Skip to main content

Effectiveness, Decisiveness, and Success in Weighted Voting Systems: Collective Behavior and Voting Measures

  • Chapter
  • First Online:
Advances in Collective Decision Making

Part of the book series: Studies in Choice and Welfare ((WELFARE))

  • 207 Accesses

Abstract

Efficiency, decisiveness, and success in a voting system depend not only on the voting rules but also on the collective behavior of the voters. The voting behavior is modeled by a voting measure which describes the interdependence (or independence) of the voters. In this paper, we define and investigate a large class of voting measures. This class can be characterized as those voting measures which are invariant under permuting the voters and which allow a natural extension to an arbitrary number of voters. The class includes the Penrose–Banzhaf measure (independent, impartial behavior), the Shapley–Shubik measure (impartial anonymous behavior). We analyze the efficiency and the success for these voting measures in weighted voting systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldous, D. J. (1985). Exchangeability and related topics. In P. L. Hennequin (Ed.), École d’été de probabilités de Saint-Flour XIII – 1983, Lecture notes in mathematics (Vol. 1117, pp. 1–198). Springer

    Google Scholar 

  • Banzhaf, J. F. (1965). Weighted voting doesn’t work: A mathematical analysis. Rutgers Law Review, 19, 317–343.

    Google Scholar 

  • Berg, S. (1985). Paradox of voting under an urn model: The effect of homogeneity. Public Choice, 47, 377–387.

    Article  Google Scholar 

  • Coleman, J. S. (1971). Control of collectivities and the power of a collectivity to act. In B. Lieberman (Ed.), Social choice (pp. 269–300). Gordon and Breach.

    Google Scholar 

  • Dubey, P., & Shapley, L. S. (1979). Mathematical properties of the Banzhaf power index. Mathematics of Operations Research, 4, 99–131.

    Article  Google Scholar 

  • de Finetti, B. (1931). Funzione caratteristica di un fenomeno aleatorio. Atti della R. Academia Nazionale dei Lincei, Serie 6. Memorie, Classe di Scienze Fisiche, Mathematice e Naturale, 4, 251–299.

    Google Scholar 

  • Felsenthal, D. S., & Machover, M. (1998). The measurement of voting power: Theory and practice, problems and paradoxes. Edward Elgar Publishing

    Google Scholar 

  • Georgii, H.-O. (2008). Stochastics. De Gruyter.

    Google Scholar 

  • Kirsch, W. (2019). An elementary proof of de Finetti’s theorem. Statistics and Probability Letters, 151, 84–88.

    Article  Google Scholar 

  • Kirsch, W. (2007). On Penrose’s square root law and beyond. Homo Oeconomicus, 24, 357–380.

    Google Scholar 

  • Kirsch, W. (2016). A mathematical view on voting and power. In W. König (Ed.), Mathematics and society (pp. 251–279). European Mathematical Society.

    Google Scholar 

  • Kirsch, W., & Langner, J. (2014). The fate of the square root law for correlated voting. In R. Fara, D. Leech, & M. Salles (Eds.), Voting power and procedures, Essays in honor of Dan Felsenthal and Moshé Machover, Studies in choice and welfare (pp. 147–158). Springer.

    Google Scholar 

  • Kirsch, W., & Toth, G. (2021). Collective bias models in two-tier voting systems and the democracy deficit. Preprint retrieved from https://arxiv.org/abs/2102.12704

  • Klenke, A. (2014). Probability theory. Springer.

    Google Scholar 

  • Kurz, S., Mayer, A., & Napel, S. (2021). Influence in weighted committees. European Economic Review, 134, 103634.

    Article  Google Scholar 

  • Kurz, S., & Napel, S. (2016). Dimension of the Lisbon voting rules in the EU Council: A challenge and new world record. Optimization Letters, 10, 1245–1256.

    Article  Google Scholar 

  • Kurz, S., & Napel, S. (2018). The roll call interpretation of the Shapley value. Economics Letters, 173, 108–112.

