Skip to main content

Role of Biosurfactants in Agriculture Management

  • Chapter
  • First Online:
Advancements in Biosurfactants Research

Abstract

With the current global human population growth rate, food insecurity has the potential aggravation beyond expectations. Increasing crop production up to 5 % annually for future needs seems unrealistic considering the ongoing challenges of climate change, water shortage, soil deterioration, nutrient limitation, and productivity losses due to the attack of plant pathogens. Extensive use of the agrochemicals poses serious environmental and health repercussions, therefore, it is high time to develop innovative, cost-effective, and sustainable agriculture methods. The surface active metabolites produced by bacteria, yeast, and filamentous fungi are termed as microbial surfactants (MS) or biosurfactants (BS). Biosurfactants have found enormous applications in agriculture, food, cosmetics, petroleum, and pharmaceutical industries as wetting, dispersing, emulsification, and antimicrobial agents. Many microorganisms present in soil and rhizosphere naturally produce different biosurfactants where these molecules play important role in reducing surface and interfacial tension, plant–microbe interactions, improving soil quality, nutrients exchange, degradation of complex hydrocarbons, plant pathogen elimination, and enhancing plant immunity. In pursuit of agriculture and environmental sustainability, biosurfactants are capturing significant attraction as an eco-friendly replacement for xenobiotic agrochemicals. In this chapter, the latest scientific information regarding important properties, role of biosurfactants in plant disease management and improving soil quality will be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi H, Hamedi MM, Lotfabad TB, Zahiri HS, Sharafi H, Masoomi F, Noghabi KA (2012) Biosurfactant-producing bacterium, Pseudomonas aeruginosa MA01 isolated from spoiled apples: physicochemical and structural characteristics of isolated biosurfactant. J Biosci Bioeng 113(2):211–219

    Article  CAS  Google Scholar 

  • Aboelkhair H, Diaz P, Attia A (2022) Biosurfactant production using Egyptian oil fields indigenous bacteria for microbial enhanced oil recovery. J Pet Sci Eng 208:109601

    Article  CAS  Google Scholar 

  • Adetunji CO, Anani OA, Olaniyan OT, Inobeme A, Oloke JK, Palnam WD, Ali S (2022) Antibacterial and antifungal activities of lipopeptides. In: Green Sustainable Process for Chemical and Environmental Engineering and Science. Academic Press, pp 189–204

    Chapter  Google Scholar 

  • Ahn YS, Baik HJ, Lee BR, Lee ES, Oh KT, Lee DH, Youn YS (2010) Preparation of multifunctional polymeric micelles for antiviral treatment. Macromol Res 18(8):747–752

    Article  CAS  Google Scholar 

  • Akanji LT, Rehman R, Onyemara CC, Ebel R, Jamal A (2021) A novel technique for interface analysis: behaviour of sophorolipids biosurfactant obtained from Meyerozyma spp. MF138126 during low-salinity heavy-crude experiments. Fuel 297:120607

    Article  CAS  Google Scholar 

  • Aleti G, Lehner S, Bacher M, Compant S, Nikolic B, Plesko M, Brader G (2016) Surfactin variants mediate species-specific biofilm formation and root colonization in Bacillus. Environ Microbiol 18(8):2634–2645

    Article  CAS  Google Scholar 

  • Al-Fadhli A, Wahidulla S, D’Souza L (2006) Glycolipids from the red alga Chondria armata (Kütz.) Okamura. Glycobiology 16(10):902–915

    Article  CAS  Google Scholar 

  • Ali F, Das S, Hossain TJ, Chowdhury SI, Zedny SA, Das T, Ahmed Chowdhury MN, Uddin MS (2021) Production optimization, stability and oil emulsifying potential of biosurfactants from selected bacteria isolated from oil-contaminated sites. R Soc Open Sci 8(10):211003. https://doi.org/10.1098/rsos.211003

    Article  CAS  Google Scholar 

  • de Andrade CJ, de Andrade LM, Bution ML, Dolder MAH, Barros FFC, Pastore GM (2016) Optimizing alternative substrate for simultaneous production of surfactin and 2, 3-butanediol by Bacillus subtilis LB5a. Biocatal Agric Biotechnol 6:209–218

    Article  Google Scholar 

  • Arathi A, Akhil V, Mohanan PV (2021) Application of biosurfactants in the disruption of cell biomass. In: Green sustainable process for chemical and environmental engineering and science. Elsevier, pp 317–328

    Chapter  Google Scholar 

  • Arnaouteli S, Bamford NC, Stanley-Wall NR, Kovács ÁT (2021) Bacillus subtilis biofilm formation and social interactions. Nat Rev Microbiol 19(9):600–614

    Article  CAS  Google Scholar 

  • Arutchelvi JI, Bhaduri S, Uppara PV, Doble M (2008) Mannosylerythritol lipids: a review. J Ind Microbiol Biotechnol 35(12):1559–1570

    Article  CAS  Google Scholar 

  • Awdhesh Kumar Mishra R, Kodiveri Muthukaliannan G (2022) Role of microalgal metabolites in controlling quorum-sensing-regulated biofilm. Arch Microbiol 204(3):1–13

    Article  Google Scholar 

  • Baccile N, Poirier A, Seyrig C, Le Griel P, Perez J, Hermida-Merino D, Soetaert W (2022) Chameleonic amphiphile: the unique multiple self-assembly properties of a natural glycolipid in excess of water. J Colloid Interface Sci 630:404–415

    Article  Google Scholar 

  • Bages-Estopa S, White DA, Winterburn JB, Webb C, Martin PJ (2018) Production and separation of a trehalolipid biosurfactant. Biochem Eng J 139:85–94

    Article  CAS  Google Scholar 

  • Bai N, Wang S, Abuduaini R, Zhang M, Zhu X, Zhao Y (2017) Rhamnolipid-aided biodegradation of carbendazim by Rhodococcus sp. D-1: Characteristics, products, and phytotoxicity. Sci Total Environ 590:343–351

    Article  Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134(1):307–319

    Article  CAS  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87(2):427–444

    Article  CAS  Google Scholar 

  • Barzic AI (2022) Rheological behavior of biosurfactants. In: Green Sustainable Process for Chemical and Environmental Engineering and Science. Academic Press, pp 529–541

    Chapter  Google Scholar 

  • Ben Ghorbal Salma K, Abdelwahedinès M, Rim W, Chatti A (2022) Damage of the swarmer Pseudomonas soil isolate cell by UVc as revealed by transmission electron microscopy. Int J Environ Health Res:1–13

    Google Scholar 

  • Bezza FA, Beukes M, Chirwa EMN (2015) Application of biosurfactant produced by Ochrobactrum intermedium CN3 for enhancing petroleum sludge bioremediation. ProcessBiochem 50:1911–1922

