Skip to main content

What Do We Know about Antibiotics in the Environment?

  • Chapter
Pharmaceuticals in the Environment

Abstract

Antibiotics are used extensively in human and veterinary medicine as well as in aquaculture for the purpose of preventing or treating microbial infections, while in livestock farming they are used to promote the growth of animals. Some antibiotics are also used in fruit growing and in bee keeping. Antibiotics are only partially eliminated in sewage treatment plants and residual amounts can reach surface waters, groundwater or sediments. In natural waters, most pharmaceuticals are only found in the μg l−1 range. Since biocidal substances are designed to cause a biological effect, when reaching the environment they may affect bacteria and other water and soil-dwelling organisms. It is only in recent years that a more complex investigation of antibiotic substances has been undertaken in order to permit an assessment of the environmental risks they may pose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Al-Ahmad A, Daschner FD, Kammerer K (1999) Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G and sulfamethoxazole and inhibition of waste water bacteria. Arch Environ Con Tox 37: 158–163

    Article  CAS  Google Scholar 

  • Alexander M (1981) Biodegradation of chemicals of environmental concern. Science 211: 132–211

    Article  CAS  Google Scholar 

  • Alexy R (2003) Antibiotika in der aquatischen Umwelt: Eintrag, Elimination and Wirkung auf Bakterien. Thesis, Albert-Ludwigs-Universität, Freiburg

    Google Scholar 

  • Alexy R, Schöll A, Kumpel T, Kümmerer K (2003) Antibiotics in the aquatic environment: testing the biodegradability of selected antibiotics, their occurrence in waste water, their potential impact on the purification performance of municipal sewage treatment plants and identification of associated risks. Federal Environmental Agency, Berlin (final report, F+E 298 63 722, in German)

    Google Scholar 

  • Alexy R, Kumpel T, Kümmerer K (to be published) Assessment of degradation of 18 antibiotics in the closed bottle test. Chemosphere

    Google Scholar 

  • Backhaus T, Grimme LH (1999) The toxicity of antibiotic agents to the luminescent bacterium Vi brio fischeri. Chemosphere 38: 3291–3301

    Article  CAS  Google Scholar 

  • Baguer AJ, Jensen J, Krogh PH (2000) Effects of the antibiotics oxytetracycline and tylosin on soil fauna. Chemosphere 40: 751–757

    Article  CAS  Google Scholar 

  • Björklund H, Râbergh CMI, Bylund G (1991) Residues of oxytetracycline in wild fish and sediments from fish farms. Aquaculture 86: 359–367

    Article  Google Scholar 

  • Boxall ABA, Kolpin DW, Halling-Sorensen B, Tolls J (2003) Are veterinary medicines causing environmental risks? Environ Sci Technol 1: 286–294

    Article  Google Scholar 

  • Brambilla G, Civitareale C, Migliore L (1994) Experimental toxicity and analysis of bacitracin, flumequine and sulphadimethoxine in terrestrial and aquatic organisms as a predictive model for ecosystem damage. Quim Anal 13: 573–577

    Google Scholar 

  • Calamari D, Zuccato E, Castiglioni S, Bagnati R, Fanelli R (2003) Strategic survey of therapeutic drugs in the rivers Po and Lambro in Northern Italy. Environ Sci Technol 37: 1241–1248

    Article  CAS  Google Scholar 

  • Canton JH, van Esch GJ (1976) The short-term toxicity of some feed additives to different freshwater organisms. B Environ Contam Tox 15: 720–725

    Article  CAS  Google Scholar 

  • Capone DG, Weston DP, Miller V, Shoemaker C (1996) Antibacterial residues in marine sediments and invertebrates following chemotherapy in aquaculture. Aquaculture 145: 55–75

    Article  CAS  Google Scholar 

  • Cerovec C (2000) Entwicklung and Anwendung von HPLC Methoden für die Analyse von Antibiotika in verschiedenen Testsystemen. Diploma thesis, Fachhochschule and Berufskolleg NTA, Isny im Allgäu

    Google Scholar 

  • Christian T, Schneider RJ, Färber HA, Skutlarek D, Meyer MT, Goldbach HE (2003) Determination of antibiotic residues in manure, soil, and surface waters. Acta Hydroch Hydrob 31: 36–44