    Article  Google Scholar 

  • Laakso, M., & Taagepera, R. (1979). “Effective’’ number of parties: A measure with application to West Europe. Comparative Political Studies, 12, 3–27.

    Article  Google Scholar 

  • Langner, J. (2012). Fairness, efficiency and democracy deficit. Ph.D. thesis, FernUniversität Hagen

    Google Scholar 

  • Laruelle, A., & Valenciano, F. (2015). Assessing success and decisiveness in voting situations. Social Choice and Welfare, 24, 171–197.

    Article  Google Scholar 

  • Mahmoud, H. (2009). Pólya urn models. Chapman & Hill

    Google Scholar 

  • Napel, S. (2019). Voting power. In R. Congleton, B. Grofman, & S. Voigt (Eds.), Oxford handbook of public choice (pp. 103–126). Oxford University Press.

    Google Scholar 

  • Penrose, L. S. (1946). The elementary statistics of majority voting. Journal of the Royal Statistical Society, 109, 53–57.

    Article  Google Scholar 

  • Pollard, D. (1984). Convergence of stochastic processes. Springer.

    Google Scholar 

  • Shapley, L. S., & Shubik, M. (1954). A method for evaluating the distribution of power in a committee system. American Political Science Review, 48, 787–792.

    Article  Google Scholar 

  • Straffin, P. (1977). Homogeneity, independence, and power indices. Public Choice, 30, 107–118.

    Article  Google Scholar 

  • Taylor, A., & Pacelli, A. (2008): Mathematics and politics. Strategy, voting, power and proof. Springer

    Google Scholar 

Download references

Acknowledgements

The author thanks Alexander Mayer and Stefan Napel for fruitful discussions about the topic of this paper. The author is also grateful to two unnamed referees whose comments helped to improve the manuscript considerably.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Kirsch .

Editor information

Editors and Affiliations

A Mathematical Appendix

A Mathematical Appendix

1.1 A.1 Hoeffding’s Inequality

For the reader’s convenience, in this appendix, we present a few mathematical results needed in the main text. In particular, we formulate Hoeffding’s inequality.

Theorem 1

(Hoeffding’s Inequality)

Suppose \(X_{i}, i=1,\ldots ,N\) are independent random variables such that \(X_{i}\in [a_{i},b_{i}]\) almost surely.

Set \(\sigma ^2=\sum _{i=1}^{N} (b_{i}-a_{i})^2\). Then

$$\begin{aligned}&\mathbb {P}\Big (\sum _{i=1}^{N} X_{i}~\ge ~\sum _{i=1}^{N}\mathbb {E}(X_{i}) +\lambda \Big )~ \le ~\,e^{-2\frac{\lambda ^{2}}{\sigma ^2}}\qquad \textrm{and}\end{aligned}$$
(A.1)
$$\begin{aligned}&\mathbb {P}\Big (\sum _{i=1}^{N} X_{i}~\le ~\sum _{i=1}^{N}\mathbb {E}(X_{i}) -\lambda \Big )~ \le ~\,e^{-2\frac{\lambda ^{2}}{\sigma ^2}} \end{aligned}$$
(A.2)

For a proof of Theorem 1, see e.g., (Pollard, 1984).

An immediate consequence of Hoeffding’s inequality is the following proposition. As before \(P_{p}\) with \(0\le p\le 1\) denotes the probability measure on \(\{0,1\}^{N}\) given by:

$$\begin{aligned} P_{p}\big (x_{1},x_{2},\ldots ,x_{N}\big )~=~p^{\,\sum x_{i}}\,\big (1-p\big )^{N-\sum x_{i}} \end{aligned}$$
(A.3)

and \(E_{p}\) denotes expectation with respect to \(P_{p}\).