    CAS  Google Scholar 

  • Bhangale AP, Wadekar SD, Kale SB, Mali SN, Pratap AP (2022) Non-traditional oils with water-soluble substrate as cell growth booster for the production of mannosylerythritol lipids by Pseudozyma antarctica (ATCC 32657) with their antimicrobial activity. Tenside Surfact Deterg 59(2):122–133

    Article  CAS  Google Scholar 

  • Bhatt P, Gangola S, Bhandari G, Zhang W, Maithani D, Mishra S, Chen S (2021) New insights into the degradation of synthetic pollutants in contaminated environments. Chemosphere 268:128827

    Article  CAS  Google Scholar 

  • Bhatt P, Gangola S, Chaudhary P, Khati P, Kumar G, Sharma A, Srivastava A (2019) Pesticide induced up-regulation of esterase and aldehyde dehydrogenase in indigenous Bacillus spp. Bioremed J 23(1):42–52

    Article  CAS  Google Scholar 

  • Blunt W, Blanchard C, Morley K (2022) Effects of environmental parameters on microbial rhamnolipid biosynthesis and bioreactor strategies for enhanced productivity. Biochem Eng J 182:108436

    Article  CAS  Google Scholar 

  • Bose S, Kumar PS, Vo DVN, Rajamohan N, Saravanan R (2021) Microbial degradation of recalcitrant pesticides: a review. Environ Chem Lett 19(4):3209–3228

    Article  CAS  Google Scholar 

  • Bouyahya A, Chamkhi I, Balahbib A, Rebezov M, Shariati MA, Wilairatana P, El Omari N (2022) Mechanisms, anti-quorum-sensing actions, and clinical trials of medicinal plant bioactive compounds against bacteria: a comprehensive review. Molecules 27(5):1484

    Article  CAS  Google Scholar 

  • Câmara JMDDA, Sousa MADSB, Barros Neto ELD, Oliveira MCAD (2019) Application of rhamnolipid biosurfactant produced by Pseudomonas aeruginosa in microbial-enhanced oil recovery (MEOR). J Pet Explor Prod Technol 9(3):2333–2341

    Article  Google Scholar 

  • Caulier S, Nannan C, Gillis A, Licciardi F, Bragard C, Mahillon J (2019) Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front Microbiol 302

    Google Scholar 

  • Cavalero DA, Cooper DG (2003) The effect of medium composition on the structure and physical state of sophorolipids produced by Candida bombicola ATCC 22214. J Biotechnol 103(1):31–41

    Article  CAS  Google Scholar 

  • Cerqueira VS, Hollenbach EB, Maboni F, Camargo FA, Peralba MDCR, Bento FM (2012) Bioprospection and selection of bacteria isolated from environments contaminated with petrochemical residues for application in bioremediation. World J Microbiol Biotechnol 28(3):1203–1222

    Article  CAS  Google Scholar 

  • Chakraborty S, Ghosh M, Chakraborti S, Jana S, Sen KK, Kokare C, Zhang L (2015) Biosurfactant produced from Actinomycetes nocardiopsis A17: characterization and its biological evaluation. Int J Biol Macromol 79:405–412

    Article  CAS  Google Scholar 

  • Chen IC, Lee MT (2022) Rhamnolipid biosurfactants for oil recovery: salt effects on the structural properties investigated by mesoscale simulations. ACS Omega 7(7):6223–6237

    Article  CAS  Google Scholar 

  • Chen J, Huang PT, Zhang KY, Ding FR (2012) Isolation of biosurfactant producers, optimization and properties of biosurfactant produced by Acinetobacter sp. from petroleum-contaminated soil. J Appl Microbiol 112(4):660–671

    Article  CAS  Google Scholar 

  • Chen ML, Penfold J, Thomas RK, Smyth TJP, Perfumo A, Marchant R, Grillo I (2010) Mixing behavior of the biosurfactant, rhamnolipid, with a conventional anionic surfactant, sodium dodecyl benzene sulfonate. Langmuir 26(23):17958–17968

    Article  CAS  Google Scholar 

  • Cieśla J, Koczańska M, Bieganowski A (2018) An interaction of rhamnolipids with Cu2+ ions. Molecules 23(2):488

    Article  Google Scholar 

  • Coelho ALS, Feuser PE, Carciofi BAM, de Andrade CJ, de Oliveira D (2020) Mannosylerythritol lipids: antimicrobial and biomedical properties. Appl Microbiol Biotechnol 104(6):2297–2318

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959

    Article  CAS  Google Scholar 

  • Cortés-Camargo S, Acuña-Avila PE, Arrieta-Báez D, Montañez-Barragán B, Morato AI, Sanz-Martín JL, Barragán-Huerta BE (2021) Biosurfactant production by Bacillus tequilensis ZSB10: structural characterization, physicochemical, and antifungal properties. J Surfactant Deterg 24(5):773–782

    Article  Google Scholar 

  • Cui H, Chen Z, Wooley KL, Pochan DJ (2009) Origins of toroidal micelle formation through charged triblock copolymer self-assembly. Soft Matter 5(6):1269–1278

    Article  CAS  Google Scholar 

  • Curiel-Maciel, N. F., Martínez-Morales, F., Licea-Navarro, A. F., Bertrand, B., Aguilar-Guadarrama, A. B., Rosas-Galván, N. S., Morales-Guzmán, D., Rivera-Gómez, N., Gutiérrez-Ríos, R. M., & Trejo-Hernández, M. R. (2021). Characterization of Enterobacter cloacae BAGM01 Producing a Thermostable and Alkaline-Tolerant Rhamnolipid Biosurfactant from the Gulf of Mexico. Marine Biotechnol (New York, N.Y.), 23(1), 106–126.

