Skip to main content

An Insight Into the Consequences of Emerging Contaminants in Soil and Water and Plant Responses

  • Chapter
  • First Online:
Emerging Contaminants and Plants

Abstract

With the advancement of science, better monitoring of soil and water quality has become possible. Many contaminants have been reported in the recent past that influence the quality of soil and water negatively. However, the consideration of these pollutants or contaminants is still in the initial stage and needs to be explored in detail for a better understanding of their activity as contaminants. Emerging contaminants such as agrochemicals, nanomaterials, pharmaceuticals, personal care products, and micro- or nanoplastics have been found to show several harmful impacts on soil or water quality. Emerging contaminants are known to have adverse effects on plants and human beings too. The risk of their entry into the crops, food chain, and any possible interaction to human health should be properly monitored. The concentration of these contaminants in soil and water should also be monitored on a regular basis to avoid the significant damages arising from them. Future study may also be taken into consideration to avoid the possible concerns to natural resources, plants, and human wellbeing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi, S. A., Khalil, A. B., & Arslan, M. (2020). Extensive use of face masks during COVID-19 pandemic: (micro-) plastic pollution and potential health concerns in the Arabian Peninsula. Saudi Journal of Biological Sciences, 27, 3181–3186.

    Article  Google Scholar 

  • Abdel-Shafy, H. I., & Mansour, M. S. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107–123.

    Article  Google Scholar 

  • ACGIH (American Conference of Governmental Industrial Hygienists). (2005). Polycyclic aromatic hydrocarbons (PAHs) biologic exposure indices (BEI). American Conference of Governmental Industrial Hygienists.

    Google Scholar 

  • Alexy, R., Schöll, A., Kümpel, T., & Kümmerer, K. (2004). What do we know about antibiotics in the environment? In Pharmaceuticals in the environment (pp. 209–221). Springer.

    Chapter  Google Scholar 

  • Ali, A. B., Li, H., Yan, H., & Elshaikh, N. A. (2016). Obsolete pesticide contamination: A new type of water and soil pollution. Current Science, 111, 966.

    Google Scholar 

  • Alizadeh, N., & Salimi, A. (2021). Multienzymes activity of metals and metal oxide nanomaterials: Applications from biotechnology to medicine and environmental engineering. Journal of Nanbiotechnology, 19(1), 1–31.

    Google Scholar 

  • Alkio, M., Tabuchi, T. M., Wang, X., & Colón-Carmona, A. (2005). Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms. Journal of Experimental Botany, 56, 2983–2994.

    Article  CAS  Google Scholar 

  • Allen, S., Allen, D., Phoenix, V. R., Le Roux, G., Durántez Jiménez, P., Simonneau, A., Binet, S., & Galop, D. (2019). Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nature Geoscience, 15, 339–344.

    Article  Google Scholar 

  • Al-Turki, A. I. (2009). Microbial polycyclic aromatic hydrocarbons degradation in soil. Research Journal of Environmental Toxicology, 3, 1–8.

    Article  CAS  Google Scholar 

  • Armstrong, B., Hutchinson, E., Unwin, J., & Fletcher, T. (2004). Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: A review and meta-analysis. Environmental Health Perspectives, 112(9), 970–978. https://doi.org/10.1289/ehp.6895

    Article  CAS  Google Scholar 

  • Aslani, F., Bagheri, S., Muhd Julkapli, N., Juraimi, A. S., Hashemi, F. S., & Baghdadi, A. (2014). Effects of engineered nanomaterials on plants growth: An overview. Scientific World Journal, 2014, 641759. https://doi.org/10.1155/2014/641759

    Article  Google Scholar 

  • Azeem, I., Adeel, M., Ahmad, M. A., Shakoor, N., Zain, M., Yousef, N., Yinghai, Z., Azeem, K., Zhou, P., White, J. C., Ming, X., & Rui, Y. (2022). Microplastic and nanoplastic interactions with plant species: Trends, meta-analysis, and perspectives. Environmental Science & Technology Letters, 9, 482–492. https://doi.org/10.1021/acs.estlett.2c00107

    Article  CAS  Google Scholar 

  • Badr, A., Zaki, H., Germoush, M. O., Tawfeek, A. Q., & El-Tayeb, M. A. (2013). Cytophysiological impacts of metosulam herbicide on Vicia faba plants. Acta Physiologiae Plantarum, 35, 1933–1941.

    Article  CAS  Google Scholar 

  • Bai, W., Zhang, Z., Tian, W., He, X., Ma, Y., Zhao, Y., & Chai, Z. (2010). Toxicity of zinc oxide nanoparticles to zebrafish embryo: A physicochemical study of toxicity mechanism. Journal of Nanoparticle Research, 12, 1645–1654.

    Article  CAS  Google Scholar 

  • Baig, N., Kammakakam, I., & Falath, W. (2021). Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Materials Advances, 2(6), 1821–1871.

    Article  Google Scholar 

  • Baklanov, A., Hänninen, O., Slørdal, L. H., Kukkonen, J., Bjergene, N., & Fay, B. (2007). Integrated systems for forecasting urban meteorology, air pollution and population exposure. Atmospheric Chemistry and Physics, 7, 855–874.

    Article  CAS  Google Scholar 

  • Ballestas, I. T., Colorado, B. E. J., & Tobón, A. B. (2016). Organophosphorus pesticides degrading bacteria present in contaminated soils. Revista Ciencias Técnicas Agropecuarias, 25(3), 12–22. https://doi.org/10.13140/RG.22.20023

    Article  Google Scholar 

  • Baybil, H. K., Teshome, F. T., & Li, Y. C. (2022). Emerging contaminants in soil and water. Frontiers in Environmental Science, 10, 873499. https://doi.org/10.3389/fenvs.2022.873499

    Article  Google Scholar 

  • Begum, P., Ikhtiari, R., & Fugetsu, B. (2011). Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon, 49, 3907–3919.

    Article  CAS  Google Scholar 

  • Belal, E. S., & El-Ramady, H. (2016). Nanoparticles in water, soils and agriculture. In S. Ranjan et al. (Eds.), Nanoscience in food and agriculture 2 (Sustainable Agriculture Reviews) (Vol. 21, pp. 311–358). Springer International Publishing. https://doi.org/10.1007/978-3-319-39306-3_10

    Chapter  Google Scholar 

  • Bhushan, B., Luo, D., Schricker, S. R., Sigmund, W., & Zauscher, S. (Eds.). (2014). Handbook of nanomaterials properties (pp. 1–19). Springer Science & Business Media.

    Book  Google Scholar 

  • Bolong, N., Ismail, A. F., Salim, M. R., & Matsuura, T. (2009). A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination, 239, 229–246.

    Article  CAS  Google Scholar 

  • Boots, B., Russell, C. W., & Green, D. S. (2019). Effects of microplastics in soil ecosystems: Above and below ground. Environmental Science & Technology, 53, 11496–11506.

