Skip to main content
Log in

Role of Kazachstania humilis and Saccharomyces cerevisiae in the strain-specific assertiveness of Fructilactobacillus sanfranciscensis strains in rye sourdough

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Sourdough is a common ingredient for baked goods as it improves their texture, shelf life and flavor. One of the dominant key species in type I sourdoughs is Fructilactobacillus sanfranciscensis (formerly Lactobacillus sanfranciscensis), which occurs with a multitude of different strains. Noticeably, this species often shares its habitat with the yeasts Saccharomyces cerevisiae or Kazachstania humilis. It is still unclear, which relationship exists between these organisms and whether it is characterized by coexistence, interaction, or mutualism. In this study, competitiveness of different F. sanfranciscensis strains in rye sourdough was examined and its dependence of co-existing yeasts was explored. In particular, it was investigated whether competitiveness of F. sanfranciscensis strains depends on the presence/absence of S. cerevisiae or K. humilis when co-inoculated in the sourdough. Competitiveness of strains was monitored in rye sourdough using the CRISPR locus length polymorphism (CLLP)—PCR for strain differentiation. It was found that F. sanfranciscensis TMW 1.1150, TMW 1.1221 and TMW 1.1597 were dominant regardless of the presence/absence of both yeast species. Dominance of F. sanfranciscensis TMW 1.392, TMW 1.907 and TMW 1.2137 was significantly and diversely influenced by the presence of S. cerevisiae or K. humilis. F. sanfranciscensis TMW 1.2138 and TMW 1.726 were not able to compete against the other F. sanfranciscensis strains. It was possible to sort the eight strains into three different groups: 1. Strain competitiveness was independent of the presence/absence of yeasts; 2. Strain competitiveness was dependent on yeast species and 3. Strains were not competitive in the presence of strains belonging to group 1 or 2. Interestingly, in fermentations that were not inoculated with any yeast a spontaneous occurrence of S. cerevisiae or K. humilis was observed depending on the synergistic competitiveness of the respective F. sanfranciscensis used. Thus, the level of competitiveness was strain specific and, in some strains, dependent on the presence/absence of specific yeast species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. De Vuyst L, Van Kerrebroeck S, Harth H, Huys G, Daniel HM, Weckx S (2014) Microbial ecology of sourdough fermentations: diverse or uniform? Food Microbiol 37:11–29. https://doi.org/10.1016/j.fm.2013.06.002

    Article  PubMed  CAS  Google Scholar 

  2. Vogel RF, Pavlovic M, Ehrmann MA, Wiezer A, Liesegang H, Offschanka S, Voget S, Angelov A, Böcker G, Liebl W (2011) Genomic analysis reveals Lactobacillus sanfranciscensis as stable element in traditional sourdoughs. Microb Cell Fact 10(1):S6. https://doi.org/10.1186/1475-2859-10-s1-s6

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nionelli L, Pontonio E, Gobbetti M, Rizzello CG (2018) Use of hop extract as antifungal ingredient for bread making and selection of autochthonous resistant starters for sourdough fermentation. Int J Food Microbiol 266:173–182. https://doi.org/10.1016/j.ijfoodmicro.2017.12.002

    Article  PubMed  CAS  Google Scholar 

  4. De Vuyst L, Vrancken G, Ravyts F, Rimaux T, Weckx S (2009) Biodiversity, ecological determinants, and metabolic exploitation of sourdough microbiota. Food Microbiol 26(7):666–675. https://doi.org/10.1016/j.fm.2009.07.012

    Article  PubMed  CAS  Google Scholar 

  5. Martinez-Anaya M, Devesa A (2000) Influence of enzymes in sourdough wheat breadmaking. Changes in pentosans/influencia de las enzimas y los iniciadores microbianos en panificación. Cambios en las pentosanas. Food Sci Technol Int 6(2):109–116

    Article  CAS  Google Scholar 

  6. De Vuyst L, Neysens P (2005) The sourdough microflora: biodiversity and metabolic interactions. Trends Food Sci Technol 16(1–3):43–56

    Article  CAS  Google Scholar 

  7. Brandt MJ, Gänzle M (2006) Handbuch Sauerteig. Behr’s Verlag DE. ISBN: 3899471660

  8. Böcker G, Stolz P, Hammes WP (1995) Neue Erkenntnisse zum Ökosystem Sauerteig und zur Physiologie der sauerteigtypischen Stämme Lactobacillus sanfrancisco und Lactobacillus pontis. Getreide Mehl Brot 49:370–374

    Google Scholar 

  9. Brandt MJ (2019) Industrial production of sourdoughs for the baking branch—an overview. Int J Food Microbiol 302:3–7. https://doi.org/10.1016/j.ijfoodmicro.2018.09.008