    Google Scholar 

  • Darvishi P, Ayatollahi S, Mowla D, Niazi A (2011) Biosurfactant production under extreme environmental conditions by an efficient microbial consortium, ERCPPI-2. Colloids Surf B: Biointerfaces 84(2):292–300

    Article  CAS  Google Scholar 

  • Das S (2022) Genetic regulation, biosynthesis and applications of extracellular polysaccharides of the biofilm matrix of bacteria. Carbohydr Polym 291:119536

    Article  Google Scholar 

  • Davey ME, Caiazza NC, O'Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185(3):1027–1036

    Article  CAS  Google Scholar 

  • Deepika KV, Sridhar PR, Bramhachari PV (2015) Characterization and antifungal properties of rhamnolipids produced by mangrove sediment bacterium Pseudomonas aeruginosa strain KVD-HM52. Biocatal Agric Biotechnol 4(4):608–615

    Article  Google Scholar 

  • Deleu M, Paquot M, Nylander T (2008) Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. Biophys J 94(7):2667–2679

    Article  CAS  Google Scholar 

  • Desmyttere H, Deweer C, Muchembled J, Sahmer K, Jacquin J, Coutte F, Jacques P (2019) Antifungal activities of Bacillus subtilis lipopeptides to two Venturiainaequalis strains possessing different tebuconazole sensitivity. Front Microbiol 10:2327

    Article  Google Scholar 

  • Dhar P, Havskjold H, Thornhill M, Roelants S, Soetaert W, Kota HR, Chernyshova I (2021) Toward green flotation: Interaction of a sophorolipid biosurfactant with a copper sulfide. J Colloid Interface Sci 585:386–399

    Article  CAS  Google Scholar 

  • Doole FT, Chan CK, Streitwieser E, Sarkar D, Struts AV, Singharoy A, Brown MF (2022) Rivalry of cholesterol and antimicrobial peptides as seen by molecular simulations and NMR spectroscopy. Biophys J 121(3):161–162

    Article  Google Scholar 

  • Dordas C (2008) Role of nutrients in controlling plant diseases in sustainable agriculture. A review. Agron Sustain Develop 28(1):33–46

    Article  CAS  Google Scholar 

  • Drakontis CE, Amin S (2020) Biosurfactants: Formulations, properties, and applications. Curr Opin Colloid Interface Sci 48:77–90

    Article  CAS  Google Scholar 

  • Duan K, Surette MG (2007) Environmental regulation of Pseudomonas aeruginosa PAO1 Las and Rhl quorum-sensing systems. J Bacteriol 189(13):4827–4836

    Article  CAS  Google Scholar 

  • Dupuy LX, Silk WK (2016) Mechanisms of early microbial establishment on growing root surfaces. Vadose Zone J 15(2)

    Google Scholar 

  • Dutta N, Bhatnagar A (2022) Biosurfactants current trends and applications. In: Microbial surfactants. CRC Press, pp 241–252

    Chapter  Google Scholar 

  • Eeman M, Pegado L, Dufrêne YF, Paquot M, Deleu M (2009) Influence of environmental conditions on the interfacial organisation of fengycin, a bioactive lipopeptide produced by Bacillus subtilis. J Colloid Interface Sci 329(2):253–264

    Article  CAS  Google Scholar 

  • Egorova DO, Farafonova VV, Shestakova EA, Andreyev DN, Maksimov AS, Vasyanin AN et al (2017) Bioremediation of soil contaminated by dichlorodiphenyltrichloroethane with the use of aerobic strain Rhodococcus wratislaviensis Ch628. Eurasian Soil Sci 50(10):1217–1224

    Article  CAS  Google Scholar 

  • Elgar FJ et al (2021) Relative food insecurity, mental health and wellbeing in 160 countries. Soc Sci Med 268:113556

    Article  Google Scholar 

  • Elshafie AE, Joshi SJ, Al-Wahaibi YM, Al-Bemani AS, Al-Bahry SN, Al-Maqbali D, Banat IM (2015) Sophorolipids Production by Candida bombicola ATCC 22214 and its Potential Application in Microbial Enhanced Oil Recovery. Front Microbiol 6:1324

    Article  Google Scholar 

  • Euston SR, Banat IM, Salek K (2021) Congener-dependent conformations of isolated rhamnolipids at the vacuum-water interface: A molecular dynamics simulation. J Colloid Interface Sci 585:148–157

    Article  CAS  Google Scholar 

  • Fan H, Ru J, Zhang Y, Wang Q, Li Y (2017) Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease. Microbiol Res 199:89–97

    Article  CAS  Google Scholar 

  • Fenibo EO, Ijoma GN, Selvarajan R, Chikere CB (2019) Microbial surfactants: The next generation multifunctional biomolecules for applications in the petroleum industry and its associated environmental remediation. Microorganisms 7(11):581

    Article  CAS  Google Scholar 

  • Fernández-López MG, Popoca-Ursino C, Sánchez-Salinas E, Tinoco-Valencia R, Folch-Mallol JL, Dantán-González E, Laura Ortiz-Hernández M (2017) Enhancing methyl parathion degradation by the immobilization of Burkholderia sp. isolated from agricultural soils. MicrobiologyOpen 6(5):e00507

    Article  Google Scholar 

  • Fitch A, Balderas-Hernandez P, Ibanez JG (2022) Electrochemical technologies combined with physical, biological, and chemical processes for the treatment of pollutants and wastes: A review. J Environ Chem Eng 10:107810

    Article  CAS  Google Scholar 

  • Fontoura ICCD, Saikawa GIA, Silveira VAI, Pan NC, Amador IR, Baldo C, Celligoi MAPC (2020) Antibacterial activity of sophorolipids from Candida bombicola against human pathogens. Braz Arch Biol Technol 63

    Google Scholar 

  • Galitskaya P, Karamova K, Biktasheva L, Galieva G, Gordeev A, Selivanovskaya S (2022) Lipopeptides produced by Bacillus mojavensis P1709 as an Efficient tool to maintain postharvest cherry tomato quality and quantity. Agriculture 12(5):609

    Article  CAS  Google Scholar 

  • García-Reyes S, Yáñez-Ocampo G, Wong-Villarreal A, Rajaretinam RK, Thavasimuthu C, Patiño R, Ortiz-Hernández ML (2018) Partial characterization of a biosurfactant extracted from Pseudomonas sp. B0406 that enhances the solubility of pesticides. Environ Technol 39(20):2622–2631

    Article  Google Scholar 

  • Gaur VK, Bajaj A, Regar RK, Kamthan M, Jha RR, Srivastava JK, Manickam N (2019) Rhamnolipid from a Lysinibacillus sphaericus strain IITR51 and its potential application for dissolution of hydrophobic pesticides. Bioresour Technol 272:19–25

    Article  CAS  Google Scholar 

  • Gayathiri E, Prakash P, Karmegam N, Varjani S, Awasthi MK, Ravindran B (2022) Biosurfactants: Potential and Eco-Friendly Material for Sustainable Agriculture and Environmental Safety—A Review. Agronomy 12(3):662

    Article  CAS  Google Scholar 

  • Gesheva V, Stackebrandt E, Vasileva-Tonkova E (2010) Biosurfactant production by halotolerant Rhodococcus fascians from Casey station, Wilkes land Antarctica. Curr Microbiol 61(2):112–117

    Article  CAS  Google Scholar 

  • Glikman D, Rey NG, Richert M, Meister K, Braunschweig B (2022) pH effects on the molecular structure and charging state of β-Escin biosurfactants at the air-water interface. J Colloid Interface Sci 607:1754–1761

    Article  CAS  Google Scholar 

  • Gregory PJ (2006) Roots, rhizosphere and soil: the route to a better understanding of soil science? Eur J Soil Sci 57:2–12