    Article  CAS  Google Scholar 

  • Boxall, A. B., Rudd, M. A., Brooks, B. W., Caldwell, D. J., Choi, K., Hickmann, S., Innes, E., Ostapyk, K., Staveley, J. P., Verslycke, T., Ankley, G. T., Beazley, K. F., Belanger, S. E., Berninger, J. P., Carriquiriborde, P., Coors, A., Deleo, P. C., Dyer, S. D., Ericson, J. F., Gagné, F., Giesy, J. P., Gouin, T., Hallstrom, L., Karlsson, M. V., Larsson, D. G., Lazorchak, J. M., Mastrocco, F., McLaughlin, A., McMaster, M. E., Meyerhoff, R. D., Moore, R., Parrott, J. L., Snape, J. R., Murray-Smith, R., Servos, M. R., Sibley, P. K., Straub, J. O., Szabo, N. D., Topp, E., Tetreault, G. R., Trudeau, V. L., & Van Der Kraak, G. (2012). Pharmaceuticals and personal care products in the environment: What are the big questions? Environmental Health Perspectives, 120(9), 1221–1229. https://doi.org/10.1289/ehp.1104477

    Article  Google Scholar 

  • Bystrzejewska-Piotrowska, G., Golimowski, J., & Urban, P. L. (2009). Nanoparticles: Their potential toxicity, waste and environmental management. Waste Management, 29(9), 2587–2595.

    Article  CAS  Google Scholar 

  • Cabeza, Y., Candela, L., Ronen, D., & Teijon, G. (2012). Monitoring the occurrence of emerging contaminants in treated wastewater and groundwater between 2008 and 2010. The Baix Llobregat (Barcelona, Spain). Journal of Hazardous Materials, 239–240, 32–39. https://doi.org/10.1016/j.jhazmat.2012.07.032

    Article  CAS  Google Scholar 

  • Caliman, F. A., & Gavrilescu, M. (2009). Pharmaceuticals, personal care products and endocrine disrupting agents in the environment – A review. Clean – Soil, Air, Water, 37, 277–303. https://doi.org/10.1002/CLEN.200900038

    Article  CAS  Google Scholar 

  • Caputo, F., Vogel, R., Savage, J., Vella, G., Law, A., Della Camera, G., Hannon, G., Peacock, B., Mehn, D., Ponti, J., & Geiss, O. (2021). Measuring particle size distribution and mass concentration of nanoplastics and microplastics: Addressing some analytical challenges in the sub-micron size range. Journal of Colloid and Interface Science, 588, 401–417.

    Article  CAS  Google Scholar 

  • Chibu, H., Shibayama, H., & Arima, S. (2002). Effects of chitosan application on the shoot growth of rice and soybean. Japanese Journal of Crop Science, 71, 206–211.

    Article  CAS  Google Scholar 

  • Das, A. C., Das, R., & Bhowmick, S. (2015). Non-symbiotic N2-fixation and phosphate-solubility in Gangetic alluvial soil as influenced by pre-emergence herbicide residues. Chemosphere, 135, 202–207.

    Article  CAS  Google Scholar 

  • Daughton, C. G., & Ternes, T. A. (1999). Pharmaceuticals and personal care products in the environment: Agents of subtle change. Environmental Health Perspectives, 107, 907–938.

    Article  CAS  Google Scholar 

  • de Santiago-Martín, A., Constantin, B., Guesdon, G., Kagambega, N., Raymond, S., & Cloutier, R. G. (2015). Bioavailability of engineered nanoparticles in soil systems. Journal of Hazardous, Toxic, and Radioactive Waste, 20, 1–14. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000263

    Article  Google Scholar 

  • Delay, M., Schwegmann, H., & Frimmel, F. H. (2015). Nanoparticles and refractory organic matter: Interactions and consequences. Journal of Environmental Chemical Engineering, 3, 2997–3004. https://doi.org/10.1016/j.jece.2015.02.012

    Article  CAS  Google Scholar 

  • Diggs, D. L., Huderson, A. C., Harris, K. L., Myers, J. N., Banks, L. D., & Rekhadevi, P. V. (2011). Polycyclic aromatic hydrocarbons and digestive tract cancers: A perspective. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews, 29(4), 324–357.

    CAS  Google Scholar 

  • Dimkpa, C. O., Latta, D. E., McLean, J. E., Britt, D. W., Boyanov, M. I., & Anderson, A. J. (2013). Fate of CuO and ZnO nano- and microparticles in the plant environment. Environmental Science & Technology, 47, 4734–4742.

    Article  CAS  Google Scholar 

  • Dong, C., Chen, C., & Chen, C. (2012). Determination of polycyclic aromatic hydrocarbons in industrial harbor sediments by GC-MS. International Journal of Environmental Research and Public Health, 9, 2175–2188.

    Article  CAS  Google Scholar 

  • Drotikova, T., Dekhtyareva, A., Kallenborn, R., & Albinet, A. (2021). Polycyclic aromatic hydrocarbons (PAHs) and their nitrated and oxygenated derivatives in the Arctic boundary layer: Seasonal trends and local anthropogenic influence. Atmospheric Chemistry and Physics, 21(18), 14351–14370.

    Article  CAS  Google Scholar 

  • Duis, K., & Coors, A. (2016). Microplastics in the aquatic and terrestrial environment: Sources (with a specific focus on personal care products), fate and effects. Environmental Sciences Europe, 28(2), 1–25.

    CAS  Google Scholar 

  • Durgude, S. A., Ram, S., Kumar, R., Singh, S. V., Singh, V., Durgude, A. G., Pramanick, B., Maitra, S., Gaber, A., & Hossain, A. (2022). Synthesis of mesoporous silica and graphene-based FeO and ZnO nanocomposites for nutritional biofortification and sustained the productivity of rice (Oryza sativa L.). Journal of Nanomaterials, 2022, 1–15.

    Article  Google Scholar 

  • Ebele, A., Abou-Elwafa Abdallah, M., & Harrad, S. (2017). Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerging Contaminants, 3(1), 1–16. https://doi.org/10.1016/j.emcon.2016.12.004

    Article  Google Scholar 

  • Fabbri, E., & Franzellitti, S. (2016). Human pharmaceuticals in the marine environment: Focus on exposure and biological effects in animal species. Environmental Toxicology and Chemistry, 35, 799–812.

    Article  CAS  Google Scholar 

  • Fadare, O. O., & Okoffo, E. D. (2020). Covid-19 face masks: A potential source of microplastic fibers in the environment. Science of the Total Environment, 737, 140279. https://doi.org/10.1016/j.scitotenv.2020.140279. PMID: 32563114.

    Article  CAS  Google Scholar 

  • Feld, L., Hjelmsø, M. H., Nielsen, M. S., Jacobsen, A. D., Rønn, R., Ekelund, F., Krogh, P. H., Strobel, B. W., & Jacobsen, C. S. (2015). Pesticide side effects in an agricultural soil ecosystem as measured by amoA expression quantification and bacterial diversity changes. PLoS One, 10(5), e0126080.

    Article  Google Scholar 

  • Fent, K., Weston, A. A., & Caminada, D. (2006). Ecotoxicology of human pharmaceuticals. Aquatic Toxicology, 76, 122–159.