Proposition 1

Let \(X_{i}, i=1,\ldots ,N\) be random variables with distribution \(P_{p}\) and \(w_{1},\ldots , w_{N}\in [0,\infty )\), then for \(\lambda \ge 0\)

$$\begin{aligned} P_{p}\Big (\big |\sum _{i=1}^{N}w_{i} X_{i}-p \sum _{i=1}^{N}w_{i}\big |\ge \alpha \sum _{i=1}^{N} w_{i}\Big ) \le 2\,e^{{-2\alpha ^{2}\, \frac{(\sum w_{i})^{2}}{\sum w_{i}^{2}}}} \end{aligned}$$
(A.4)

Proof

The random variables \(Y_{i}=w_{i}X_{i}\) are independent (under \(P_{p}\)) and take values in \([0,w_{i}]]\). Moreover, \(E_{p}(Y_{i})=p w_{i}\). Thus, (A.4) follows from Theorem 1.    \(\square \)

Corollary 1

Suppose the Laakso–Taagepera index \(\textrm{LT}_{N}=\frac{\sum w_{i}^{2}}{(\sum w_{i})^{2}}\) goes to infinity as \(N\rightarrow \infty \) then

$$\begin{aligned} \textrm{If } \alpha >p\quad&P_{p}\Big (\sum _{i=1}^{N}w_{i} X_{i}~\ge \alpha \,\sum _{i=1}^{N}w_{i}\Big )~\rightarrow ~0\qquad \textrm{as }~N\rightarrow \infty \end{aligned}$$
(A.5)
$$\begin{aligned} \textrm{If } \alpha <p\quad&P_{p}\Big (\sum _{i=1}^{N}w_{i} X_{i}~\le \alpha \,\sum _{i=1}^{N}w_{i}\Big )~\rightarrow ~0\qquad \textrm{as }~N\rightarrow \infty \end{aligned}$$
(A.6)

1.2 A.2 Urn Models

We start by the following observation:

Proposition 2

Suppose \(c\ge 0\). For \((x_{1},x_{2},\ldots ,x_{N})\in \{ 0,1 \}^{N} \) and \(1\le k < N\) we set \(n_{k}=\sum _{j=1}^{k}x_{j}\). Then

$$\begin{aligned}&\mathbb {P}_{A,B,c}\left( x_{1},x_{2},\ldots ,x_{N}\right) \nonumber \\ ~=~&\mathbb {P}_{A,B,c}\left( x_{1},x_{2},\ldots ,x_{k}\right) \, \mathbb {P}_{A+n_{k}c,B+(k-n_{k})c,c}\left( x_{k+1},x_{k+2},\ldots ,x_{N}\right) \end{aligned}$$
(A.7)

Proof

For \(k=1\), (A.7) is just the definition of the urn process. The general case follows by iterating the first step.    \(\square \)

To prove 1.2 we start with a special case

Proposition 3

$$\begin{aligned}&\mathbb {P}_{A,B,c}\left( x_{1},\dots ,x_{k-1},x_{k},x_{k+1},x_{k+2},\ldots ,x_{N}\right) ~\nonumber \\ =~&\mathbb {P}_{A,B,c}\left( x_{1},\dots ,x_{k-1},x_{k+1},x_{k},x_{k+2},\ldots ,x_{N}\right) \end{aligned}$$
(A.8)

Proof

If \(x_{k}=x_{k+1}\), the assertion is trivial. So, we assume \(x_{k}\not =x_{k+1}\) We treat the case \(x_{k}=0, x_{k+1}=1\), the other one being similar. We apply Proposition 2 three times to obtain with \(\ell =\sum _{j}^{k-1} x_{j}\)