    Article  Google Scholar 

  • Gu Q, Yang Y, Yuan Q, Shi G, Wu L, Lou Z, Gao X (2017) Bacillomycin D produced by Bacillus amyloliquefaciens is involved in the antagonistic interaction with the plant-pathogenic fungus Fusarium graminearum. Appl Environ Microbiol 83(19):e01075–e01017

    Article  CAS  Google Scholar 

  • Guo J, Pan LH, Li YX, Yang XD, Li LQ, Zhang CY, Zhong JH (2016) Efficacy of triclosan-coated sutures for reducing risk of surgical site infection in adults: a meta-analysis of randomized clinical trials. J Surg Res 201(1):105–117

    Article  CAS  Google Scholar 

  • Hadi SMHSA, Nasir MS, Noh NAM, Yahya ARM, Nor NMIM (2022) The Potential of Rhamnolipid as Biofungicide against Rigidoporusmicroporus Isolated from Rubber Tree (Heveabrasiliensis). Pertanika J Tropl Agric Sci 45(1):285–299

    Article  Google Scholar 

  • Hamley IW, Dehsorkhi A, Jauregi P, Seitsonen J, Ruokolainen J, Coutte F, Jacques P (2013) Self-assembly of three bacterially-derived bioactive lipopeptides. Soft Matter 9(40):9572–9578

    Article  CAS  Google Scholar 

  • Han L, Zhao D, Li C (2015) Isolation and 2, 4-D-degrading characteristics of Cupriaviduscampinensis BJ71. Braz J Microbiol 46:433–441

    Article  Google Scholar 

  • Hemlata B, Selvin J, Tukaram K (2015) Optimization of iron chelating biosurfactant production by Stenotrophomonasmaltophilia NBS-11. Biocatal Agric Biotechnol 4(2):135–143

    Article  Google Scholar 

  • Hirasaki GJ, Zhang DL (2004) Surface chemistry of oil recovery from fractured, oil-wet, carbonate formations. SPE J 9:151–151

    Article  CAS  Google Scholar 

  • Horng YB, Yu YH, Dybus A, Hsiao FSH, Cheng YH (2019) Antibacterial activity of Bacillus species-derived surfactin on Brachyspirahyodysenteriae and Clostridium perfringens. AMB Express 9(1):1–9

    Article  CAS  Google Scholar 

  • Hsieh FC, Li MC, Lin TC, Kao SS (2004) Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR. Curr Microbiol 49(3):186–191

    Article  CAS  Google Scholar 

  • Huang R, Feng H, Xu Z, Zhang N, Liu Y, Shao J, Zhang R (2022) Identification of Adhesins in Plant Beneficial Rhizobacteria Bacillus velezensis SQR9 and Their Effect on Root Colonization. Mol Plant-Microbe Interact 35(1):64–72

    Article  CAS  Google Scholar 

  • Hutchinson, J. (2019). The impact of lipidation on the self-assembly and bioactivity of the gastrointestinal peptide hormone PYY3-36 (Doctoral dissertation, University of Reading).

    Google Scholar 

  • Ibrar M, Khan S, Hasan F, Yang X (2022) Biosurfactants and chemotaxis interplay in microbial consortium-based hydrocarbons degradation. Environ Sci Pollut Res:1–20

    Google Scholar 

  • Jimoh AA, Lin J (2019) Biosurfactant: a new frontier for greener technology and environmental sustainability. Ecotoxicol Environ Saf 184:109607

    Article  CAS  Google Scholar 

  • Kaczorek E, Pacholak A, Zdarta A, Smułek W (2018) The impact of biosurfactants on microbial cell properties leading to hydrocarbon bioavailability increase. Colloids Interfaces 2(3):35

    Article  CAS  Google Scholar 

  • Kaga H, Nakamura A, Orita M, Endo K, Akamatsu M, Sakai K, Sakai H (2022) Removal of a Model Biofilm by Sophorolipid Solutions: A QCM-D Study. J Oleo Sci 71, ess21360

    Google Scholar 

  • Karlapudi, A. P., Venkateswarulu, T. C., Tammineedi, J., Kanumuri, L., Ravuru, B. K., ramu Dirisala, V., &Kodali, V. P. (2018b). Role of biosurfactants in bioremediation of oil pollution-a review. Petroleum, 4(3), 241-249.

    Google Scholar 

  • Karlapudi AP, Venkateswarulu TC, Tammineedi J, Kanumuri L, Ravuru BK, Ramu Dirisala V, Kodali VP (2018a) Role of biosurfactants in bioremediation of oil pollution-a review. Petroleum 4(3):241–249

    Article  Google Scholar 

  • Khatoon Z, Orozco-Mosqueda C, Huang S, Nascimento FX, Santoyo G (2022) Peptide antibiotics produced by bacillus species: first line of attack in the biocontrol of plant diseases. In: Bacilli in agrobiotechnology. Springer, Cham, pp 31–46

    Chapter  Google Scholar 

  • Kim BS, Lee JY, Hwang BK (2000) In vivo control and in vitro antifungal activity of rhamnolipid B, a glycolipid antibiotic, against Phytophthoracapsici and Colletotrichumorbiculare. Pest Managt Sci Formerly Pesticide Sci 56(12):1029–1035

    CAS  Google Scholar 

  • Kleinen J, Langwald J, Venzmer J, Yalcinkaya H (2022) Microrheology to understand the viscosity behavior of a sophorolipid biosurfactant. Colloids Interfaces 6(1):3

    Article  CAS  Google Scholar 

  • Kourmentza K, Gromada X, Michael N, Degraeve C, Vanier G, Ravallec R, Jauregi P (2021) Antimicrobial activity of lipopeptide biosurfactants against foodborne pathogen and food spoilage microorganisms and their cytotoxicity. Front Microbiol 11:3398

    Article  Google Scholar 

  • Kraigher B, Butolen M, Stefanic P, Mandic Mulec I (2022) Kin discrimination drives territorial exclusion during Bacillus subtilis swarming and restrains exploitation of surfactin. ISME J 16(3):833–841

    Article  CAS  Google Scholar 

  • Krishnan N, Velramar B, Velu RK (2019) Investigation of antifungal activity of surfactin against mycotoxigenic phytopathogenic fungus Fusarium moniliforme and its impact in seed germination and mycotoxicosis. Pestic Biochem Physiol 155:101–107

    Article  CAS  Google Scholar 

  • Kruijt M, Tran H, Raaijmakers JM (2009) Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267. J Appl Microbiol 107(2):546–556

    Article  CAS  Google Scholar 

  • Kumari V (2022) Biosurfactant as an antimicrobial and biodegradable agent a review. In: Microbial surfactants. CRC Press, pp 139–157

    Chapter  Google Scholar 

  • Lamichhane S, Krishna KB, Sarukkalige R (2017) Surfactant-enhanced remediation of polycyclic aromatic hydrocarbons: a review. J Environ Manag 199:46–61

    Article  CAS  Google Scholar 

  • Lamilla C, Schalchli H, Briceño G, Leiva B, Donoso-Piñol P, Barrientos L, Diez MC (2021) A pesticide biopurification system: a source of biosurfactant-producing bacteria with environmental biotechnology applications. Agronomy 11(4):624

    Article  CAS  Google Scholar 

  • Landa-Faz A, Rodríguez-Vázquez R, Roldán-Carrillo TG, Hidalgo-Lara ME, Aguilar-López R, Cebrián-García ME (2022) Bioremediation of an agricultural saline soil contaminated with endosulfan and Escherichia coli by an active surface agent induced in a Penicillium crustosum culture. Prep Biochem Biotechnol 52(3):292–301

    Article  CAS  Google Scholar 

  • Larsson J, Williams AP, Wahlgren M, Porcar L, Ulvenlund S, Nylander T, Sanchez-Fernandez A (2022) Shear-induced nanostructural changes in micelles formed by sugar-based surfactants with varied anomeric configuration. J Colloid Interface Sci 606:328–336

    Article  CAS  Google Scholar 

  • Ledger EV, Sabnis A, Edwards AM (2022) Polymyxin and lipopeptide antibiotics: membrane-targeting drugs of last resort. Microbiology 168(2):001136

    Article  CAS  Google Scholar 

  • Lilge L, Ersig N, Hubel P, Aschern M, Pillai E, Klausmann P, Hausmann R (2022) Surfactin shows relatively low antimicrobial activity against bacillus subtilis and other bacterial model organisms in the absence of synergistic metabolites. Microorganisms 10(4):779

    Article  CAS  Google Scholar 

  • Lin F, Zhu X, Sun J, Meng F, Lu Z, Lu Y (2022) Bacillomycin D-C16 inhibits growth of Fusarium verticillioides and production of fumonisin B1 in maize kernels. Pestic Biochem Physiol 181:105015

    Article  CAS  Google Scholar 

  • Liu G, Zhong H, Yang X, Liu Y, Shao B, Liu Z (2018) Advances in applications of rhamnolipids biosurfactant in environmental remediation: a review. Biotechnol Bioeng 115(4):796–814

    Article  CAS  Google Scholar 

  • Liu Q, Niu J, Liu Y, Li L, Lv J (2022a) Optimization of lipopeptide biosurfactant production by Bacillus licheniformis L20 and performance evaluation of biosurfactant mixed system for enhanced oil recovery. J Pet Sci Eng 208:109678

    Article  CAS  Google Scholar 

  • Liu S, Tang MH, Cheng JS (2022b) Fermentation optimization of surfactin production of Bacillus amyloliquefaciens HM618. Biotechnol Appl Biochem

    Google Scholar 

  • López-Prieto A, Moldes AB, Cruz JM, Pérez-Cid B (2022) Solubilization of cuprous oxide in water using biosurfactant extracts from corn steep liquor: a comparative study. Sci Rep 12(1):1–12

    Article  Google Scholar 

  • Luo C, Zhou H, Zou J, Wang X, Zhang R, Xiang Y, Chen Z (2015) Bacillomycin L and surfactin contribute synergistically to the phenotypic features of Bacillus subtilis 916 and the biocontrol of rice sheath blight induced by Rhizoctonia solani. Appl Microbiol Biotechnol 99(4):1897–1910

    Article  CAS  Google Scholar 

  • Maget-Dana R, Peypoux F (1994) Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology 87(1-3):151–174

    Article  CAS  Google Scholar 

  • Maia M, Capão A, Procópio L (2019) Biosurfactant produced by oil-degrading Pseudomonas putida AM-b1 strain with potential for microbial enhanced oil recovery. Biorem J 23(4):302–310

    Article  CAS  Google Scholar 

  • Malkapuram ST, Sharma V, Gumfekar SP, Sonawane S, Sonawane S, Boczkaj G, Seepana MM (2021) A review on recent advances in the application of biosurfactants in wastewater treatment. Sustain Energy Technol Assess 48:101576

    Google Scholar 

  • Mallik T, Banerjee D (2022) Biosurfactants: The potential green surfactants in the 21st century. J Adv Sci Res 13(01):97–106

    CAS  Google Scholar 

  • Manickam N, Bajaj A, Saini HS, Shanker R (2012) Surfactant mediated enhanced biodegradation of hexachlorocyclohexane (HCH) isomers by Sphingomonas sp. NM05. Biodegradation 23(5):673–682

    Article  CAS  Google Scholar 

  • Marcelino PRF, Peres GFD, Terán-Hilares R, Pagnocca FC, Rosa CA, Lacerda TM et al (2019) Biosurfactants production by yeasts using sugarcane bagasse hemicellulosic hydrolysate as new sustainable alternative for lignocellulosic biorefineries. Ind Crop Prod 129:212–223

    Article  CAS  Google Scholar 

  • Marchant R, Banat IM (2012) Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnol Lett 34(9):1597–1605

    Article  CAS  Google Scholar 

  • Mata-Sandoval JC, Karns J, Torrents A (2002) Influence of rhamnolipids and Triton X-100 on the desorption of pesticides from soils. Environ Sci Technol 36(21):4669–4675

    Article  Google Scholar 

  • Medeot DB, Fernandez M, Morales GM, Jofré E (2020) Fengycins from Bacillus amyloliquefaciens MEP218 exhibit antibacterial activity by producing alterations on the cell surface of the pathogens Xanthomonas axonopodispv. vesicatoria and Pseudomonas aeruginosa PA01. Front Microbiol 10:3107

    Article  Google Scholar 

  • Meliani A, Bensoltane A (2015) Review of Pseudomonas attachment and biofilm formation in food industry. Poultry Fisheries Wildlife Sci 3(1):2–7

    Google Scholar 

  • Mishra S, Lin Z, Pang S, Zhang W, Bhatt P, Chen S (2021) Recent advanced technologies for the characterization of xenobiotic-degrading microorganisms and microbial communities. Front Bioeng Biotechnol 9:632059

    Article  Google Scholar 

  • Mnif I, Ghribi D (2015) Lipopeptides biosurfactants: Mean classes and new insights for industrial, biomedical, and environmental applications. Biopolymers 104:129–147

    Article  CAS  Google Scholar 

  • Morikawa M (2006) Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. J Biosci Bioeng 101(1):1–8

    Article  CAS  Google Scholar 

  • Mouafo HT, Sokamte AT, Mbawala A, Ndjouenkeu R, Devappa S (2022) Biosurfactants from lactic acid bacteria: a critical review on production, extraction, structural characterization and food application. Food Biosci 46:101598