    Article  CAS  Google Scholar 

  • Colinas C, Ingham E, Molina R (1994) Population responses of target and non-target forest soil organisms to selected biocides. Soil Biol Biochem 26: 41–47

    Article  CAS  Google Scholar 

  • Coyne R, Hiney M, O’Conner B, Cazabon D, Smith P (1994) Concentration and persistence of oxytetracycline in sediments under a marine salmon farm. Aquaculture 123: 31–42

    Article  CAS  Google Scholar 

  • Dojmi di Delupis G, Macrì A, Civitareale C, Migliore L (1992) Antibiotics of zootechnical use: effects of acute high and low dose contamination on Daphnia magna Straus. Aquat Toxicol 22: 53–60

    Article  Google Scholar 

  • Donoho AL (1984) Biochemical studies on the fate of monensin in animals and in the environment. J Anim Sci 58: 1528–1539

    CAS  Google Scholar 

  • EU (2002) Council recommendation of 15 November 2001 on the prudent use of antimicrobial agents in human medicine (text with EEA relevance). The Council of the European Union, Brussels, Belgium (2002/77/EC, 5 February)

    Google Scholar 

  • Färber H (2002) Antibiotika im Krankenhausabwasser. Hyg Med 27: 35

    Google Scholar 

  • FEDESA (European Federation of Animal Health) (1997) Antibiotics and animals. FEDESA/FEFANA press release, Brussels, 8 September

    Google Scholar 

  • FEDESA (European Federation of Animal Health) (2001) Antibiotic use in farm animals does not threaten human health. FEDESA/FEFANA press release, Brussels, 13 July

    Google Scholar 

  • Froehner K, Backhaus T, Grimme LH (2000) Bioassays with Vibrio fischen for the assessment of delayed toxicity. Chemosphere 40: 821–828

    Article  CAS  Google Scholar 

  • Gavalchin J, Katz SE (1994) The persistence of fecal-borne antibiotics in soil. J AOAC Intern 77: 481–485

    CAS  Google Scholar 

  • Giger W, Alder AC, Golet EM, Kohler H-PE, McArdell CS, Molnar E, Siegrist H, Suter MJ-F (2003) Occurrence and fate of antibiotics as trace contaminants in wastewaters, sewage sludges, and surface waters. Chimia 57 (9): 485–491

    Article  CAS  Google Scholar 

  • Gilbertson TJ, Hornish RE, Jaglan PS, Koshy KT, Nappier JL, Stahl GL, Cazers AR, Napplier JM, Kubicek MF, Hoffman GA, Hamlow PJ (1990) Environmental fate of ceftiofur sodium, a cephalosporin antibiotic. Role of animal excreta in its decomposition. J Agr Food Chem 38: 890–894

    Article  CAS  Google Scholar 

  • Golet EM, Strehler A, Alder AC, Giger W (2002) Determination of fluoroquinolone antibacterial agents in sewage sludge and sludge-treated soil using accelerated solvent extraction followed by solid-phase extraction. Anal Chem 74: 5455–5462

    Article  CAS  Google Scholar 

  • Gomez J, Mendez R, Lema JM (1996) The effect of antibiotics on nitrification processes. Appl Biochem Biotechnol 57 /58: 869–876

    Article  Google Scholar 

  • Halling-Sorensen B (2000) Algal toxicity of antibacterial agents used in intensive farming. Chemosphere 40: 731–739

    Article  CAS  Google Scholar 

  • Hamscher G, Sczesny S, Abu-Qare A, Höper H, Nau H (2000) Stoffe mit pharmakologischer Wirkung einschließlich hormonell aktiver Substanzen in der Umwelt: Nachweis von Tetracyclinen in güllegedüngten Böden. Dtsch tierärztl Wschr 10: 293–348

    Google Scholar 

  • Hamscher G, Sczesny S, Höper H, Nau H (2002) Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Chem 74: 1509–1518

    Article  CAS  Google Scholar 

  • Hansen PK, Lunestad BT, Samuelsen OB (1992) Effects of oxytetracycline, oxolinic acid and flumequine on bacteria in an artificial marine fish farm sediment. Can J Microbiol 38: 307–1312