$$\begin{aligned}&\mathbb {P}_{A,B,c}\left( x_{1},\dots ,x_{k-1},x_{k},x_{k+1},x_{k+2},\ldots ,x_{N}\right) ~\nonumber \\ =~&\mathbb {P}_{A,B,c}\left( x_{1},\dots ,x_{k-1}\right) ~ \mathbb {P}_{A+\ell c,B+(k-1-\ell )c,c}(0) ~\mathbb {P}_{A+\ell c,B+(k-\ell )c,c}(1)~\times \nonumber \\ \times ~&\mathbb {P}_{A+(\ell +1)c,B+(k-\ell ),c}\left( x_{k+2},\ldots ,x_{N}\right) ~\nonumber \\ =~&\mathbb {P}_{A,B,c}\left( x_{1},\dots ,x_{k-1}\right) ~ \frac{B+(k-1-\ell )c}{A+B+(k-1)c} ~\frac{A+\ell c}{A+B+kc}~\times \nonumber \\ \times ~&\mathbb {P}_{A+(\ell +1)c,B+(k-\ell ),c}\left( x_{k+2},\ldots ,x_{N}\right) ~\nonumber \\ =~&\mathbb {P}_{A,B,c}\left( x_{1},\dots ,x_{k-1}\right) ~ \frac{A+\ell c}{A+B+(k-1)c} ~\frac{B+\left( k-\left( \ell +1\right) \right) c}{A+B+kc}~\times \nonumber \\ \times ~&\mathbb {P}_{A+(\ell +1)c,B+(k-\ell ),c}\left( x_{k+2},\ldots ,x_{N}\right) ~\nonumber \\ =~&\mathbb {P}_{A,B,c}\left( x_{1},\dots ,x_{k-1},x_{k+1},x_{k},x_{k+2},\ldots ,x_{N}\right) \end{aligned}$$
(A.9)

Iterating Propositions 2 and 3 proves Proposition 1. To prove Theorem 1, we first note:

Remark 1

For \(a,b>0\) we have

$$\begin{aligned} B(a,b)~=~\frac{\Gamma (a)\Gamma (b)}{\Gamma (a+b)}\,, \end{aligned}$$
(A.10)

where \(\Gamma (x)=\int \limits _{0}^{\infty } t^{x-1}\,e^{-t}\,dt\) is the Gamma function.

For a proof as well as for details about the Gamma function, see e.g., (Georgii, 2008).

We now prove (42) by proving that all moments of the measures on the left-hand side converge to the moments of the right-hand side.

From (Kirsch, 2019), Theorem 5, we learn that the \(k^{th}\) moment under \(\mathbb {P}_{A,B,c} \) of \(M_{N}\) converges to

$$\begin{aligned} m_{k}~:=~\mathbb {E}_{A,B,c}\left( X_{1}\cdot X_{2}\cdot \ldots \cdot X_{k}\right) \end{aligned}$$
(A.11)

but \(m_{k}\) can be computed by (34) giving

$$\begin{aligned} m_{k}~=~\frac{a^{\,(1,k)}}{(a+b)^{(1,k)}} \end{aligned}$$
(A.12)

The moments of \(\beta _{a,b} \) are given by \(\bar{m}_{k}=\frac{B(a+k,b)}{B(a,b)}\). By Proposition 1

$$\begin{aligned} B(a+k,b)~&=~\frac{\Gamma (a+k)\Gamma (b)}{\Gamma (a+b+k)}\nonumber \\&=~\frac{a^{(k,1)}}{(a+b)^{(k,1)}}\,\frac{\Gamma (a)\Gamma (b)}{\Gamma (a+b)}\,. \end{aligned}$$
(A.13)

Above we used that \(\Gamma (x+k)=x^{(k,1)}\Gamma (x)\) which follows from the well-known equality \(\Gamma (x)=(x-1)\Gamma (x-1)\). This proves 1.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kirsch, W. (2023). Effectiveness, Decisiveness, and Success in Weighted Voting Systems: Collective Behavior and Voting Measures. In: Kurz, S., Maaser, N., Mayer, A. (eds) Advances in Collective Decision Making. Studies in Choice and Welfare. Springer, Cham. https://doi.org/10.1007/978-3-031-21696-1_8

Download citation

Publish with us

Policies and ethics