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60(1-4):193–207

    Article  Google Scholar 

  • Nawaz HH, Rajaofera MN, He Q, Anam U, Lin C, Miao W (2018) Evaluation of antifungal metabolites activity from Bacillus licheniformis OE-04 against Colletotrichum gossypii. Pestic Biochem Physiol 146:33–42

    Article  CAS  Google Scholar 

  • Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, Kruse H (2010) Food-borne diseases—the challenges of 20 years ago still persist while new ones continue to emerge. Int J Food Microbiol 139:S3–S15

    Article  Google Scholar 

  • Newman E, Watson A (1977) Microbial abundance in the rhizosphere: a computer model. Plant Soil 48(1):17–56

    Article  Google Scholar 

  • Nielsen CJ, Ferrin DM, Stanghellini ME (2006) Efficacy of biosurfactants in the management of Phytophthora capsici on pepper in recirculating hydroponic systems. Can J Plant Pathol 28(3):450–460

    Article  CAS  Google Scholar 

  • Niu Y, Wu J, Wang W, Chen Q (2019) Production and characterization of a new glycolipid, mannosylerythritol lipid, from waste cooking oil biotransformation by Pseudozymaaphidis ZJUDM34. Food Sci Nutr 7(3):937–948

    Article  CAS  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16(3):115–125

    Article  CAS  Google Scholar 

  • Onuzulike CM, Aniagor CO, Modekwe GO, Ejimofor MI, Menkiti MC (2022) Remediation of lead ion contaminated stream using biosurfactant-functionalized mesoporous activated carbon. Chem Afr:1–8

    Google Scholar 

  • Onwe RO, Onwosi CO, Ezugworie FN, Ekwealor CC, Okonkwo CC (2022) Microbial trehalose boosts the ecological fitness of biocontrol agents, the viability of probiotics during long-term storage and plants tolerance to environmental-driven abiotic stress. Sci Total Environ 806:150432

    Article  CAS  Google Scholar 

  • Ortiz-Castro R, Pelagio-Flores R, Méndez-Bravo A, Ruiz-Herrera LF, Campos-García J, López-Bucio J (2014) Pyocyanin, a virulence factor produced by Pseudomonas aeruginosa, alters root development through reactive oxygen species and ethylene signaling in Arabidopsis. Mol Plant-Microbe Interact 27(4):364–378

    Article  CAS  Google Scholar 

  • Pacwa-Plociniczak M, Plaza GA, Piotrowska-Seget Z, Cameotra S (2011) Environmental applications of biosurfactants:Recent advances. Int J Mol Sci 12:633–654

    Article  CAS  Google Scholar 

  • Pamp SJ, Tolker-Nielsen T (2007) Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. J Bacteriol 189(6):2531–2539

    Article  CAS  Google Scholar 

  • Panchbhai A (2022) Hemolysis and formation of ion channels in lipid membrane. In: Green sustainable process for chemical and environmental engineering and science. Academic Press, pp 289–297

    Chapter  Google Scholar 

  • Parra-Arroyo L, González-González RB, Castillo-Zacarías C, Martínez EMM, Sosa-Hernández JE, Bilal M et al (2022) Highly hazardous pesticides and related pollutants: toxicological, regulatory, and analytical aspects. Sci Total Environ 807:151879

    Article  CAS  Google Scholar 

  • Parthipan P, Cheng L, Dhandapani P, Elumalai P, Huang M, Rajasekar A (2022) Impact of biosurfactant and iron nanoparticles on biodegradation of polyaromatic hydrocarbons (PAHs). Environ Pollut:306, 119384

    Google Scholar 

  • Patowary K, Patowary R, Kalita MC, Deka S (2017) Characterization of biosurfactant produced during degradation of hydrocarbons using crude oil as sole source of carbon. Front Microbiol 8:279

    Article  Google Scholar 

  • Penfold J, Chen M, Thomas RK, Dong C, Smyth TJ, Perfumo A, Grillo I (2011) Solution self-assembly of the sophorolipid biosurfactant and its mixture with anionic surfactant sodium dodecyl benzene sulfonate. Langmuir 27(14):8867–8877

    Article  CAS  Google Scholar 

  • Poirier, A., Le Griel, P., Perez, J., Hermida-Merino, D., Pernot, P., &Baccile, N. (2022). Metallogels from glycolipid biosurfactant.

    Book  Google Scholar 

  • Primo ED, Ruiz F, Masciarelli O, Giordano W (2015) Biofilm formation and biosurfactant activity in plant-associated bacteria. In: Bacterial Metabolites in Sustainable Agroecosystem. Springer, Cham, pp 337–349

    Chapter  Google Scholar 

  • Rasheed T, Shafi S, Bilal M, Hussain T, Sher F, Rizwan K (2020) Surfactants-based remediation as an effective approach for removal of environmental pollutants—A review. J Mol Liq 318:113960

    Article  CAS  Google Scholar 

  • Rasiya KT, Sebastian D (2021) Iturin and surfactin from the endophyte Bacillus amyloliquefaciens strain RKEA3 exhibits antagonism against Staphylococcus aureus. Biocatal Agric Biotechnol 36:102125

    Article  Google Scholar 

  • Rehman R, Ali MI, Ali N, Badshah M, Iqbal M, Jamal A, Huang Z (2021) Crude oil biodegradation potential of biosurfactant-producing Pseudomonas aeruginosa and Meyerozyma sp. J Hazard Mater 418:126276

    Article  CAS  Google Scholar 

  • Rengel Z (2001) Genotypic differences in micronutrient use efficiency in crops. Commun Soil Sci Plant Anal 32(7-8):1163–1186

    Article  CAS  Google Scholar 

  • Revathi KB, Meghana G, Anuradha S, George KS (2022) Understanding mechanisms underlying genes regulating the production of biosurfactant. In: Green Sustainable Process for Chemical and Environmental Engineering and Science. Academic Press, pp 649–663

    Chapter  Google Scholar 

  • Rodrigues AI, Gudiña EJ, Teixeira JA, Rodrigues LR (2017) Sodium chloride effect on the aggregation behaviour of rhamnolipids and their antifungal activity. Sci Rep 7(1):1–9

    Article  Google Scholar 

  • Roldán-Carrillo T, Martínez-García X, Zapata-Penasco I, Castorena-Cortés G, Reyes-Avila J, Mayol-Castillo M, Olguín-Lora P (2011) Evaluation of the effect of nutrient ratios on biosurfactant production by Serratia marcescens using a Box-Behnken design. Colloids Surf B: Biointerfaces 86(2):384–389