    Article  PubMed  CAS  Google Scholar 

  10. Catzeddu P (2019) Chapter 14—sourdough breads. In: Preedy VR, Watson RR (eds) Flour and breads and their fortification in health and disease prevention, 2nd edn. Academic Press, New York, pp 177–188. https://doi.org/10.1016/B978-0-12-814639-2.00014-9

    Chapter  Google Scholar 

  11. Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, O’Toole PW, Pot B, Vandamme P, Walter J, Watanabe K, Wuyts S, Felis GE, Gänzle MG, Lebeer S (2020) A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 70(4):2782–2858. https://doi.org/10.1099/ijsem.0.004107

    Article  PubMed  Google Scholar 

  12. Weiss N, Schillinger U (1984) Lactobacillus sanfrancisco sp. nov., nom. rev. Syst Appl Microbiol 5(2):230–232

    Article  Google Scholar 

  13. Kline L, Sugihara T (1971) Microorganisms of the San Francisco sour dough bread process II. Isolation and characterization of undescribed bacterial species responsible for the souring activity. Appl Microbiol 21(3):459–465

    Article  CAS  Google Scholar 

  14. Picozzi C, D’Anchise F, Foschino R (2006) PCR detection of Lactobacillus sanfranciscensis in sourdough and Panettone baked product. Eur Food Res Technol 222(3):330–335. https://doi.org/10.1007/s00217-005-0121-z

    Article  CAS  Google Scholar 

  15. Tieking M, Ehrmann MA, Vogel RF, Gänzle MG (2005) Molecular and functional characterization of a levansucrase from the sourdough isolate Lactobacillus sanfranciscensis TMW 1.392. Appl Microbiol Biotechnol 66(6):655–663. https://doi.org/10.1007/s00253-004-1773-5

    Article  PubMed  CAS  Google Scholar 

  16. Gobbetti M, Corsetti A, Rossi J, Rosa Fl, Vincenzi SD (1994) Identification and clustering of lactic acid bacteria and yeasts from wheat sourdoughs of central Italy. Ital J Food Sci 6(1):85–94

  17. De Vuyst L, Schrijvers V, Paramithiotis S, Hoste B, Vancanneyt M, Swings J, Kalantzopoulos G, Tsakalidou E, Messens W (2002) The biodiversity of lactic acid bacteria in Greek traditional wheat sourdoughs is reflected in both composition and metabolite formation. Appl Environ Microbiol 68(12):6059. https://doi.org/10.1128/AEM.68.12.6059-6069.2002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Scheirlinck I, Van der Meulen R, De Vuyst L, Vandamme P, Huys G (2009) Molecular source tracking of predominant lactic acid bacteria in traditional Belgian sourdoughs and their production environments. J Appl Microbiol 106(4):1081–1092

    Article  CAS  Google Scholar 

  19. Faid M, Boraam F, Zyani I, Larpent JP (1994) Characterization of sourdough bread ferments made in the laboratory by traditional methods. Zeitschrift für Lebensmittel-Untersuchung und Forschung 198(4):287–291

    Article  CAS  Google Scholar 

  20. Yang H, Liu T, Zhang G, Chen J, Gu J, Yuan L, He G (2017) Genotyping of Lactobacillus sanfranciscensis isolates from Chinese traditional sourdoughs by multilocus sequence typing and multiplex RAPD-PCR. Int J Food Microbiol 258:50–57. https://doi.org/10.1016/j.ijfoodmicro.2017.07.013

    Article  PubMed  CAS  Google Scholar 

  21. Geißler AC, Giuseppe; Minervini, Fabio; Gobbetti, Marco; Vogel, Rudi F. (2017) Genomic diversity of Lactobacillus sanfranciscensis. In: Paper presented at the 12th international symposium on lactic acid bacteria 27.-31.8.2017, Egmond aan Zee, The Netherlands

  22. Zhang G, Tu J, Sadiq FA, Zhang W, Wang W (2019) Prevalence, genetic diversity, and technological functions of the Lactobacillus sanfranciscensis in sourdough: a review. Compr Rev Food Sci Food Saf 18(4):1209–1226

    Article  Google Scholar 

  23. Rogalski E, Vogel RF, Ehrmann MA (2020) Monitoring of Lactobacillus sanfranciscensis strains during wheat and rye sourdough fermentations by CRISPR locus length polymorphism PCR. Int J Food Microbiol 316:108475. https://doi.org/10.1016/j.ijfoodmicro.2019.108475