    Article  CAS  Google Scholar 

  • Foltz, J., Mottaleb, M. A., Meziani, M. J., & Islam, M. R. (2014). Simultaneous detection and quantification of select nitromusks, antimicrobial agent, and antihistamine in fish of grocery stores by gas chromatographyemass spectrometry. Chemosphere, 107, 187–193.

    Article  CAS  Google Scholar 

  • Fotopoulou, K. N., & Karapanagioti, H. K. (2012). Surface properties of beached plastic pellets. Marine Environmental Research, 81, 70–77.

    Article  CAS  Google Scholar 

  • Fotopoulou, K. N., & Karapanagioti, H. K. (2019). Degradation of various plastics in the environment. In Handbook of environmental chemistry (Vol. 78, pp. 71–92). Springer.

    Google Scholar 

  • Frazier, T. P., Burklew, C. E., & Zhang, B. (2014). Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum). Functional & Integrative Genomics, 14(1), 75–83.

    Article  CAS  Google Scholar 

  • Fytianos, G., Rahdar, A., & Kyzas, G. Z. (2020). Nanomaterials in cosmetics: Recent updates. Nanomaterials, 10(5), 979.

    Article  CAS  Google Scholar 

  • Galloway, T. S., Cole, M., & Lewis, C. (2017). Interactions of microplastic debris throughout the marine ecosystem. Nature Ecology & Evolution, 1, 0116.

    Article  Google Scholar 

  • Ghodake, G., Seo, Y. D., Park, D., & Lee, D. S. (2010). Phytotoxicity of carbon nanotubes assessed by Brassica juncea and Phaseolus mungo. Journal of Nanoelectronics and Optoelectronics, 5, 157–160.

    Article  CAS  Google Scholar 

  • Gigault, J., ter Halle, A., Baudrimont, M., Pascal, P. Y., Gaure, F., Phi, T. L., El Hadri, H., Grassl, B., & Reynaud, S. (2018). Current opinion: What is a nanoplastic? Environmental Pollution, 235, 1030–1034.

    Article  CAS  Google Scholar 

  • Gil-Díaz, M., Gonzalez, A., Alonso, J., & Lobo, M. C. (2016). Evaluation of the stability of a nanoremediation strategy using barley plants. Journal of Environmental Management, 165, 150–158. https://doi.org/10.1016/j.jenvman.2015.09.032

    Article  CAS  Google Scholar 

  • Glover-Amengor, M., & Tetteh, F. (2008). Effect of pesticide application rate on yield of vegetables and soil microbial communities. West African Journal of Applied Ecology, 12, 1–7. https://doi.org/10.4314/wajae.v12i1.45749

    Article  Google Scholar 

  • Gopi, R., Jaleel, C. A., Sairam, R., Lakshmanan, G., Gomathinayagam, M., & Panneerselvam, R. (2007). Differential effects of hexaconazole and paclobutrazol on biomass, electrolyte leakage, lipid peroxidation, and antioxidant potential of Daucus carota L. Colloids and Surfaces B: Biointerfaces, 60, 180–186.

    Article  CAS  Google Scholar 

  • Grillo, R., Rosa, A. H., & Fraceto, L. F. (2015). Engineered nanoparticles and organic matter: A review of the state-of-the-art. Chemosphere, 119, 608–619. https://doi.org/10.1016/j.chemosphere.2014.07.049

    Article  CAS  Google Scholar 

  • Handy, R. D., von der Kammer, F., Lead, J. R., Richard Owen, M. H., & Crane, M. (2008). The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology, 17, 287–314. https://doi.org/10.1007/s10646-008-0199-8

    Article  CAS  Google Scholar 

  • He, P. M. S. L. Y. (2017). Research progress of OCPs distribution characteristics and health risk assessment from soil. Journal of Baotou Medical College, 33(6), 130–135.

    Google Scholar 

  • Helbling, D. E., Hollender, J., Kohler, H. P., Singer, H., & Fenner, K. (2010). Highthroughput identification of microbial transformation products of organic micropollutants. Environmental Science & Technology, 44, 6621–6627.

    Article  CAS  Google Scholar 

  • Honda, M., & Suzuki, N. (2020). Toxicities of polycyclic aromatic hydrocarbons for aquatic animals. International Journal of Environmental Research and Public Health, 17(4), 1363.

    Article  CAS  Google Scholar 

  • Horton, A. A., Walton, A., Spurgeon, D. J., Lahive, E., & Svendsen, C. (2017). Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities. Science of the Total Environment, 586, 127–141.

    Article  CAS  Google Scholar 

  • Hossain, A., Skalicky, M., Brestic, M., Mahari, S., Kerry, R. G., Maitra, S., Sarkar, S., Saha, S., Bhadra, P., Popov, M., & Islam, M. (2021). Application of nanomaterials to ensure quality and nutritional safety of food. Journal of Nanomaterials, 2021, 1–25. https://doi.org/10.1155/2021/9336082

    Article  CAS  Google Scholar 

  • Huang, H. S., Hsu, C. C., Weng, S. F., Lin, H. J., Wang, J. J., Su, S. B., Huang, C. C., & Guo, H. R. (2015). Acute anticholinesterase pesticide poisoning caused a long-term mortality increase: A nationwide population-based cohort study. Medicine, 94(30), e1222.

    Article  CAS  Google Scholar 

  • Hu, D., Shen, M., Zhang, Y., & Zeng, G. (2019) Micro(nano)plastics: an unignorable carbon source? Science of the Total Environment, 657, 108–110.

    Google Scholar 

  • Hüffer, T., Weniger, A. K., & Hofmann, T. (2018). Sorption of organic compounds by aged polystyrene microplastic particles. Environmental Pollution, 236, 218–225.

    Article  Google Scholar 

  • IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. (2010). Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, 92, 1–853.

    Google Scholar 

  • Isidori, M., Lavorgna, M., Nardelli, A., Parrella, A., Previtera, L., & Rubino, M. (2005). Ecotoxicity of naproxen and its phototransformation products. Science of the Total Environment, 348(1–3), 93–101.

    Article  CAS  Google Scholar 

  • Jameson, C. W. (2019). Polycyclic aromatic hydrocarbons and associated occupational exposures. In R. Baan, B. Stewart, & K. Straif (Eds.), Tumour site concordance and mechanisms of carcinogenesis (Vol. 7). International Agency for Research on Cancer (IARC Scientific Publications). PMID: 33979079.

    Google Scholar 

  • Jiang, Z., Ma, B., Erinle, K. O., Cao, B., Liu, X., Ye, S., & Zhang, Y. (2016). Enzymatic antioxidant defense in resistant plant: Pennisetum americanum (L.) K. Schum during long-term atrazine exposure. Pesticide Biochemistry and Physiology, 133, 59–66.

    Article  CAS  Google Scholar 

  • Johnsen, A. R., Wick, L. Y., & Harms, H. (2005). Principles of microbial PAH-degradation in soil. Environmental Pollution, 133, 71–84.

    Article  CAS  Google Scholar 

  • Kaphle, A., Navya, P. N., Umapathi, A., & Daima, H. K. (2018). Nanomaterials for agriculture, food and environment: Applications, toxicity and regulation. Environmental Chemistry Letters, 16(1), 43–58.

    Article  CAS  Google Scholar 

  • Kasirajan, S., & Ngouajio, M. (2013). Erratum: Polyethylene and biodegradable mulches for agricultural applications: A review. Agronomy for Sustainable Development, 33, 501–539.

    Article  Google Scholar 

  • Khan, H., Zeb, A., Ali, Z., & Shah, S. (2009). Impact of five insecticides on chickpea (Cicer arietinum L.) nodulation, yield, and nitrogen-fixing rhizospheric bacteria. Soil & Environment, 28, 56–59.

    CAS  Google Scholar 

  • Kilic, S., Duran, R. E., & Coskun, Y. (2015). Morphological and physiological responses of maize (Zea mays L.) seeds grown under increasing concentrations of chlorantraniliprole insecticide. Polish Journal of Environmental Studies, 24(3), 1069–1075.

    Article  Google Scholar 

  • Klaine, S. J., Alvarez, P. J., Batley, G. E., Fernandes, T. F., Handy, R. D., Lyon, D. Y., Mahendra, S., McLaughlin, M. J., & Lead, J. R. (2008). Nanoparticles in the environment: Behavior, fate, bioavailability and effects. Environmental Toxicology and Chemistry, 27(9), 1825–1851.

    Article  CAS  Google Scholar 

  • Kleywegt, S., Smyth, S. A., Parrott, J., Schaefer, K., Lagace, E., Payne, M., Topp, E., Beck, A., McLaughlin, A., & Ostapyk, K. (2007). Pharmaceuticals and personal care products in the Canadian environment: Research and policy directions (NWRI, Scientific Assessment Report Series No. 8) (p. 53). Environment Canada.

    Google Scholar 

  • Kolahalam, L. A., Viswanath, I. K., Diwakar, B. S., Govindh, B., Reddy, V., & Murthy, Y. L. N. (2019). Review on nanomaterials: Synthesis and applications. Materials Today: Proceedings, 18, 2182–2190.

    Google Scholar 

  • Kollmeier, M., Felle, H. H., & Horst, W. J. (2000). Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum. Plant Physiology, 122, 945–956.

    Article  CAS  Google Scholar 

  • Koumaki, E., Noutsopoulos, C., Mamais, D., Fragkiskatos, G., & Andreadakis, A. (2021). Fate of emerging contaminants in high-rate activated sludge systems. International Journal of Environmental Research and Public Health, 18, 400.

    Article  Google Scholar 

  • Kumari, M., Mukherjee, A., & Chandrasekaran, N. (2009). Genotoxicity of silver nanoparticles in Allium cepa. Science of the Total Environment, 407(19), 5243–5246.

    Article  CAS  Google Scholar 

  • Kumari, J., Kumar, D., Mathur, A., Naseer, A., Kumar, R. R., Chandrasekaran, P. T., Chaudhuri, G., Pulimi, M., Raichur, A. M., Babu, S., Chandrasekaran, N., Nagarajan, R., & Mukherjee, A. (2014). Cytotoxicity of TiO2 nanoparticles towards fresh water sediment microorganisms at low exposure concentrations. Environmental Research, 135, 333–345. https://doi.org/10.1016/j.envres.2014.09.0

    Article  CAS  Google Scholar 

  • Lambert, S., & Wagner, M. (2016). Formation of microscopic particles during the degradation of different polymers. Chemosphere, 161, 510–517.

    Article  CAS  Google Scholar 

  • Lee, K. W., Shim, W. J., Kwon, O. Y., & Kang, J. H. J. E. S. (2013). Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus. Environmental Science & Technology, 47, 11278–11283.

    Article  CAS  Google Scholar 

  • Lei, M., Zhang, L., Lei, J., Zong, L., Li, J., Wu, Z., & Wang, Z. (2015). Overview of emerging contaminants and associated human health effects. BioMed Research International, 2015, 404796.

    Article  Google Scholar 

  • Li, S., Ma, H., Wallis, L. K., Etterson, M. A., Riley, B., Hoff, D. J., & Diamond, S. A. (2016). Impact of natural organic matter on particle behavior and phototoxicity of titanium dioxide nanoparticles. Science of the Total Environment, 542, 324–333. https://doi.org/10.1016/j.scitotenv.2015.09.141

    Article  CAS  Google Scholar 

  • Li, X., Qu, C., Bian, Y., Gu, C., Jiang, X., & Song, Y. (2019). New insights into the responses of soil microorganisms to polycyclic aromatic hydrocarbon stress by combining enzyme activity and sequencing analysis with metabolomics. Environmental Pollution, 255, 113312.

    Article  CAS  Google Scholar 

  • Li, Z., Li, R., Li, Q., Zhou, J., & Wang, G. (2020). Physiological response of cucumber (Cucumis sativus L.) leaves to polystyrene nanoplastics pollution. Chemosphere, 255, 127041.

    Article  CAS  Google Scholar 

  • Lian, J., Wu, J., Xiong, H., Zeb, A., Yang, T., Su, X., Su, L., & Liu, W. (2020). Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.). Journal of Hazardous Materials, 385, 121620.

    Article  CAS  Google Scholar 

  • Lian, J., Liu, W., Meng, L., Wu, J., Chao, L., Zeb, A., & Sun, Y. (2021). Foliar-applied polystyrene nanoplastics (PSNPs) reduce the growth and nutritional quality of lettuce (Lactuca sativa L.). Environmental Pollution, 280, 116978.

    Article  CAS  Google Scholar 

  • Lim, Y. P., Lin, C. L., Hung, D. Z., Ma, W. C., Lin, Y. N., & Kao, C. H. (2015). Increased risk of deep vein thrombosis and pulmonary thromboembolism in patients with organophosphate intoxication: A nationwide prospective cohort study. Medicine, 94(1), e341.

    Article  CAS  Google Scholar 

  • Lin, D., & Xing, B. (2008). Root uptake and phytotoxicity of ZnO nanoparticles. Environmental Science & Technology, 42, 5580–5585.

    Article  CAS  Google Scholar 

  • Liu, H., Ma, L., Zhao, J., Liu, J., Yan, J., Ruan, J., & Hong, F. (2009a). Biochemical toxicity of nano-anatase TiO2 particles in mice. Biological Trace Element Research, 126(1–3), 170–180.

    Article  Google Scholar 

  • Liu, H., Weisman, D., Ye, Y. B., Cui, B., Huang, Y. H., Colón-Carmona, A., & Wang, Z. H. (2009b). An oxidative stress response to polycyclic aromatic hydrocarbon exposure is rapid and complex in Arabidopsis thaliana. Plant Science, 176, 375–382.

    Article  CAS  Google Scholar 

  • Liu, Q., Chen, Z., Chen, Y., Yang, F., Yao, W., & Xie, Y. (2021). Microplastics and nanoplastics: Emerging contaminants in food. Journal of Agricultural and Food Chemistry, 69(36), 10450–10468.

    Article  CAS  Google Scholar 

  • Lozowicka, B., Jankowska, M., Hrynko, I., & Kaczynski, P. (2016). Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling. Environmental Monitoring and Assessment, 188(1), 1–19.

    Article  CAS  Google Scholar 

  • Lue, J. T. (2007). Physical properties of nanomaterials. Encyclopedia of Nanoscience and Nanotechnology, 10(1), 1–46.

    Google Scholar 

  • Ma, H., Bertsch, P. M., Glenn, T. C., Kabengi, N. J., & Williams, P. L. (2009). Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans. Environmental Toxicology and Chemistry, 28(6), 1324–1330.

    Article  CAS  Google Scholar 

  • Maitra, S., Brestic, M., Bhadra, P., Shankar, T., Praharaj, S., Palai, J. B., Shah, M. M., Barek, V., Ondrisik, P., Skalický, M., & Hossain, A. (2021). Bioinoculants—Natural biological resources for sustainable plant production. Microorganisms, 2021(10), 51. https://doi.org/10.3390/microorganisms10010051

    Article  CAS  Google Scholar 

  • Manariotis, I. D., Karapanagioti, H. K., & Chrysikopoulos, C. V. (2011). Degradation of PAHs by high frequency ultrasound. Water Research, 45(8), 2587–2594.

    Article  CAS  Google Scholar 

  • Masih, J., Masih, A., Kulshrestha, A., Singhvi, R., & Taneja, A. (2010). Characteristics of polycyclic aromatic hydrocarbons in indoor and outdoor atmosphere in the north central part of India. Journal of Hazardous Materials, 177(1–3), 190–198.

    Article  CAS  Google Scholar 

  • McCormick, A., Hoellein, T. J., Mason, S. A., Schluep, J., & Kelly, J. J. (2014). Microplastic is an abundant and distinct microbial habitat in an urban river. Environmental Science & Technology, 48, 11863–11871.

    Article  CAS  Google Scholar 

  • Mimeault, C., Woodhouse, A. J., Miao, X. S., Metcalfe, C. D., Moon, T. W., & Trudeau, V. L. (2005). The human lipid regulator, gemfibrozil bioconcentrates and reduces testosterone in the goldfish, Carassius auratus. Aquatic Toxicology, 73(1), 44–54.

    Article  CAS  Google Scholar 

  • Mishra, V., Srivastava, G., Prasad, S. M., & Abraham, G. (2008). Growth, photosynthetic pigments, and photosynthetic activity during the seedling stage of cowpea (Vigna unguiculata) in response to UV-B and dimethoate. Pesticide Biochemistry and Physiology, 92, 30–37.

    Article  CAS  Google Scholar 

  • Moore, M., & Kröger, R. (2010). Effect of three insecticides and two herbicides on rice (Oryza sativa) seedling germination and growth. Archives of Environmental Contamination and Toxicology, 59, 574–581.

    Article  CAS  Google Scholar 

  • Mortensen, L. J., Oberdörster, G., Pentland, A. P., & DeLouise, L. A. (2008). In vivo skin penetration of quantum dot nanoparticles in the murine model: The effect of UVR. Nano Letters, 8(9), 2779–2787.

    Article  CAS  Google Scholar 

  • Muller, J., Huaux, F., Moreau, N., Misson, P., Heilier, J. F., Delos, M., Arras, M., Fonseca, A., Nagy, J. B., & Lison, D. (2005). Respiratory toxicity of multi-wall carbon nanotubes. Toxicology and Applied Pharmacology, 207, 221–231.

    Article  CAS  Google Scholar 

  • Musee, N. (2011). Simulated environmental risk estimation of engineered nanomaterials: A case of cosmetics in Johannesburg City. Human & Experimental Toxicology, 30(9), 1181–1195.

    Article  CAS  Google Scholar 

  • Nadasy, E., Lehoczky, E., Lukacs, P., & Adam, P. (2000). Influence of different pre-emergent herbicides on the growth of soybean varieties. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 17, 635–639.

    Google Scholar 

  • Navratilova, M., Stuchlikova, L. R., Matouskova, P., Ambroz, M., Lamka, J., Vokral, I., Szotakova, B., & Skalova, L. (2021). Proof of the environmental circulation of veterinary drug albendazole in real farm conditions. Environmental Pollution, 286, 117590.

    Article  CAS  Google Scholar 

  • Ng, E. L., Lwanga, E. H., Eldridge, S. M., Johnston, P., Hu, H. W., Geissen, V., & Chen, D. (2018). An overview of microplastic and nanoplastic pollution in agroecosystems. Science of the Total Environment, 627, 1377–1388.

    Article  CAS  Google Scholar 

  • Nowack, B., Ranville, J. F., Diamond, S., Gallego-Urrea, J. A., Metcalfe, C., Rose, J., Horne, N., Koelmans, A. A., & Klaine, S. J. (2012). Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environmental Toxicology and Chemistry, 31(1), 50–59.

    Article  CAS  Google Scholar 

  • Olsson, A. C., Fevotte, J., Fletcher, T., Cassidy, A., Mannetje, A. T., Zaridze, D., Szeszenia-Dabrowska, N., Rudnai, P., Lissowska, J., Fabianova, E., & Mates, D. (2010). Occupational exposure to polycyclic aromatic hydrocarbons and lung cancer risk: A multicenter study in Europe. Occupational and Environmental Medicine, 67, 98–103.

    Article  CAS  Google Scholar 

  • Pan, B., & Xing, B. (2012). Applications and implications of manufactured nanoparticles in soils: A review. European Journal of Soil Science, 63(4), 437–456. https://doi.org/10.1111/j.1365-2389.2012.01475.x

    Article  CAS  Google Scholar 

  • Patel, M., Kumar, R., Kishor, K., Mlsna, T., Pittman, C. U., Jr., & Mohan, D. (2019). Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods. Chemical Reviews, 119(6), 3510–3673. https://doi.org/10.1021/acs.chemrev.8b00299

    Article  CAS  Google Scholar 

  • Patel, A. B., Shaikh, S., Jain, K. R., Desai, C., & Madamwar, D. (2020). Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Frontiers in Microbiology, 5(11), 562813. https://doi.org/10.3389/fmicb.2020.562813

  • Pathan, S. I., Arfaioli, P., Bardelli, T., Ceccherini, M. T., Paolo Nannipieri, P. & Pietramellara, G. (2020). Soil pollution from micro- and nanoplastic debris: A hidden and unknown. Sustainability 12, 7255. https://doi.org/10.3390/su12187255.

  • Pedersen, J. A., Soliman, M., & Suffet, I. H. (2005). Human pharmaceuticals, hormones, and personal care product ingredients in runoff from agricultural fields irrigated with treated wastewater. Journal of Agricultural and Food Chemistry, 53(5), 1625–1632.

    Article  CAS  Google Scholar 

  • Peters, R. J., Bouwmeester, H., Gottardo, S., Amenta, V., Arena, M., Brandhoff, P., Marvin, H. J., Mech, A., Moniz, F. B., Pesudo, L. Q., & Rauscher, H. (2016). Nanomaterials for products and application in agriculture, feed and food. Trends in Food Science and Technology, 54, 155–164.

    Article  CAS  Google Scholar 

  • Petousi, I., Fountoulakis, M. S., Saru, L., Nikolaidis, N., Fletcher, L., Stentiford, E. I., & Manios, T. (2015). Effects of reclaimed wastewater irrigation on olive (Olea europaea L. cv. ‘Koroneiki’) trees. Agricultural Water Management, 160, 33–40.

    Google Scholar 

  • Petrie, B., Barden, R., & Kasprzyk-Hordern, B. (2015). A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Research, 72, 3–27.

    Article  CAS  Google Scholar 

  • Podlipná, R. (2022). Benzimidazoles and plants: Uptake, transformation and effect. Toxics, 10, 135. https://doi.org/10.3390/toxics10030135

    Article  Google Scholar 

  • Podlipna, R., Navratilova, M., Stuchlikova, L. R., Motkova, K., Langhansova, L., Skalova, L., & Szotakova, B. (2021). Soybean (Glycine max) is able to absorb, metabolize and accumulate fenbendazole in all organs including beans. International Journal of Molecular Sciences, 22, 6647.

    Article  CAS  Google Scholar 

  • Praharaj, S., Maitra, S., Hossain, A., Sagar, L., Yadav, A. N., Das, U., Shankar, T., Pramanick, B. & Dinkar Gaikwad, D. (2022). Bioleaching Approach for Enhancing Sewage Sludge Dewaterability. In: Rajput, V. D. et al. (eds.), Sustainable Management and Utilization of Sewage Sludge, Springer Nature Switzerland, pp.51–69, https://doi.org/10.1007/978-3-030-85226-9_3.

  • Prakash, M., Nair, G., & Chung, M. (2014). Assessment of silver nanoparticle-induced physiological and molecular changes in Arabidopsis thaliana. Environmental Science and Pollution Research, 21, 8858–8869.

    Article  Google Scholar 

  • Prata, J. C., Silva, A. L. P., Walker, T. R., Duarte, A. C., & Rocha-Santos, T. (2020). COVID-19 pandemic repercussions on the use and management of plastics. Environmental Science & Technology, 54, 7760–7765. https://doi.org/10.1021/acs.est.0c02178

    Article  CAS  Google Scholar 

  • Ragusa, A., Svelato, A., Santacroce, C., Catalano, P., Notarstefano, V., Carnevali, O., Papa, F., Rongioletti, M. C., Baiocco, F., Draghi, S., & D’Amore, E. (2021). Plasticenta: First evidence of microplastics in human placenta. Environment International, 146, 106274.

    Article  CAS  Google Scholar 

  • Raj, S., Jose, S., Sumod, U. S., & Sabitha, M. (2012). Nanotechnology in cosmetics: Opportunities and challenges. Journal of Pharmacy and Bioallied Sciences, 4(3), 186.

    Article  Google Scholar 

  • Rajashekar, N., & Murthy, T. S. (2012). Seed germination and physiological behavior of maize (cv. NAC6002) seedlings under abiotic stress (pendimethalin) condition. Asian Journal of Crop Science, 4, 80–85.

    Article  Google Scholar 

  • Rani, S. (2015). Studies on the degradation and mineralization of organophosphate pesticides employing advanced oxidation processes. Thesis, Sant Longowal Institute of Engineering and Technology, p. 255. http://hdl.handle.net/10603/103813

  • Ray, P. C., Yu, H., & Fu, P. P. (2009). Toxicity and environmental risks of nanomaterials: Challenges and future needs. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews, 27(1), 1–35. https://doi.org/10.1080/10590500802708267

    Article  CAS  Google Scholar 

  • Rillig, M. C., Ziersch, L., & Hempel, S. (2017). Microplastic transport in soil by earthworms. Scientific Reports, 7, 1362. https://doi.org/10.1038/s41598-017-01594-7

    Article  CAS  Google Scholar 

  • Rohila, A. K., Maan, D., Kumar, A., & Kumar, K. (2017). Impact of agricultural practices on environment. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 19(2), 145–148.

    Google Scholar 

  • Sagar, L., Maitra, S., Hossain, A., Yadav, A. N., Singh, S., Deepak Kumar, D., Praharaj, S., Shankar, T. & Pramanick, B. (2022). Emerging Nutrient Recovery Technologies in Sewage Sludge Management. In: Rajput, V. D. et al. (eds.), Sustainable Management and Utilization of Sewage Sludge, Springer Nature Switzerland, pp.125–145, https://doi.org/10.1007/978-3-030-85226-9_6.

  • Saleh, T. A. (2020). Nanomaterials: Classification, properties, and environmental toxicities. Environmental Technology and Innovation, 20, 101067.

    Article  CAS  Google Scholar 

  • Santos, C., Oliveira, H., Joanna Deckert, J., & White, J. C. (2012). Legacy and emerging contaminants in plants: From the gene to the field. Journal of Botany, 2012, 1–2. https://doi.org/10.1155/2012/382717

    Article  Google Scholar 

  • Sany, T. S. B., Salleh, A., Sulaiman, A.H., Tehrani, G. M., (2012). Ecological risk assessment of poly aromatic hydrocarbons in the North Port, Malaysia. World Academy of Science, Engineering and Technology 69: 43–46.

    Google Scholar 

  • Sarkar, B., Dissanayake, P. D., Bolan, N. S., Dar, J. Y., Kumar, M., Haque, M. N., Mukhopadhyay, R., Ramanayaka, S., Biswas, J. K., Tsang, D. C., & Rinklebe, J. (2022). Challenges and opportunities in sustainable management of microplastics and nanoplastics in the environment. Environmental Research, 207, 112179.

    Article  CAS  Google Scholar 

  • Schraa, G. (1988). Anaerobic degradation, processes and test methods. In Organic micropollutants in the aquatic environment (pp. 215–227). Springer.

    Chapter  Google Scholar 

  • Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR). (2009). Risk assessment of products of nanotechnologies. European Commission Health and Consumer Protection Directorate-General, Directorate C—public health and risk assessment, C7—risk assessment, Brussels. http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_023.pdf. Accessed 9 Nov 2011.

  • Shah, V., & Belozerova, I. (2009). Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water, Air, and Soil Pollution, 197, 143–148.

    Article  CAS  Google Scholar 

  • Shahid, E., Khan, J., Qaisrani, M. M., Noman, M., Rani, A., & Ali, S. (2021). Effect of pesticide residues on agriculture crops. Journal of Toxicological & Pharmaceutical Sciences, 5, 18–23.

    Google Scholar 

  • Sharma, V., Shukla, R. K., Saxena, N., Parmar, D., Das, M., & Dhawan, A. (2009). DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicology Letters, 185, 211–218.

    Article  CAS  Google Scholar 

  • Sharma, A., Kumar, V., Thukral, A. K., & Bhardwaj, R. (2019). Responses of plants to pesticide toxicity: An overview. Planta Daninha, 37, e019184291. https://doi.org/10.1590/S0100-83582019370100065

    Article  Google Scholar 

  • Shirvanimoghaddam, K., Czech, B., Yadav, R., Gokce, C., Fusco, L., Delogu, L. G., Yilmazer, A., Brodie, G., Al-Othman, A., Al-Tamimi, A. K., & Grout, J. (2022). Facemask global challenges: The case of effective synthesis, utilization, and environmental sustainability. Sustainability, 14, 737. https://doi.org/10.3390/su14020737

    Article  CAS  Google Scholar 

  • Sirbu, T., Maslobrod, S. N., Mirgorod, Y. A., Borodina, V. G., Borsch, N. A., & Ageeva, L. S. (2016). Influence of dispersed solutions of copper, silver, bismuth and zinc oxide nanoparticles on growth and catalase activity of Penicillium Funiculosum. In V. Sontea & I. Tiginyanu (Eds.), 3rd international conference on nanotechnologies and biomedical engineering (IFMBE Proceedings) (Vol. 55, pp. 271–274). Springer Science + Business Media. https://doi.org/10.1007/978-981-287-736-9_66

    Chapter  Google Scholar 

  • Smirnova, E., Gusev, A., Zaytseva, O., Sheina, O., Tkachev, A., Kuznetsova, E., Lazareva, E., Onishchenko, G., Feofanov, A., & Kirpichnikov, M. (2012). Uptake and accumulation of multiwalled carbon nanotubes change the morphometric and biochemical characteristics of Onobrychis arenaria seedlings. Frontiers of Chemical Science and Engineering, 6, 132–138.

    Article  CAS  Google Scholar 

  • Snyder, S. A. (2008). Occurrence, treatment, and toxicological relevance of EDCs and pharmaceuticals in water. Ozone Science and Engineering, 30, 65–69.

    Article  CAS  Google Scholar 

  • Sohaebuddin, S. K., Thevenot, P. T., Baker, D., Eaton, J. W., & Tang, L. (2010). Nanomaterial cytotoxicity is composition, size, and cell type dependent. Particle and Fibre Toxicology, 7(1), 1–7.

    Article  Google Scholar 

  • Srivastava, A., Ganjewala, D., Singhal, R. K., Rajput, V. D., Minkina, T., Voloshina, M., Srivastava, S., Shrivastava, M. (2021) Effect of ZnO Nanoparticles on Growth and Biochemical Responses of Wheat and Maize. Plants 10(12), 2556. https://doi.org/10.3390/plants10122556

  • Stockholm Convention, (2021). All POPs listed in the Stockholm Convention http://chm.pops.int/TheConvention/ThePOPs/ListingofPOPs/tabid/2509/Default.aspx (Accessed Online: 12 June, 2022).

  • Stuart, E. J. E., & Compton, R. G. (2015). Nanoparticles-emerging contaminants. In L. M. Moretto & K. Kalcher (Eds.), Environmental analysis by electrochemical sensors and biosensors (pp. 855–878). Springer Science + Business Media. https://doi.org/10.1007/978-1-4939-1301-5_8

    Chapter  Google Scholar 

  • Sultana, O. F., Lee, S., Seo, H., Mahmud, H. A., Kim, S., Seo, A., Kim, M., & Song, H. Y. (2021). Biodegradation and removal of PAHs by Bacillus velezensis isolated from fermented food. Journal of Microbiology and Biotechnology, 31(7), 999–1010. https://doi.org/10.4014/jmb.2104.04023

    Article  CAS  Google Scholar 

  • Syslova, E., Landa, P., Navratilova, M., Stuchlikova, L. R., Matouskova, P., Skalova, L., Szotakova, B., Vanek, T. S., & Podlipna, R. (2019). Ivermectin biotransformation and impact on transcriptome in Arabidopsis thaliana. Chemosphere, 234, 528–535.

    Article  CAS  Google Scholar 

  • Tanveer, A., Nadeem, M. A., Ali, A., Tahir, M., & Zamir, M. S. (2009). Germination behavior of seeds from herbicide treated plants of Chenopodium album L. Anais da Academia Brasileira de Ciências, 8, 873–879.

    Article  Google Scholar 

  • Thul, S. T., Sarangi, B. K., & Pandey, R. A. (2013). Nanotechnology in agroecosystem: Implications on plant productivity and its soil environment. Expert Opinion on Environmental Biology, 2, 1. https://doi.org/10.4172/2325-9655.1000101

    Article  Google Scholar 

  • Tian, Q. Y., Sun, D. H., Zhao, M. G., & Zhang, W. H. (2007). Inhibition of nitric oxide synthase (NOS) underlies aluminum-induced inhibition of root elongation in Hibiscus moscheutos. The New Phytologist, 174(2), 322–331.

    Article  CAS  Google Scholar 

  • Unwin, J., Cocker, J., Scobbie, E., & Chambers, H. (2006). An assessment of occupational exposure to polycyclic aromatic hydrocarbons in the UK. The Annals of Occupational Hygiene, 50(4), 395–403.

    CAS  Google Scholar 

  • US EPA. (2007). Nanotechnology white paper. Senior Policy Council. http://www.epa.gov/osa/pdfs/nanotech/epa-nanotechnology-whitepaper-0207.pdf

  • US EPA. (2008). Nanotechnology for site remediation fact sheet. Solid Waste and Emergency Response. EPA 542-F-08-009. http://www.clu-in.org/download/remed/542-f-08-009.pdf

  • USEPA. (2010). Emerging contaminants – Nanomaterials. Available online: https://archive.epa.gov/region9/mediacenter/web/pdf/emerging_contaminant_nanomaterials.pdf. Accessed 18 Mar 2022.

  • Van Aken, B. (2015). Gene expression changes in plants and microorganisms exposed to nanomaterials. Current Opinion in Biotechnology, 33, 206–219. https://doi.org/10.1016/j.copbio.2015.03.005

    Article  CAS  Google Scholar 

  • Varghese, R. J., Parani, S., Thomas, S., Oluwafemi, O. S., & Wu, J. (2019). Introduction to nanomaterials: Synthesis and applications. In Nanomaterials for solar cell applications (pp. 75–95). Elsevier.

    Chapter  Google Scholar 

  • Vasilachi, I., Asiminicesei, D., Fertu, D., & Gavrilescu, M. (2021). Occurrence and fate of emerging pollutants in water environment and options for their removal. Water, 13, 181.

    Article  CAS  Google Scholar 

  • Velimirovic, M., Tirez, K., Verstraelen, S., Frijns, E., Remy, S., Koppen, G., Rotander, A., Bolea-Fernandez, E., & Vanhaecke, F. (2021). Mass spectrometry as a powerful analytical tool for the characterization of indoor airborne microplastics and nanoplastics. Journal of Analytical Atomic Spectrometry, 36(4), 695–705.

    Article  CAS  Google Scholar 

  • Veltman, K., Huijbregts, M. A., Rye, H., & Hertwich, E. G. (2012). Erratum: Including impacts of particulate emissions on marine ecosystems in life cycle assessment: The case of offshore oil and gas production. Integrated Environmental Assessment and Manaement, 7, 678–686.

    Article  Google Scholar 

  • Wang, C., Sun, H, Li, J., Li, Y., & Zhang, Q. (2009). Enzyme activities during degradation of polycyclic aromatic hydrocarbons by white rot fungus Phanerochaete chrysosporium in soils. Chemosphere 77(6):733–738, https://doi.org/10.1016/j.chemosphere.2009.08.028.

  • Wang, Y., Li, P-H., Li, H-L., Liu X-H, & Wang, W-X. (2010) PAHs distribution in precipitation at Mount Taishan: China. Identification of sources and meteorological influences. Atmospheric Research 95:1–7, https://doi.org/10.1016/j.atmosres.2009.07.011.

  • Wagil, M., Białk-Bielińska, A., Puckowski, A., Wychodnik, K., Maszkowska, J., Mulkiewicz, E., Kumirska, J., Stepnowski, P., & Stolte, S. (2015). Toxicity of anthelmintic drugs (fenbendazole and flubendazole) to aquatic organisms. Environmental Science and Pollution Research, 22, 2566–2573.

    Article  CAS  Google Scholar 

  • Wang, F., Wang, Q., Adams, C. A., Sun, Y., & Zhang, S. (2021). Effects of microplastics on soil properties: Current knowledge and future perspectives. Journal of Hazardous Materials, 424, 127531.

    Article  Google Scholar 

  • Wen, A. M., & Steinmetz, N. F. (2016). Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chemical Society Reviews, 45(15), 4074–4126.

    Article  CAS  Google Scholar 

  • WHO. (2015). Antibiotic resistance: Multi-country public awareness survey. World Health Organization.

    Google Scholar 

  • WHO. (2022). Pesticide residues in food. Available online: https://www.who.int/news-room/fact-sheets/detail/pesticide-residues-in-food. Accessed 16 May 2022.

  • Wielogorska, E., Elliott, C. T., Danaher, M., Chevallier, O., & Connolly, L. (2015). Validation of an ultra high performance liquid chromatography-tandem mass spectrometry method for detection and quantitation of 19 endocrine disruptors in milk. Food Control, 48, 48–55.

    Article  CAS  Google Scholar 

  • Wiesner, M.R., G.V. Lowry, P. Alvarez, D. Dionysiou, & P. Biswas. (2006). Assessing the Risks of Manufactured Nanoparticles. Environmental Science & Technology 40(14), 4336–4365.

    Google Scholar 

  • Wilkinson, J. L., Boxall, A. B., Kolpin, D. W., Leung, K. M., Lai, R. W., Galbán-Malagón, C., Adell, A. D., Mondon, J., Metian, M., Marchant, R. A., & Bouzas-Monroy, A. (2022). Pharmaceutical pollution of the world’s rivers. Proceedings of the National Academy of Sciences, 119(8), e2113947119. https://doi.org/10.1073/pnas.2113947119

    Article  CAS  Google Scholar 

  • Wu, Y. X., & Von Tiedemann, A. (2002). Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley (Hordeum vulgare L.) exposed to ozone. Environmental Pollution, 116, 37–47.

    Article  CAS  Google Scholar 

  • Wu, Q., Miao, W. S., Gao, H. J., & Hui, D. (2020). Mechanical properties of nanomaterials: A review. Nanotechnology Reviews, 9(1), 259–273.

    Article  CAS  Google Scholar 

  • Xia, K., Bhandari, A., Das, K., & Pillar, G. (2005). Occurrence and fate of pharmaceuticals and personal care products (PPCPs) in biosolids. Journal of Environmental Quality, 34(1), 91–104.

    Article  CAS  Google Scholar 

  • Xu, M., Wu, M., Zhang, Y., Zhang, H., Liu, W., Chen, G., Xiong, G., & Guo, L. (2022). Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by bacterial mixture. International journal of Environmental Science and Technology, 19, 3833–3844. https://doi.org/10.1007/s13762-021-03284-4

    Article  CAS  Google Scholar 

  • Yamamoto, Y., Kobayashi, Y., & Matsumoto, H. (2001). Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Journal of Plant Physiology, 125, 199–208.

    Article  CAS  Google Scholar 

  • Yang, Y., & Toor, G. S. (2015). Contaminants in the urban environment: Pharmaceuticals and personal care products (PPCPs)—Part 2. University of Florida Extension. Available online: https://edis.ifas.ufl.edu/publication/SS633. Accessed 25 May 2022.

  • Zeb, A., Liu, W., Meng, L., Lian, J., Wang, Q., Lian, Y., Chen, C., & Wu, J. (2021). Effects of polyester microfibers (PMFs) and cadmium on lettuce (Lactuca sativa) and the rhizospheric microbial communities: A study involving physio-biochemical properties and metabolomic profiles. Journal of Hazardous Materials, 424, 127405.

    Article  Google Scholar 

  • Zettler, E. R., Mincer, T. J., & Amaral-Zettler, L. A. (2013). Life in the “plastisphere”: Microbial communities on plastic marine debris. Environmental Science & Technology, 47, 7137–7146.

    Article  CAS  Google Scholar 

  • Zhang, L., Li, P., Gong, Z., & Xuemei, Li. (2008). Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using TiO2 under UV light, Journal of Hazardous Materials 158, 2–3, 478–484, https://doi.org/10.1016/j.jhazmat.2008.01.119

  • Zhang, H., West, D., Shi, H., Ma, Y., Adams, C., & Eichholz, T. (2019). Simultaneous Determination of Selected Trace Contaminants in Drinking Water Using Solid-Phase Extraction-High Performance Liquid Chromatography-Tandem Mass Spectrometry. Water Air and Soil Pollution 230, 28

    Google Scholar 

  • Zhang, P., Ma, Y., & Zhang, Z. (2015). Interactions between engineered nanomaterials and plants: Phytotoxicity, uptake, translocation, and biotransformation. In M. H. Siddiqui, M. H. Al-Whaibi, & F. Mohammad (Eds.), Nanotechnology and plant sciences nanoparticles and their impact on plants (pp. 77–99). Springer International Publishing. https://doi.org/10.1007/978-3-319-14502-5

    Chapter  Google Scholar 

  • Zhang, E. J., Aitchison, L. P., Phillips, N., Shaban, R. Z., & Kam, A. W. (2021). Protecting the environment from plastic PPE. Greener manufacture, use, and disposal are urgent priorities. BMJ, 372, n109. https://doi.org/10.1136/bmj.n109

    Article  Google Scholar 

  • Zrncic, M., Gros, M., Babic, S., Kastelan-Macan, M., Barcelo, D., & Petrovic, M. (2014). Analysis of anthelmintics in surface water by ultra-high-performance liquid chromatography coupled to quadrupole linear ion trap tandem mass spectrometry. Chemosphere, 99, 224–232.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagar Maitra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sairam, M. et al. (2023). An Insight Into the Consequences of Emerging Contaminants in Soil and Water and Plant Responses. In: Aftab, T. (eds) Emerging Contaminants and Plants. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-031-22269-6_1

Download citation

Publish with us

Policies and ethics