    Article  Google Scholar 

  • Roongsawang N, Thaniyavarn J, Thaniyavarn S, Kameyama T, Haruki M, Imanaka T et al (2002) Isolation and characterization of a halotolerant Bacillus subtilis BBK-1 which produces three kinds of lipopeptides: bacillomycin L, plipastatin, and surfactin. Extremophiles 6(6):499–506

    Article  CAS  Google Scholar 

  • Rossez Y, Holmes A, Wolfson EB, Gally DL, Mahajan A, Pedersen HL, Holden NJ (2014) Flagella interact with ionic plant lipids to mediate adherence of pathogenic Escherichia coli to fresh produce plants. Environ Microbiol 16(7):2181–2195

    Article  CAS  Google Scholar 

  • Rufino RD, Rodrigues GIB, Campos-Takaki GM, Sarubbo LA, Ferreira SRM (2011) Application of a yeast biosurfactant in the removal of heavy metals and hydrophobic contaminant in a soil used as slurry barrier. Appl Environ Soil Sci 2011:939648

    Article  Google Scholar 

  • Sagisaka M, Endo T, Fujita K, Umetsu Y, Osaki S, Narumi T, Eastoe J (2021) Very low surface tensions with “Hedgehog” surfactants. Colloids Surf A Physicochem Eng Asp 631:127690

    Article  CAS  Google Scholar 

  • Sánchez M et al (2009) Interaction of a bacterial dirhamnolipid with phosphatidylcholine membranes: a biophysical study. Chem Phys Lipids 161(1):51–55. https://doi.org/10.1016/J.CHEMPHYSLIP.2009.06.145

    Article  Google Scholar 

  • Sang MK, Kim KD (2012) The volatile-producing Flavobacterium johnsoniae strain GSE09 shows biocontrol activity against Phytophthora capsici in pepper. J Appl Microbiol 113(2):383–398

    Article  CAS  Google Scholar 

  • Santos DKF, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2016) Biosurfactants: multifunctional biomolecules of the 21st century. Int J Mol Sci 17(3):401

    Article  Google Scholar 

  • Saranraj P, Sayyed RZ, Sivasakthivelan P, Hasan MS, Rahman A, Al-Tawaha M, Amala K (2022) Microbial biosurfactants methods of investigation, characterization, current market value and applications. In: Microbial surfactants. CRC Press, pp 19–34

    Chapter  Google Scholar 

  • Sarubbo LA, Maria da Gloria CS, Durval IJB, Bezerra KGO, Ribeiro BG, Silva IA et al (2022) Biosurfactants: production, properties, applications, trends, and general perspectives. Biochem Eng J 181:108377

    Article  CAS  Google Scholar 

  • Sastoque-Cala L, Cotes-Prado AM, Pedroza-Rodríguez AM (2010) Effect of nutrients and fermentation conditions on the production of biosurfactants using rhizobacteria isolated from fique plants. Univ Sci 15(3):251–264

    Article  CAS  Google Scholar 

  • Satapute P, Jogaiah S (2022) A biogenic microbial biosurfactin that degrades difenoconazole fungicide with potential antimicrobial and oil displacement properties. Chemosphere 286:131694

    Article  CAS  Google Scholar 

  • Schultz J, Rosado AS (2020) Extreme environments: a source of biosurfactants for biotechnological applications. Extremophiles 24(2):189–206

    Article  CAS  Google Scholar 

  • Sekhon KK, Khanna S, Cameotra SS (2011) Enhanced biosurfactant production through cloning of three genes and role of esterase in biosurfactant release. Microb Cell Factories 10(1):1–10

    Article  Google Scholar 

  • Sha R, Jiang L, Meng Q, Zhang G, Song Z (2012) Producing cell-free culture broth of rhamnolipids as a cost-effective fungicide against plant pathogens. J Basic Microbiol 52(4):458–466

    Article  CAS  Google Scholar 

  • Shao B, Liu Z, Zhong H, Zeng G, Liu G, Yu M et al (2017) Effects of rhamnolipids on microorganism characteristics and applications in composting: a review. Microbiol Res 200:33–44

    Article  CAS  Google Scholar 

  • Sharma D, Saharan BS, Kapil S (2016) Structural properties of biosurfactants of lab. Springer, pp 47–60. https://doi.org/10.1007/978-3-319-26215-4_4

    Book  Google Scholar 

  • Sheng XF, He LY, Wang QY, Ye HS, Jiang CY (2008) Effects of inoculation of biosurfactant-producing Bacillus sp. J119on plant growth and cadmium uptake in a cadmium-amended soil. J Hazard Mater 155:17–22

    Article  CAS  Google Scholar 

  • Shu Q, Lou H, Wei T, Liu X, Chen Q (2021) Contributions of glycolipid biosurfactants and glycolipid-modified materials to antimicrobial strategy: A review. Pharmaceutics 13(2):227

    Article  CAS  Google Scholar 

  • Singh P, Saini HS, Raj M (2016) Rhamnolipid mediated enhanced degradation of chlorpyrifos by bacterial consortium in soil-water system. Ecotoxicol Environ Saf 134:156–162

    Article  CAS  Google Scholar 

  • Singh R, Glick BR, Rathore D (2018) Biosurfactants as a biological tool to increase micronutrient availability in soil: A review. Pedosphere 28(2):170–189

    Article  CAS  Google Scholar 

  • Sinha RK, Agarwal S, Chauhan K, Valani D (2010) The wonders of earthworms & its vermicompost in farm production: Charles Darwin’s ‘friends of farmers’, with potential to replace destructive chemical fertilizers. Agric Sci 1(02):76

    Google Scholar 

  • Śliżewska W, Struszczyk-Świta K, Marchut-Mikołajczyk O (2022) Metabolic potential of halophilic filamentous fungi—current perspective. Int J Mol Sci 23(8):4189

    Article  Google Scholar 

  • Somoza-Coutiño G, Wong-Villarreal A, Blanco-González C, Pérez-Sariñana B, Mora-Herrera M, Mora-Herrera SI et al (2020) A bacterial strain of Pseudomonas aeruginosa B0406 pathogen opportunistic, produce a biosurfactant with tolerance to changes of pH, salinity and temperature. Microb Pathog 139:103869

    Article  Google Scholar 

  • Sonowal S, Joshi SJ, Borah SN, Islam NF, Pandit S, Prasad R, Sarma H (2022) Biosurfactant-assisted phytoremediation of potentially toxic elements in soil: Green technology for meeting the United Nations Sustainable Development Goals. Pedosphere 32(1):198–210

    Article  CAS  Google Scholar 

  • Sponza DT, Gok O (2011) Effects of sludge retention time and biosurfactant on the treatment of polyaromatic hydrocarbon (PAH) in a petrochemical industry wastewater. Water Sci Technol 64(11):2282–2292