    Article  PubMed  CAS  Google Scholar 

  24. Lhomme E, Onno B, Chuat V, Durand K, Orain S, Valence F, Dousset X, Jacques M-A (2016) Genotypic diversity of Lactobacillus sanfranciscensis strains isolated from French organic sourdoughs. Int J Food Microbiol 226:13–19. https://doi.org/10.1016/j.ijfoodmicro.2016.03.008

    Article  PubMed  CAS  Google Scholar 

  25. Kitahara M, Sakata S, Benno Y (2005) Biodiversity of Lactobacillus sanfranciscensis strains isolated from five sourdoughs. Lett Appl Microbiol 40(5):353–357. https://doi.org/10.1111/j.1472-765X.2005.01678.x

    Article  PubMed  CAS  Google Scholar 

  26. Di Cagno R, Pontonio E, Buchin S, De Angelis M, Lattanzi A, Valerio F, Gobbetti M, Calasso M (2014) Diversity of the lactic acid bacterium and yeast microbiota in the switch from firm- to liquid-sourdough fermentation. Appl Environ Microbiol 80(10):3161–3172. https://doi.org/10.1128/AEM.00309-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Siragusa S, Di Cagno R, Ercolini D, Minervini F, Gobbetti M, De Angelis M (2009) Taxonomic structure and monitoring of the dominant population of lactic acid bacteria during wheat flour sourdough type i propagation using Lactobacillus sanfranciscensis starters. Appl Environ Microbiol 75(4):1099–1109. https://doi.org/10.1128/aem.01524-08

    Article  PubMed  CAS  Google Scholar 

  28. Gänzle MG, Zheng J (2019) Lifestyles of sourdough lactobacilli—do they matter for microbial ecology and bread quality? Int J Food Microbiol 302:15–23. https://doi.org/10.1016/j.ijfoodmicro.2018.08.019

    Article  PubMed  CAS  Google Scholar 

  29. Pico J, Bernal J, Gómez M (2015) Wheat bread aroma compounds in crumb and crust: a review. Food Res Int 75:200–215. https://doi.org/10.1016/j.foodres.2015.05.051

    Article  PubMed  CAS  Google Scholar 

  30. Moslehi-Jenabian S, Lindegaard L, Jespersen L (2010) Beneficial effects of probiotic and food borne yeasts on human health. Nutrients 2(4):449–473

    Article  CAS  Google Scholar 

  31. De Vuyst L, Harth H, Van Kerrebroeck S, Leroy F (2016) Yeast diversity of sourdoughs and associated metabolic properties and functionalities. Int J Food Microbiol 239:26–34. https://doi.org/10.1016/j.ijfoodmicro.2016.07.018

    Article  PubMed  CAS  Google Scholar 

  32. Brandt MJ, Hammes WP, Gänzle MG (2004) Effects of process parameters on growth and metabolism of Lactobacillus sanfranciscensis and Candida humilis during rye sourdough fermentation. Eur Food Res Technol 218(4):333–338. https://doi.org/10.1007/s00217-003-0867-0

    Article  CAS  Google Scholar 

  33. Gänzle MG, Ehmann M, Hammes WP (1998) Modeling of growth of Lactobacillus sanfranciscensis and Candida milleri in response to process parameters of sourdough fermentation. Appl Environ Microbiol 64(7):2616–2623

    Article  Google Scholar 

  34. Stolz P, Vogel RF, Hammes WP (1995) Utilization of electron acceptors by lactobacilli isolated from sourdough. Zeitschrift für Lebensmittel-Untersuchung und Forschung 201(4):402–410. https://doi.org/10.1007/bf01192742

    Article  CAS  Google Scholar 

  35. Ehrmann MA, Vogel RF (2001) Characterisation of IS153, an IS3-family insertion sequence isolated from Lactobacillus sanfranciscensis and its use for strain differentiation. Syst Appl Microbiol 24(3):443–450. https://doi.org/10.1078/0723-2020-00057

    Article  PubMed  CAS  Google Scholar 

  36. Liske R, Niessen L, Vogel R (2000) Potential of lactic acid bacteria to reduce the growth of Fusarium culmorum in the malting process. Mycotoxin Res 16(1):62–65. https://doi.org/10.1007/bf02942983

    Article  PubMed  Google Scholar 

  37. De Angelis M, Di Cagno R, Gallo G, Curci M, Siragusa S, Crecchio C, Parente E, Gobbetti M (2007) Molecular and functional characterization of Lactobacillus sanfranciscensis strains isolated from sourdoughs. Int J Food Microbiol 114(1):69–82. https://doi.org/10.1016/j.ijfoodmicro.2006.10.036

    Article  PubMed  CAS  Google Scholar 

  38. Cenis JL (1992) Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Res 20(9):2380. https://doi.org/10.1093/nar/20.9.2380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Legras J-L, Ruh O, Merdinoglu D, Karst F (2005) Selection of hypervariable microsatellite loci for the characterization of Saccharomyces cerevisiae strains. Int J Food Microbiol 102(1):73–83

    Article  CAS  Google Scholar 

  40. Hilgarth M, Lehner EM, Behr J, Vogel RF (2019) Diversity and anaerobic growth of Pseudomonas spp. isolated from modified atmosphere packaged minced beef. J Appl Microbiol 127(1):159–174. https://doi.org/10.1111/jam.14249

    Article  PubMed  CAS  Google Scholar 

  41. Dinardo FR, Minervini F, De Angelis M, Gobbetti M, Gänzle MG (2019) Dynamics of Enterobacteriaceae and lactobacilli in model sourdoughs are driven by pH and concentrations of sucrose and ferulic acid. LWT 114:108394. https://doi.org/10.1016/j.lwt.2019.108394

    Article  CAS  Google Scholar 

  42. Vermeulen N, Gánzle MG, Vogel RF (2006) Influence of peptide supply and cosubstrates on phenylalanine metabolism of Lactobacillus sanfranciscensis DSM20451T and Lactobacillus plantarum TMW1.468. J Agric Food Chem 54(11):3832–3839. https://doi.org/10.1021/jf052733e

    Article  PubMed  CAS  Google Scholar 

  43. Axel C, Brosnan B, Zannini E, Peyer LC, Furey A, Coffey A, Arendt EK (2016) Antifungal activities of three different Lactobacillus species and their production of antifungal carboxylic acids in wheat sourdough. Appl Microbiol Biotechnol 100(4):1701–1711. https://doi.org/10.1007/s00253-015-7051-x

    Article  PubMed  CAS  Google Scholar 

  44. Fraberger V, Call L-M, Domig KJ, D’Amico S (2018) Applicability of yeast fermentation to reduce fructans and other FODMAPs. Nutrients 10(9):1247

    Article  CAS  Google Scholar 

  45. Ottogalli G, Galli A, Foschino R (1996) Italian bakery products obtained with sour dough: characterization of the typical microflora. Adv Food Sci 18:131–144

    Google Scholar 

  46. Carbonetto B, Nidelet T, Guezenec S, Perez M, Segond D, Sicard D (2020) Interactions between Kazachstania humilis yeast species and lactic acid bacteria in sourdough. Microorganisms. https://doi.org/10.3390/microorganisms8020240

    Article  PubMed  PubMed Central  Google Scholar 

  47. Korakli M, Pavlovic M, Gänzle MG, Vogel RF (2003) Exopolysaccharide and Kestose Production by Lactobacillus sanfranciscensis LTH2590. Appl Environ Microbiol 69(4):2073–2079. https://doi.org/10.1128/aem.69.4.2073-2079.2003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Vogel RF, Ehrmann MA, Gänzle MG (2002) Development and potential of starter lactobacilli resulting from exploration of the sourdough ecosystem. Antonie Van Leeuwenhoek 81(1):631–638. https://doi.org/10.1023/A:1020530227192

    Article  PubMed  CAS  Google Scholar 

  49. Jayaram VB, Rezaei MN, Cuyvers S, Verstrepen KJ, Delcour JA, Courtin CM (2014) Ethanol at levels produced by Saccharomyces cerevisiae during wheat dough fermentation has a strong impact on dough properties. J Agric Food Chem 62(38):9326–9335. https://doi.org/10.1021/jf502547a

    Article  PubMed  CAS  Google Scholar 

  50. Ripari V, Gänzle MG, Berardi E (2016) Evolution of sourdough microbiota in spontaneous sourdoughs started with different plant materials. Int J Food Microbiol 232:35–42. https://doi.org/10.1016/j.ijfoodmicro.2016.05.025

    Article  PubMed  CAS  Google Scholar 

  51. Hammes WP, Brandt MJ, Francis KL, Rosenheim J, Seitter MFH, Vogelmann SA (2005) Microbial ecology of cereal fermentations. Trends Food Sci Technol 16(1):4–11. https://doi.org/10.1016/j.tifs.2004.02.010

    Article  CAS  Google Scholar 

Download references

Funding

Part of this work was supported by the German Ministry of Food and Agriculture (BMEL) in project 28-1-A1.039-16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudi F. Vogel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogalski, E., Ehrmann, M.A. & Vogel, R.F. Role of Kazachstania humilis and Saccharomyces cerevisiae in the strain-specific assertiveness of Fructilactobacillus sanfranciscensis strains in rye sourdough. Eur Food Res Technol 246, 1817–1827 (2020). https://doi.org/10.1007/s00217-020-03535-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-020-03535-7

Keywords

Navigation