    Article  Google Scholar 

  • Hartmann A, Alder AC, Koller T, Widmer RM (1998) Identification of fluoroquinolone antibiotics as the main source of umuC genotoxicity in native hospital wastewater. Environ Toxicol Chem 17: 377–382

    CAS  Google Scholar 

  • Hektoen H, Berge JA, Hormazabal V, Yndestad M (1995) Persistence of antibacterial agents in marine sediments. Aquaculutre 133: 75–184

    Google Scholar 

  • Hirsch R, Ternes T, Haberer K, Kratz KL (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225: 109–118

    Article  CAS  Google Scholar 

  • Holm JV, Rugge K, Bjerg PL, Christensen TH (1995) Occurrence and distribution of pharmaceutical organic compounds in the groundwater downgradient of a landfill. Envrion Sci Tech 29: 1415–1420

    Article  CAS  Google Scholar 

  • Holten-Lützhoft HC, Halling-Sorensen B, Jorgensen SE (1999) Algal toxicity of antibacterial agents applied in Danish fish farming. Arch Environ Con Tox 36: 1–6

    Article  Google Scholar 

  • Hossain AKM, Alexander M (1984) Enhancing soybean rhizosphere colonization by Rhizobium japonicum. Appl Environ Microb 48: 468–472

    CAS  Google Scholar 

  • Jacobsen P, Berglind L (1988) Persistence of oxytetracyline in sediment from fish farms. Aquaculture 70: 365–370

    Article  CAS  Google Scholar 

  • Klaver AL, Matthews RA (1994) Effects of oxytetracycline on nitrification in a model aquatic system. Aquaculture 123: 237–247

    Article  CAS  Google Scholar 

  • Koller G, Hungerbiihler K, Fent K (2000) Data ranges in aquatic toxicity of chemicals. Consequences for environmental risk analysis. Environ Sci Pollut Res 7: 135–143

    Article  CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and others organic wastewater contaminants in US streams,1999–2000: a national reconnaissance. Environ Sci Technol 36: 1202–1211

    Article  CAS  Google Scholar 

  • Kümmerer K (ed) (2001) Pharmaceuticals in the environment: sources, fate, effects and risks, ist edn. Springer-Verlag, Heidelberg Berlin

    Google Scholar 

  • Kümmerer K (2003) Significance of antibiotics in the environment. J Antimicrob Chemother 52: 5–7

    Article  Google Scholar 

  • Kümmerer K, Henninger A (2003) Promoting resistance by the emission of antibiotics from hospitals and households into effluents. Clin Microbiol Inf 9: 1203–1214

    Article  Google Scholar 

  • Kümmerer K, Al-Ahmad A, Mersch-Sundermann V (2000) Biodegradability of some antibiotics, elimination of the genotoxicity and affection of wastewater bacteria in a simple test. Chemosphere 40: 701–710

    Article  Google Scholar 

  • Kammerer K, Alexy R, Wittig J, Schöll A (to be published) Standardized tests fail to assess the effects of antibiotics on environmental bacteria.

    Google Scholar 

  • Lanzky PF, Hailing-Sorensen B (1997) The toxic effect of the antibiotic metronidazol on aquatic organisms. Chemosphere 35: 2553–2561

    Article  CAS  Google Scholar 

  • Lunestad BT (1992) Fate and effects of antibacterial agents in aquatic environments. Chemotherapy in Aquaculture: from theory to reality. Office Internat. Des Epizooties, Paris, pp 152–161

    Google Scholar 

  • Lunestad BT, Goksoyr J (1990) Reduction in the antibacterial effect of oxytetracycline in sea water by complex formation with magnesium and calcium. Dis Aquat Organ 9: 67–72

    Article  CAS  Google Scholar 

  • Lunestad BT, Samuelsen OB, Fjelde S, Ervik A (1995) Photostability of eight antibacterial agents in seawater. Aquaculture 134: 217–225

    Article  CAS  Google Scholar 

  • Macrì A, Stazi AV, Dojmi di Delupis G (1988) Acute toxicity of furazolidone on Artemia saliva, Daphnia magna, and Culex pipiens molestus larvae. Ecotox Environ Safe 16: 90–94

    Article  Google Scholar 

  • Marengo JR, O’Brian RA, Velagaleti RR, Stamm JM (1997) Aerobic biodegradation of (“C)-sarafloxacin hydrochloride in soil. Environ Toxicol Chem 16: 462–471

