 13:911–921

    Article  CAS  PubMed  Google Scholar 

  70. Stefanini I (2018) Yeast-insect associations: it takes guts. Yeast Chichester Engl 35:315–330

    Article  CAS  Google Scholar 

  71. Christiaens JF, Franco LM, Cools TL, De Meester L, Michiels J, Wenseleers T et al (2014) The fungal aroma gene ATF1 promotes dispersal of yeast cells through insect vectors. Cell Rep 9:425–432

    Article  CAS  PubMed  Google Scholar 

  72. Egert M, Simmering R (2016) The microbiota of the human skin. In: Schwiertz A (ed) Microbiota Hum. Body Implic. Health Dis. Springer, Cham, pp 61–81

    Chapter  Google Scholar 

  73. Leung MHY, Tong X, Bastien P, Guinot F, Tenenhaus A, Appenzeller BMR et al (2020) Changes of the human skin microbiota upon chronic exposure to polycyclic aromatic hydrocarbon pollutants. Microbiome 8:1–17

    Article  Google Scholar 

  74. Goddard MR, Anfang N, Tang R, Gardner RC, Jun C (2010) A distinct population of Saccharomyces cerevisiae in New Zealand: evidence for local dispersal by insects and human-aided global dispersal in oak barrels. Environ Microbiol 12:63–73

    Article  CAS  PubMed  Google Scholar 

  75. Van der Meulen R, Scheirlinck I, Van Schoor A, Huys G, Vancanneyt M, Vandamme P et al (2007) Population dynamics and metabolite target analysis of lactic acid bacteria during laboratory fermentations of wheat and spelt sourdoughs. Appl Environ Microbiol 73:4741–4750

    Article  PubMed  PubMed Central  Google Scholar 

  76. Celano G, De Angelis M, Minervini F, Gobbetti M (2016) Different flour microbial communities drive to sourdoughs characterized by diverse bacterial strains and free amino acid profiles. Front Microbiol. https://doi.org/10.3389/fmicb.2016.01770

  77. Gobbetti M, Minervini F, Pontonio E, Di Cagno R, De Angelis M (2016) Drivers for the establishment and composition of the sourdough lactic acid bacteria biota. Int J Food Microbiol 239:3–18

    Article  PubMed  Google Scholar 

  78. Scheirlinck I, der Meulen RV, Vuyst LD, Vandamme P, Huys G (2009) Molecular source tracking of predominant lactic acid bacteria in traditional Belgian sourdoughs and their production environments. J Appl Microbiol 106:1081–1092

    Article  CAS  PubMed  Google Scholar 

  79. De Vuyst L, Van Kerrebroeck S, Leroy F (2017) Microbial ecology and process technology of sourdough fermentation. Adv Appl Microbiol Elsevier:49–160

    Article  Google Scholar 

  80. Vogelmann SA, Hertel C (2011) Impact of ecological factors on the stability of microbial associations in sourdough fermentation. Food Microbiol 28:583–589

    Article  CAS  PubMed  Google Scholar 

  81. Meroth CB, Hammes WP, Hertel C (2003) Identification and population dynamics of yeasts in sourdough fermentation processes by PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 69:7453–7461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bessmeltseva M, Viiard E, Simm J, Paalme T, Sarand I (2014) Evolution of bacterial consortia in spontaneously started rye sourdoughs during two months of daily propagation. PLoS One. https://doi.org/10.1371/journal.pone.0095449

  83. Brandt MJ, Hammes WP, Gänzle MG (2004) Effects of process parameters on growth and metabolism of Lactobacillus sanfranciscensis and Candida humilis during rye sourdough fermentation. Eur Food Res Technol 218:333–338

    Article  CAS  Google Scholar 

  84. Gänzle MG, Ehmann M, Hammes WP (1998) Modeling of growth of Lactobacillus sanfranciscensis and Candida milleri in response to process parameters of sourdough fermentation. Appl Environ Microbiol 64:2616–2623

    Article  PubMed  PubMed Central  Google Scholar 

  85. Di Cagno R, Pontonio E, Buchin S, De Angelis M, Lattanzi A, Valerio F et al (2014) Diversity of the lactic acid bacterium and yeast microbiota in the switch from firm- to liquid-sourdough fermentation. Appl Environ Microbiol 80:3161–3172

    Article  PubMed  PubMed Central  Google Scholar 

  86. Pétel C, Onno B, Prost C (2017) Sourdough volatile compounds and their contribution to bread: a review. Trends Food Sci Technol 59:105–123

    Article  Google Scholar 

  87. Vrancken G, Rimaux T, Weckx S, Leroy F, Vuyst LD (2011) Influence of temperature and backslopping time on the microbiota of a type I propagated laboratory wheat sourdough fermentation. Appl Environ Microbiol 77:2716–2726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Vellend M (2010) Conceptual synthesis in community ecology. Q Rev Biol 85:183–206

    Article  PubMed  Google Scholar 

  89. Palla M, Agnolucci M, Calzone A, Giovannetti M, Di Cagno R, Gobbetti M et al (2019) Exploitation of autochthonous Tuscan sourdough yeasts as potential starters. Int J Food Microbiol 302:59–68

    Article  CAS  PubMed  Google Scholar 

  90. El-Fiky ZA, Hassan GM, Emam AM (2012) Quality parameters and RAPD-PCR differentiation of commercial Baker’s yeast and hybrid strains. J Food Sci 77:M312–M317

    Article  CAS  PubMed  Google Scholar 

  91. Yang H, Liu T, Zhang G, He G (2020) Intraspecific diversity and fermentative properties of Saccharomyces cerevisiae from Chinese traditional sourdough. LWT 124:109195

    Article  CAS  Google Scholar 

  92. Bigey F, Segond D, Friedrich A, Guezenec S, Bourgais A, Huyghe L et al (2021) Evidence for two main domestication trajectories in Saccharomyces cerevisiae linked to distinct bread-making processes. Curr Biol 31:722–732.e5

    Article  CAS  PubMed  Google Scholar 

  93. Jayaram VB, Cuyvers S, Verstrepen KJ, Delcour JA, Courtin CM (2014a) Succinic acid in levels produced by yeast (Saccharomyces cerevisiae) during fermentation strongly impacts wheat bread dough properties. Food Chem 151:421–428

    Article  CAS  PubMed  Google Scholar 

  94. Jayaram VB, Rezaei MN, Cuyvers S, Verstrepen KJ, Delcour JA, Courtin CM (2014b) Ethanol at levels produced by Saccharomyces cerevisiae during wheat dough fermentation has a strong impact on dough properties. J Agric Food Chem 62:9326–9335

    Article  CAS  PubMed  Google Scholar 

  95. Birch AN, Petersen MA, Hansen ÅS (2013) The aroma profile of wheat bread crumb influenced by yeast concentration and fermentation temperature. LWT Food Sci Technol 50:480–488

    Article  CAS  Google Scholar 

  96. Pico J, Bernal J, Gómez M (2015) Wheat bread aroma compounds in crumb and crust: a review. Food Res Int 75:200–215

    Article  CAS  PubMed  Google Scholar 

  97. Aslankoohi E, Herrera-Malaver B, Rezaei MN, Steensels J, Courtin CM, Verstrepen KJ (2016) Non-conventional yeast strains increase the aroma complexity of bread. PLoS One 11:e0165126

    Article  PubMed  PubMed Central  Google Scholar 

  98. Daniel H-M, Moons M-C, Huret S, Vrancken G, De Vuyst L (2011) Wickerhamomyces anomalus in the sourdough microbial ecosystem. Antonie Van Leeuwenhoek 99:63–73

    Article  PubMed  Google Scholar 

  99. Samuel D (1994) An archaeological study of baking and bread in New Kingdom Egypt. https://doi.org/10.17863/CAM.15973

  100. Samuel D (2002) Bread in archaeology. Civilis Rev Int D’anthropologie Sci Hum, 27–36

    Google Scholar 

  101. Shevchenko A, Yang Y, Knaust A, Thomas H, Jiang H, Lu E et al (2014) Proteomics identifies the composition and manufacturing recipe of the 2500-year old sourdough bread from Subeixi cemetery in China. J Proteome 105:363–371

    Article  CAS  Google Scholar 

  102. Gobbetti M (1998) The sourdough microflora: interactions of lactic acid bacteria and yeasts. Trends Food Sci Technol 9:267–274

    Article  CAS  Google Scholar 

  103. Carbonetto B, Nidelet T, Guezenec S, Perez M, Segond D, Sicard D (2020) Interactions between Kazachstania humilis yeast species and lactic acid bacteria in sourdough. Microorganisms. https://doi.org/10.3390/microorganisms8020240

  104. Boudaoud S, Aouf C, Devillers H, Sicard D, Segond D (2021a) Sourdough yeast-bacteria interactions can change ferulic acid metabolism during fermentation. Food Microbiol 103790

    Google Scholar 

  105. Rogalski E, Ehrmann MA, Vogel RF (2020) Role of Kazachstania humilis and Saccharomyces cerevisiae in the strain-specific assertiveness of Fructilactobacillus sanfranciscensis strains in rye sourdough. Eur Food Res Technol 246:1817–1827

    Article  CAS  Google Scholar 

  106. Hoeksema JD (2015) Bruna EM Context-dependent outcomes of mutualistic interactions. Oxford University Press

    Google Scholar 

  107. Johnson NC, Wilson GWT, Wilson JA, Miller RM, Bowker MA (2015) Mycorrhizal phenotypes and the law of the minimum. New Phytol 205:1473–1484

    Article  CAS  PubMed  Google Scholar 

  108. Winters M, Panayotides D, Bayrak M, Rémont G, Viejo CG, Liu D et al (2019) Defined co-cultures of yeast and bacteria modify the aroma, crumb and sensory properties of bread. J Appl Microbiol 127:778–793

    Article  CAS  PubMed  Google Scholar 

  109. Wurz REM, Kepner RE, Webb AD (1988) The biosynthesis of certain gamma-lactones from glutamic acid by film yeast activity on the surface of flor sherry. Am J Enol Vitic 39:234–238

    Article  CAS  Google Scholar 

  110. Marzluf GA (1997) Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev MMBR 61:17–32

    CAS  PubMed  Google Scholar 

  111. Levy S, Ihmels J, Carmi M, Weinberger A, Friedlander G, Barkai N (2007) Strategy of transcription regulation in the budding yeast. PLoS One 2:e250

    Article  PubMed  PubMed Central  Google Scholar 

  112. Gianotti A, Vannini L, Gobbetti M, Corsetti A, Gardini F, Guerzoni ME (1997) Modelling of the activity of selected starters during sourdough fermentation. Food Microbiol 14:327–337

    Article  Google Scholar 

  113. Wehrle K, Arendt EK (1998) Rheological changes in wheat sourdough during controlled and spontaneous fermentation. Cereal Chem 75:882–886

    Article  CAS  Google Scholar 

  114. Paramithiotis S, Gioulatos S, Tsakalidou E, Kalantzopoulos G (2006) Interactions between Saccharomyces cerevisiae and lactic acid bacteria in sourdough. Process Biochem 41:2429–2433

    Article  CAS  Google Scholar 

  115. Yeh LT, Wu M-L, Charles AL, Huang T-C (2009) A novel steamed bread making process using salt-stressed baker’s yeast. Int J Food Sci Technol 44:2637–2643

    Article  CAS  Google Scholar 

  116. Verduyn C, Zomerdijk TPL, van Dijken JP, Scheffers WA (1984) Continuous measurement of ethanol production by aerobic yeast suspensions with an enzyme electrode. Appl Microbiol Biotechnol 19:181–185

    Article  CAS  Google Scholar 

  117. Käppeli O (1987) Regulation of carbon metabolism in Saccharomyces cerevisiae and related yeasts. In: Rose AH, Tempest DW (eds) Advances in Microbial Physiology. Academic Press, pp 181–209

    Google Scholar 

  118. Özcan S, Johnston M (1999) Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev 63:554–569

    Article  PubMed  PubMed Central  Google Scholar 

  119. Reifenberger E, Boles E, Ciriacy M (1997) Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur J Biochem 245:324–333

    Article  CAS  PubMed  Google Scholar 

  120. Barnett JA, Entian K-D (2005) A history of research on yeasts 9: regulation of sugar metabolism1. Yeast 22:835–894

    Article  CAS  PubMed  Google Scholar 

  121. Hagman A, Säll T, Compagno C, Piskur J (2013) Yeast “make-accumulate-consume” life strategy evolved as a multi-step process that predates the whole genome duplication. PLoS One 8:e68734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hagman A, Säll T, Piškur J (2014) Analysis of the yeast short-term Crabtree effect and its origin. FEBS J 281:4805–4814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Perez-Samper G, Cerulus B, Jariani A, Vermeersch L, Simancas NB, Bisschops MMM, et al. (2018) The crabtree effect shapes the Saccharomyces cerevisiae lag phase during the switch between different carbon sources. mBio. https://doi.org/10.1128/mBio.01331-18

  124. Rolland F, Winderickx J, Thevelein JM (2002) Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Res 2:183–201

    Article  CAS  PubMed  Google Scholar 

  125. Zaman S, Lippman SI, Zhao X, Broach JR (2008) How Saccharomyces responds to nutrients. Annu Rev Genet 42:27–81

    Article  CAS  PubMed  Google Scholar 

  126. Santangelo GM (2006) Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:253–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Turcotte B, Liang XB, Robert F, Soontorngun N (2009) Transcriptional regulation of nonfermentable carbon utilization in budding yeast. FEMS Yeast Res 10:2–13

    Article  PubMed  Google Scholar 

  128. Fendt S-M, Sauer U (2010) Transcriptional regulation of respiration in yeast metabolizing differently repressive carbon substrates. BMC Syst Biol 4:12

    Article  PubMed  PubMed Central  Google Scholar 

  129. Goddard MR (2008) Quantifying the complexities of Saccharomyces cerevisiae’s ecosystem engineering via fermentation. Ecology 89:2077–2082

    Article  PubMed  Google Scholar 

  130. Rokhlenko O, Wexler Y, Yakhini Z (2007) Similarities and differences of gene expression in yeast stress conditions. Bioinformatics 23:e184–e190

    Article  CAS  PubMed  Google Scholar 

  131. Ball CA, Dolinski K, Dwight SS, Harris MA, Issel-Tarver L, Kasarskis A et al (2000) Integrating functional genomic information into the Saccharomyces genome database. Nucleic Acids Res 28:77–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Gasch AP (2003) The environmental stress response: a common yeast response to diverse environmental stresses. In: Hohmann S, Mager WH (eds) Yeast stress responses. Springer, Berlin, Heidelberg, pp 11–70

    Chapter  Google Scholar 

  133. Bose S, Dutko JA, Zitomer RS (2005) Genetic factors that regulate the attenuation of the general stress response of yeast. Genetics 169:1215–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Barber B, Ortolá C, Barber S, Fernández F (1992) Storage of packaged white bread. Z Für Lebensm-Unters Forsch 194:442–449

    Article  CAS  Google Scholar 

  135. Serrazanetti DI, Guerzoni ME, Corsetti A, Vogel R (2009) Metabolic impact and potential exploitation of the stress reactions in lactobacilli. Food Microbiol 26:700–711

    Article  CAS  PubMed  Google Scholar 

  136. Hüfner E, Britton RA, Roos S, Jonsson H, Hertel C (2008) Global transcriptional response of Lactobacillus reuteri to the sourdough environment. Syst Appl Microbiol 31:323–338

    Article  PubMed  Google Scholar 

  137. Häggman M, Salovaara H (2008) Effect of fermentation rate on endogenous leavening of Candida milleri in sour rye dough. Food Res Int 41:266–273

    Article  Google Scholar 

  138. Tai SL, Daran-Lapujade P, Walsh MC, Pronk JT, Daran J-M (2007) Acclimation of Saccharomyces cerevisiae to low temperature: a chemostat-based transcriptome analysis. Mol Biol Cell 18:5100–5112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sahara T, Goda T, Ohgiya S (2002) Comprehensive expression analysis of time-dependent genetic responses in yeast cells to low temperature*. J Biol Chem 277:50015–50021

    Article  CAS  PubMed  Google Scholar 

  140. Schade B, Jansen G, Whiteway M, Entian KD, Thomas DY (2004) Cold adaptation in budding yeast. Mol Biol Cell 15:5492–5502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Homma T, Iwahashi H, Komatsu Y (2003) Yeast gene expression during growth at low temperature. Cryobiology 46:230–237

    Article  CAS  PubMed  Google Scholar 

  142. Murata Y, Homma T, Kitagawa E, Momose Y, Sato MS, Odani M et al (2006) Genome-wide expression analysis of yeast response during exposure to 4°C. Extremophiles 10:117–128

    Article  CAS  PubMed  Google Scholar 

  143. Castrillo JI, Zeef LA, Hoyle DC, Zhang N, Hayes A, Gardner DC et al (2007) Growth control of the eukaryote cell: a systems biology study in yeast. J Biol 6:4

    Article  PubMed  PubMed Central  Google Scholar 

  144. Kandror O, Bretschneider N, Kreydin E, Cavalieri D, Goldberg AL (2004) Yeast adapt to near-freezing temperatures by STRE/Msn2,4-dependent induction of trehalose synthesis and certain molecular chaperones. Mol Cell 13:771–781

    Article  CAS  PubMed  Google Scholar 

  145. Peres MFS, Tininis CRCS, Souza CS, Walker GM, Laluce C (2005) Physiological responses of pressed baker’s yeast cells pre-treated with citric, malic and succinic acids. World J Microbiol Biotechnol 21:537–543

    Article  CAS  Google Scholar 

  146. Melo HFD, Bonini BM, Thevelein J, Simões DA, Morais MA (2010) Physiological and molecular analysis of the stress response of Saccharomyces cerevisiae imposed by strong inorganic acid with implication to industrial fermentations. J Appl Microbiol 109:116–127

    Article  PubMed  Google Scholar 

  147. Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Vernocchi P, Ndagijimana M, Serrazanetti D, Gianotti A, Vallicelli M, Guerzoni ME (2008) Influence of starch addition and dough microstructure on fermentation aroma production by yeasts and lactobacilli. Food Chem 108:1217–1225

    Article  CAS  Google Scholar 

  149. Beaven MJ, Charpentier C, Rose AH (1982) Production and tolerance of ethanol in relation to phospholipid fatty-acyl composition in Saccharomyces cerevisiae NCYC 431. Microbiology 128:1447–1455

    Article  CAS  Google Scholar 

  150. Ingram LO (1976) Adaptation of membrane lipids to alcohols. J Bacteriol 125:670–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Buttke TM, Ingram LO (1978) Mechanism of ethanol-induced changes in lipid composition of Escherichia coli: inhibition of saturated fatty acid synthesis in vivo. Biochemistry 17:637–644

    Article  CAS  PubMed  Google Scholar 

  152. Sinigaglia M, Gardini F, Guerzoni ME (1993) Relationship between thermal behaviour, fermentation performance and fatty acid composition in two strains of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 39:593–598

    Article  CAS  PubMed  Google Scholar 

  153. Guerzoni ME, Ferruzzi M, Sinigaglia M, Criscuoli GC (1997) Increased cellular fatty acid desaturation as a possible key factor in thermotolerance in Saccharomyces cerevisiae. Can J Microbiol. https://doi.org/10.1139/m97-080

  154. Vermeulen N, Gänzle MG, Vogel RF (2007) Glutamine deamidation by cereal-associated lactic acid bacteria. J Appl Microbiol 103:1197–1205

    Article  CAS  PubMed  Google Scholar 

  155. Ndagijimana M, Vallicelli M, Cocconcelli PS, Cappa F, Patrignani F, Lanciotti R et al (2006) Two 2[5H]-furanones as possible signaling molecules in Lactobacillus helveticus. Appl Environ Microbiol 72:6053–6061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Guerzoni ME, Vernocchi P, Ndagijimana M, Gianotti A, Lanciotti R (2007) Generation of aroma compounds in sourdough: effects of stress exposure and lactobacilli–yeasts interactions. Food Microbiol 24:139–148

    Article  CAS  PubMed  Google Scholar 

  157. Guerzoni ME, Lanciotti R, Cocconcelli PS (2001) Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus. Microbiology 147:2255–2264

    Article  CAS  PubMed  Google Scholar 

  158. Rodríguez-Vargas S, Sánchez-García A, Martínez-Rivas JM, Prieto JA, Randez-Gil F (2007) Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt stress. Appl Environ Microbiol 73:110–116

    Article  PubMed  Google Scholar 

  159. Thomas DS, Hossack JA, Rose AH (1978) Plasma-membrane lipid composition and ethanol tolerance in Saccharomyces cerevisiae. Arch Microbiol 117:239–245

    Article  CAS  PubMed  Google Scholar 

  160. Maeda T, Kim JH, Ubukata Y, Morita N (2009) Analysis of volatile compounds in polished-graded wheat flour bread using headspace sorptive extraction. Eur Food Res Technol 228:457–465

    Article  CAS  Google Scholar 

  161. Chang C-Y, Seitz LM, Iv EC Volatile flavor components of breads made from hard red winter wheat and hard white winter wheat’. 6

    Google Scholar 

  162. Poinot P, Arvisenet G, Grua J, Colas D, Fillonneau C, Le-Bail A et al (2008) Influence of formulation and process on the aromatic profile and physical characteristics of bread. J Cereal Sci 48:686–697

    Article  CAS  Google Scholar 

  163. Zehentbauer G, Grosch W (1998) Crust aroma of baguettes II. Dependence of the concentrations of key odorants on yeast level and dough processing. J Cereal Sci 28:93–96

    Article  CAS  Google Scholar 

  164. Hazelwood LA, Daran J-M, van Maris AJA, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259–2266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Derrick S, Large PJ (1993) Activities of the enzymes of the Ehrlich pathway and formation of branched-chain alcohols in Saccharomyces cerevisiae and Candida utilis grown in continuous culture on valine or ammonium as sole nitrogen source. Microbiology 139:2783–2792

    CAS  Google Scholar 

  166. Schoondermark-Stolk SA, Jansen M, Veurink JH, Verkleij AJ, Verrips CT, Euverink G-JW et al (2006) Rapid identification of target genes for 3-methyl-1-butanol production in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 70:237–246

    Article  CAS  PubMed  Google Scholar 

  167. Schieberle P (1996) Intense aroma compounds: useful tools to monitor the influence of processing and storage on bread aroma. Intense Aroma Compd Useful Tools Monit Influ Process Storage Bread Aroma 18:237–244

    CAS  Google Scholar 

  168. Hofmann T, Schieberle P (2000) Formation of aroma-active strecker-aldehydes by a direct oxidative degradation of Amadori compounds. J Agric Food Chem 48:4301–4305

    Article  CAS  PubMed  Google Scholar 

  169. Boudaoud S, Sicard D, Suc L, Conéjéro G, Segond D, Aouf C (2021b) Ferulic acid content variation from wheat to bread. Food Sci Nutr. https://doi.org/10.1002/fsn3.2171

  170. Shima J, Takagi H (2009) Stress-tolerance of baker’s-yeast (Saccharomyces cerevisiae) cells: stress-protective molecules and genes involved in stress tolerance. Biotechnol Appl Biochem 53:155–164

    Article  CAS  PubMed  Google Scholar 

  171. Ponomarova O, Gabrielli N, Sévin DC, Mülleder M, Zirngibl K, Bulyha K, Andrejev S, Kafkia E, Typas A, Sauer U, et al. (2017) Yeast Creates a Niche for Symbiotic Lactic Acid Bacteria through Nitrogen Overflow. Cell Syst 5:345-357.e6.

    Google Scholar 

  172. Hagman A, Piškur J (2015) A study on the fundamental mechanism and the evolutionary driving forces behind aerobic fermentation in yeast. PLoS One 10:e011694

    Google Scholar 

  173. Hagman A, Säll T, Compagno C, Piskur J (2013) Yeast “make-accumulate-consume” life strategy evolved as a multi-step process that predates the whole genome duplication. PLoS One 8:e68734

    Google Scholar 

  174. Merico A, Sulo P, Piškur J, Compagno C (2007) Fermentative lifestyle in yeasts belonging to the Saccharomyces complex: Fermentative lifestyle in yeasts. The FEBS Journal 274:976–989.

    Google Scholar 

  175. Hagman A, Säll T, Compagno C, Piskur J (2013) Yeast “make-accumulate-consume” life strategy evolved as a multi-step process that predates the whole genome duplication. PLoS One 8:e68734.

    Google Scholar 

  176. Merico A, Sulo P, Piškur J, Compagno C (2007) Fermentative lifestyle in yeasts belonging to the Saccharomyces complex: Fermentative lifestyle in yeasts. The FEBS Journal 274:976–989

    Google Scholar 

  177. Papon N, Savini V, Lanoue A, Simkin AJ, Crèche J, Giglioli-Guivarc’h N, Clastre M, Courdavault V, Sibirny AA (2013) Candida guilliermondii: biotechnological applications, perspectives for biological control, emerging clinical importance and recent advances in genetics. Curr Genet 59:73–90

    Google Scholar 

  178. Fredlund E, Blank LM, Schnürer J, Sauer U, Passoth V (2004) Oxygen- and glucose-dependent regulation of central carbon metabolism in Pichia anomala. Appl Environ Microbiol 70:5905–5911

    Google Scholar 

  179. Schnierda T, Bauer FF, Divol B, Rensburg E van, Görgens JF (2014) Optimization of carbon and nitrogen medium components for biomass production using non-Saccharomyces wine yeasts. Letters in Applied Microbiology 58:478–485

    Google Scholar 

  180. Aslankoohi E, Herrera-Malaver B, Rezaei MN, Steensels J, Courtin CM, Verstrepen KJ (2016) Non-Conventional Yeast Strains In

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delphine Sicard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

von Gastrow, L., Gianotti, A., Vernocchi, P., Serrazanetti, D.I., Sicard, D. (2023). Taxonomy, Biodiversity, and Physiology of Sourdough Yeasts. In: Gobbetti, M., Gänzle, M. (eds) Handbook on Sourdough Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-031-23084-4_7

Download citation

Publish with us

Policies and ethics