    Article  CAS  Google Scholar 

  • Stacey SP, McLaughlin MJ, Çakmak I, Hettiarachchi GM, Scheckel KG, Karkkainen M (2008) Root uptake of lipophilic zinc− rhamnolipid complexes. J Agric Food Chem 56(6):2112–2117

    Article  CAS  Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56(4):845–857

    Article  CAS  Google Scholar 

  • Steindler L, Bertani I, De Sordi L, Schwager S, Eberl L, Venturi V (2009) LasI/R and RhlI/R quorum sensing in a strain of Pseudomonas aeruginosa beneficial to plants. Appl Environ Microbiol 75(15):5131–5140

    Article  CAS  Google Scholar 

  • Sun W, Zhu B, Yang F, Dai M, Sehar S, Peng C, Naz I (2021) Optimization of biosurfactant production from Pseudomonas sp. CQ2 and its application for remediation of heavy metal contaminated soil. Chemosphere 265:129090

    Article  CAS  Google Scholar 

  • Tan YN, Li Q (2018) Microbial production of rhamnolipids using sugars as carbon sources. Microb Cell Factories 17(1):1–13

    Article  Google Scholar 

  • Théatre A, Hoste ACR, Rigolet A, Benneceur I, Bechet M, Ongena M et al (2022) Bacillus sp.: A remarkable source of bioactive lipopeptides. Adv Biochem Eng Biotechnol 181:123–179

    Google Scholar 

  • Tran C, Cock IE, Chen X, Feng Y (2022) Antimicrobial bacillus: metabolites and their mode of action. Antibiotics 11(1):88

    Article  CAS  Google Scholar 

  • Tuleva B, Christova N, Cohen R, Stoev G, Stoineva I (2008) Production and structural elucidation of trehalosetetraesters (biosurfactants) from a novel alkanothrophic Rhodococcus wratislaviensis strain. J Appl Microbiol 104(6):1703–1710

    Article  CAS  Google Scholar 

  • Twigg M, Tripathi L, Zompra K, Salek K, Irorere V, Gutierrez T et al (2019) Surfactants from the sea: rhamnolipid production by marine bacteria. Access Microbiol 1(1A):192

    Article  Google Scholar 

  • Valotteau C, Banat IM, Mitchell CA, Lydon H, Marchant R, Babonneau F et al (2017) Antibacterial properties of sophorolipid-modified gold surfaces against Gram positive and Gram negative pathogens. Colloids Surf B: Biointerfaces 157:325–334

    Article  CAS  Google Scholar 

  • Van Aarle IM, Olsson PA, Söderström B (2002) Arbuscular mycorrhizal fungi respond to the substrate pH of their extraradical mycelium by altered growth and root colonization. New Phytol 155(1):173–182

    Article  Google Scholar 

  • Varjani SJ, Upasani VN (2017) Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant. Bioresour Technol 232:389–397

    Article  CAS  Google Scholar 

  • Vu KA, Mulligan CN (2022) Remediation of oil-contaminated soil using Fe/Cu nanoparticles and biosurfactants. Environ Technol, (just-accepted):1–18

    Google Scholar 

  • Vu T, Weaver MR, Kasting GB, Koenig P (2021) Effect of pH on the Structure and Dynamics of Wormlike Micelles in an Amino Acid-Derived Surfactant Composition. Langmuir 37(14):4112–4120

    Article  CAS  Google Scholar 

  • Wang W, Morohoshi T, Ikeda T, Chen L (2008) Inhibition of Lux quorum-sensing system by synthetic N-acyl-L-homoserine lactone analogous. Acta Biochim Biophys Sin 40(12):1023–1028

    Article  CAS  Google Scholar 

  • Wang X, Sial MU, Bashir MA, Bilal M, Raza QUA, Ali Raza HM et al (2022) Pesticides xenobiotics in soil ecosystem and their remediation approaches. Sustainability 14(6):3353

    Article  CAS  Google Scholar 

  • Ward OP (2010) Microbial biosurfactants and biodegradation. Bios:65–74

    Google Scholar 

  • Wu S, Liu G, Zhou S, Sha Z, Sun C (2019) Characterization of antifungal lipopeptide biosurfactants produced by marine bacterium Bacillus sp. CS30. Marine Drugs 17(4):199

    Article  CAS  Google Scholar 

  • Yang Z, Zu Y, Zhu J, Jin M, Cui T, Long X (2020) Application of biosurfactant surfactin as a pH-switchable biodemulsifier for efficient oil recovery from waste crude oil. Chemosphere 240:124946

    Article  CAS  Google Scholar 

  • Yoshida S, Koitabashi M, Nakamura J, Fukuoka T, Sakai H, Abe M et al (2015) Effects of biosurfactants, mannosylerythritol lipids, on the hydrophobicity of solid surfaces and infection behaviours of plant pathogenic fungi. J Appl Microbiol 119(1):215–224

    Article  CAS  Google Scholar 

  • Yuan J, Zhang N, Huang Q, Raza W, Li R, Vivanco JM, Shen Q (2015) Organic acids from root exudates of banana help root colonization of PGPR strain Bacillus amyloliquefaciens NJN-6. Sci Rep 5(1):1–8

    Article  Google Scholar 

  • Zeng Z, Liu Y, Zhong H, Xiao R, Zeng G, Liu Z et al (2018) Mechanisms for rhamnolipids-mediated biodegradation of hydrophobic organic compounds. Sci Total Environ 634:1–11

    Article  CAS  Google Scholar 

  • Zhang H, Mu W, Hou Z, Wu X, Zhao W, Zhang X, Zhang S (2012) Biodegradation of nicosulfuron by the bacterium Serratia marcescens N80. J Environ Sci Health B 47(3):153–160

    Article  CAS  Google Scholar 

  • Zhang H, Zhang Y, Jia Z, Zhou Z (2020) Application of power law in conductivity of binary mixed rhamnolipid surfactant systems. Colloids Surf A Physicochem Eng Asp 603:125190

    Article  CAS  Google Scholar 

  • Zihalirwa Kulimushi P, Argüelles Arias A, Franzil L, Steels S, Ongena M (2017) Stimulation of fengycin-type antifungal lipopeptides in Bacillus amyloliquefaciens in the presence of the maize fungal pathogen Rhizomucorvariabilis. Front Microbiol 8:850

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asif Jamal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jamal, A., Ali, M.I., Badshah, M., Masood, A.B. (2023). Role of Biosurfactants in Agriculture Management. In: Aslam, R., Mobin, M., Aslam, J., Zehra, S. (eds) Advancements in Biosurfactants Research. Springer, Cham. https://doi.org/10.1007/978-3-031-21682-4_15

Download citation

Publish with us

Policies and ethics