    CAS  Google Scholar 

  • Marking LL, Howe GE, Crowther JR (1988) Toxicity of erythromycin, oxytetracycline and tetracycline administered to lake trout in water baths, by injection, or by feeding. Progr Fish Culturist 50: 197–201

    Article  Google Scholar 

  • Migliore L, Brambilla G, Grassitellis A, Dojmi di Delupis G (1993) Toxicity and bioaccumulation of sulphadimethoxine in Artemia (Crustacea, Anostraca). Int J Salt Lake Res 2: 141–152

    Article  Google Scholar 

  • Migliore L, Lorenzi C, Civitareale C, Laudi 0, Brambilla G (1995) La flumequina e gli ecosystemi marini: emissione con l’acquacoltura e tossicita su Artemia saliva (L.). Atti. S.I.T.E. 16

    Google Scholar 

  • Migliore L, Civitareale C, Brambilla G, Dojmi di Delupis G (1997) Toxicity of several important agricultural antibiotics to Artemia. Wat Res 31: 1801–1806

    Article  CAS  Google Scholar 

  • Mölstad S, Lundborg CS, Karlsson AK, Cars 0 (2002) Antibiotic prescription rates vary markedly between 13 European countries. Scan J Infect Dis 34: 366–371

    Google Scholar 

  • Nygaard K, Lunestad BT, Hektoen H, Berge JA, Hormazabal V (1992) Resistance to oxytetracycline, oxolinic acid and furazolidone in bacteria from marine sediments. Aquaculture 104: 21–36

    Article  Google Scholar 

  • Ohlsen K, Ternes T, Werner G, Löffler D, Witte W, Hacker J (2003) Bedeutung von Antibiotika in Krankenhausabwässern. In: Track T, Kreysa G (eds) Spurenstoffe in Gewässern. Pharmazeutische Reststoffe and endokrin wirksame Substanzen. Wiley-VCH GmbH & Co, Weinheim, pp 197–209

    Google Scholar 

  • Oka H, Ikai Y, Kawamura N, Yamada M, Harada K, Ito S, Suzuki M (1989) Photodecomposition products of tetracycline in aqueous solution. J Agr Food Chem 37: 226–231

    Article  CAS  Google Scholar 

  • Patten DK, Wolf DC, Kunkle WE, Douglass LW (1980) Effect of antibiotics in beef cattle faeces on nitrogen and carbon mineralization in soil and on plant growth and composition. J Environ Qual 9: 167–172

    Article  CAS  Google Scholar 

  • Pearson M, Inglis V (1993) A sensitive microbioassay for the detection of antibacterial agents in the aquatic environment. J Fish Dis 16: 255–260

    Article  CAS  Google Scholar 

  • Plate P (1991) Bodenlose Folgen? Antibiotika in Gülle and Boden. Veto 27: 15–17

    Google Scholar 

  • Pouliquen H, Le Bris H, Pinault L (1992) Experimental study of the therapeutic application of oxytetracycline, its attenuation in sediment and sea water, and implication for farm culture of benthic organisms. Mar Ecol Prog Ser 89: 93–98

    Article  CAS  Google Scholar 

  • Qiting J, Xiheng Z (1988) Combination process of anaerobic digestion and ozonization technology for treating wastewater from antibiotics production. Water Treat 3: 285–291

    Google Scholar 

  • Rabelle M, Spliid NH (2000) Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere 40: 715–722

    Article  Google Scholar 

  • Richardson ML, Bowron JM (1985) The fate of pharmaceutical chemicals in the environment. J Pharm Pharmacol 37: 1–12

    Article  CAS  Google Scholar 

  • Sacher F, Lange FT, Brauch HJ, Blankenhorn I (2001) Pharmaceuticals in groundwaters. Analytical methods and results of a monitoring program in Baden-Württemberg, Germany. J Chromatogr A 938: 199–210

    Article  CAS  Google Scholar 

  • Samuelsen OB (1989) Degradation of oxytetracycline in seawater at two different temperatures and light intensities, and the persistence of oxytetracycline in the sediment from a fish farm. Aquaculture 83: 7–16

    Article  CAS  Google Scholar 

  • Samuelsen OB, Solheim E, Lunestad BT (1991) Fate and microbiological effects of furazolidone in a marine aquaculture sediment. Sci Tot Environ 108: 275–283

    Article  CAS  Google Scholar 

  • Samuelsen OB, Torsvik V, Ervik A (1992) Long-range changes in oxytetracycline concentration and bacterial resistance towards oxytetracycline in fish farm sediment after medication. Sci Total Environ 114: 25–36

    Article  CAS  Google Scholar 

  • Samuelsen OB, Lunestad BT, Fjelde S (1994) Stability of antibacterial agents in an artificial marine aquaculture sediment studied under laboratory conditions. Aquaculture 126: 183–290

    Article  Google Scholar 

  • Sengelov G, Agerso Y, Hailing-Sorensen B, Baloda SB, Jensen LB (2001) Bacterial antibiotic resistance levels in farmland as a result of treatment with pig slurry. Environ Int 28: 587–595

    Article  Google Scholar 

  • Simon M, Lukow T, Hund-Rinke K (2003) Auswirkungen von Tetracyclin auf Bodenmikroorganismen (Funktion, Diversität, Resistenzen). 8. Deutschsprachige SETAC-Tagung, Heidelberg, 21.-23. September 2003 ( Tagungsband, Abstract, p us )

    Google Scholar 

  • Stanislawska J (1979) Communities of organisms during treatment of sewage containing antibiotics. Pol Arch Hydrobiol 26: 221–229

    CAS  Google Scholar 

  • Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soils–a review. J Plant Nutr Soil Sci 166: 145–167

    Article  CAS  Google Scholar 

  • Thomulka KW, McGee DJ (1993) Detection of biohazardous materials in water by measuring bioluminescence reduction with the marine organism Vibrio harveyi. Environ Sci Health A28: 2153–2166

    Google Scholar 

  • Tomlinson TG, Boon AG, Trotman CNA (1966) Inhibition of nitrification in the activated sludge process of sewage disposal. J Appl Bact 29: 266–291

    Article  CAS  Google Scholar 

  • Union of Concerned Scientists (2001) 7o Percent of all antibiotics given to healthy livestock. Press release, 8 January, Cambridge, MA

    Google Scholar 

  • Watts CD, Crathorne M, Fielding M, Steel CP (1983) Identification of non-volatile organics in water using field desorption mass spectrometry and high performance liquid chromatography. Analysis of organic micropollutants in water. Reidel Publ. Corp., Dordrecht, pp 120–131

    Google Scholar 

  • Weerasinghe CA, Towner D (1997) Aerobic biodegradation of virginiamycin in soil. Environ Toxicol Chem 16: 1873–1876

    Article  CAS  Google Scholar 

  • Weiss U (1999) Abbau von Medikamenten im Abwasser. Rundschreiben Landesapothekenkammer Baden-Württemberg 5: 199

    Google Scholar 

  • Wiethan J, Henninger A, Kämmerer K (1999) Antibiotikaresistenz - Vorkommen und Übertragung in Abwasser, Oberflächenwasser und Trinkwasser. Teil 2: Resistenzausbildung und Verbreitung durch Antibiotikaeintrag in Abwasser und Kläranalgen. Untersuchung mittels Chemotaxonomie und Kläranlagensimulation. 2. Zwischenbericht BMBF Projekt

    Google Scholar 

  • Wiethan J, Al-Ahmad A, Henninger A, Kämmerer K (2000) Simulation des Selektionsdrucks der Antibiotika Ciprofloxacin und Ceftazidim in Oberflächengewässern mittels klassischer Methoden. Vom Wasser 95: 107–118

    CAS  Google Scholar 

  • Wise R (2002) Antimicrobial resistance: priorities for action. J Antimicrob Chemoth 49:585–86

    Article  CAS  Google Scholar 

  • Wollenberger L, Halling-Sørensen B, Kusk KO (2000) Acute and chronic toxicity of veterinary antibiotics to Daphnia magna. Chemosphere 40: 723–730

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alexy, R., Schöll, A., Kümpel, T., Kümmerer, K. (2004). What Do We Know about Antibiotics in the Environment?. In: Kümmerer, K. (eds) Pharmaceuticals in the Environment. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09259-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09259-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-09261-3

  • Online ISBN: 978-3-662-09259-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics