Skip to main content

Peptide Antibiotics Produced by Bacillus Species: First Line of Attack in the Biocontrol of Plant Diseases

  • Chapter
  • First Online:
Bacilli in Agrobiotechnology

Abstract

Bacillus spp. contain a wide arsenal of weapons against plant pathogens such as bacteria, fungi, and oomycetes, including antibiotic peptides as part of the first line of attack and plant protection. In general, such peptides, based on their biosynthetic pathways, can be of ribosomal or non-ribosomal origin. In both cases, a complex genetic structure is required that codes for different enzyme complexes. Here, we review the capabilities and advantages of Bacillus species to antagonize and control diseases of different crops through the production of peptide antibiotics. Finally, this chapter discusses the potential of engineered microbes and different types and mechanisms of action of non-ribosomally or ribosomally synthesized peptide antibiotics in Bacillus spp., with the final goal of reducing the use of toxic chemicals in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abriouel H, Franz CMAP, Omar NB, Gálvez A (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 35:201–232

    Article  CAS  PubMed  Google Scholar 

  • Adesemoye AO, Kloepper JW (2009) Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Alcaraz LD, Moreno-Hagelsieb G, Eguiarte LE, Souza V, Herrera-Estrella L, Olmedo G (2010) Understanding the evolutionary relationships and major traits of bacillus through comparative genomics. BMC Genomics 11(1):332

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Thubiani ASA, Maher YA, Fathi A, Abourehab MAS, Alarjah M, Khan MSA, Al- Ghamdi SB (2018) Identification and characterization of a novel antimicrobial peptide compound produced by Bacillus megaterium strain isolated from oral microflora. Saudi Pharm J 26:1089–1097

    Article  PubMed  PubMed Central  Google Scholar 

  • Alvarez F, Castro M, Principe A, Borioli G, Fischer S, Mori G, Jofre EJ (2012) The plant-associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. J Appl Microbiol 112:159–174

    Article  CAS  PubMed  Google Scholar 

  • Andersson DI, Hughes DJ (2014) Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol 12:465–478

    Article  CAS  PubMed  Google Scholar 

  • Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62:4081–4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bacenetti J, Fusi A, Negri M, Bocchi S, Fiala M (2016) Organic production systems: sustainability assessment of rice in Italy. Agric Ecosyst Environ 225:33–44

    Article  Google Scholar 

  • Bahar AA, Ren D (2013) Antimicrobial Peptides 6: 1543–1575

    Google Scholar 

  • Bais HP, Fall R, Vivanco JMJ (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134:307–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batool M, Khalid MH, Hassan MN, Yusuf HFJ (2011) Homology modeling of an antifungal metabolite plipastatin synthase from the Bacillus subtilis. Bioinformation 168:384

    Article  Google Scholar 

  • Bazinet AL (2017) Pan-genome and phylogeny of Bacillus cereus sensu lato. BMC Evol Biol 17(1):176

    Article  PubMed  PubMed Central  Google Scholar 

  • Béchet M, Castéra-Guy J, Guez J-S, Chihib N-E, Coucheney F, Coutte F, Fickers P, Leclère V, Wathelet B, Jacques P (2013) Production of a novel mixture of mycosubtilins by mutants of Bacillus subtilis. Bioresour Technol 145:264–270

    Article  PubMed  Google Scholar 

  • Cao Y, Pi H, Chandrangsu P, Li Y, Wang Y, Zhou H, Xiong H, Helmann JD, Cai Y (2018) Antagonism of two plant-growth promoting bacillus velezensis isolates against Ralstonia solanacearum and fusarium oxysporum. Sci Rep 8:4360

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Kong Q, Liang Y (2019) Three newly identified peptides from Bacillus megaterium strongly inhibit the growth and aflatoxin B1 production of Aspergillus flavus. Food Control 95:41–49

    Article  CAS  Google Scholar 

  • Cotter PD, Ross RP, Hill CJ (2013) Bacteriocins—a viable alternative to antibiotics? Nat Rev Microbiol 11:95–105

    Article  CAS  PubMed  Google Scholar 

  • Cawoy H, Mariutto M, Henry G, et al (2014) Plant defense stimulation by natural isolates of Bacillus depends on efficient surfactin production. Mol Plant-Microbe Interact 27:87–100

    Google Scholar 

  • Dang Y, Zhao F, Liu X, Fan X, Huang R, Gao W, Wang S, Yang C (2019) Enhanced production of antifungal lipopeptide iturin A by bacillus amyloliquefaciens LL3 through metabolic engineering and culture conditions optimization. Microb Cell Factories 18:68

    Article  Google Scholar 

  • Deleu M, Paquot M, Nylander TJ (2005) Fengycin interaction with lipid monolayers at the air–aqueous interface—implications for the effect of fengycin on biological membranes. J Colloid Interface Sci 283:358–365

    Article  CAS  PubMed  Google Scholar 

  • Dufour S, Deleu M, Nott K, Wathelet B, Thonart P, Paquot M (2005) Hemolytic activity of new linear surfactin analogs in relation to their physico-chemical properties. J Peptide Sci 1726:87–95

    CAS  Google Scholar 

  • Dunlap CA, Schisler DA, Price NP, Vaughn SFJT (2011) Cyclic lipopeptide profile of three Bacillus subtilis strains; antagonists of Fusarium head blight. J Microbiol 49:603

    Article  CAS  PubMed  Google Scholar 

  • Falardeau J, Wise C, Novitsky L, Avis TJ (2013) Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. J Chem Ecol 39:869–878

    Article  CAS  PubMed  Google Scholar 

  • Findlay B, Zhanel GG, Schweizer F (2010) Cationic amphiphiles, a new generation of antimicrobials inspired by the natural antimicrobial peptide scaffold. Antimicrob Agents Chemother 54(10):4049–4058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flores A, Diaz-Zamora JT, Orozco-Mosqueda, MC, et al (2020) Bridging genomics and field research: draft genome sequence of Bacillus thuringiensis CR71, an endophytic bacterium that promotes plant growth and fruit yield in Cucumis sativus L. 3. Biotech 10:1–7

    Google Scholar 

  • Fira D, Dimkić I, Berić T, Lozo J, Stanković S (2018) Biological control of plant pathogens by Bacillus species. J Biotechnol 285:44–55

    Article  CAS  PubMed  Google Scholar 

  • Ghazanfar MU, Raza M, Raza W, Qamar MI (2018) Trichoderma as potential biocontrol agent, its exploitation in agriculture: a review. Plant Prot 2(3)

    Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012

    Google Scholar 

  • Glick BR, Skof YC (1986) Environmental implications of recombinant DNA technology. Biotechnol Adv 4:261–277

    Article  CAS  PubMed  Google Scholar 

  • Gray E, Di Falco M, Souleimanov A, Smith DL (2006) Proteomic analysis of the bacteriocin, thuricin-17 produced by Bacillus thuringiensis NEB17. FEMS Microbiol Lett 255:27–32

    Article  CAS  PubMed  Google Scholar 

  • Guo Q, Dong W, Li S, Lu X, Wang P, Zhang X, Wang Y, Ma P (2014a) Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiol Res 169:533–540

    Article  CAS  PubMed  Google Scholar 

  • Guo Q, Dong W, Li S, Lu X, Wang P, Zhang X, Wang Y, Ma PJ (2014b) Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiol Res 169:533–540

    Article  CAS  PubMed  Google Scholar 

  • Hammami I, Rhouma A, Jaouadi B, Rebai A, Nesme X (2009) Optimization and biochemical characterization of a bacteriocin from a newly isolated Bacillus subtilis strain 14B for biocontrol of Agrobacterium spp. strains. Lett Appl Microbiol 48:253–260

    Article  CAS  PubMed  Google Scholar 

  • Heerklotz H, Wieprecht T, Seelig JJT (2004) Membrane perturbation by the lipopeptide surfactin and detergents as studied by deuterium NMR. J Chem Physics 108:4909–4915

    Article  CAS  Google Scholar 

  • Horwood PF, Burgess GW, Jane Oakey H (2004) Evidence for non-ribosomal peptide synthetase production of cereulide (the emetic toxin) in Bacillus cereus. FEMS Microbiol Lett 236:319–324

    Article  CAS  PubMed  Google Scholar 

  • Hu F, Liu Y, Lin J, Wang W, Li S (2020) Efficient production of surfactin from xylose-rich corncob hydrolysate using genetically modified Bacillus subtilis. Appl Microbiol Biotechnol 168:1–10

    Google Scholar 

  • Jack RW, Tagg JR, Ray B (1995) Bacteriocins of gram-positive bacteria. Microbiol Rev 59:171–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin H, Zhang X, Li K, Niu Y, Guo M, Hu C, Wan X, Gong Y, Huang F (2014) Direct bio-utilization of untreated rapeseed meal for effective iturin A production by Bacillus subtilis in submerged fermentation. Plos one 9:e111171

    Article  PubMed  PubMed Central  Google Scholar 

  • Jourdan E, Henry G, Duby F, Dommes J, Barthelemy J-P, Thonart P, Ongena M (2009) Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol Plant-Microbe Int 22:456–468

    Article  CAS  Google Scholar 

  • Kakinuma A, Ouchida A, Shima T, Sugino H, Isono M, Tamura G, Arima K (1969) Confirmation of the structure of surfactin by mass spectrometry. Agric Biol Chem 33:1669–1671

    Article  CAS  Google Scholar 

  • Kim P-I, Ryu J, Kim YH, Chi Y-TJ (2010) Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J Microbiol Biotechnol 20:138–145

    Article  CAS  PubMed  Google Scholar 

  • Kumariya R, Garsa AK, Rajput YS, Sood SK, Akhtar N, Patel S (2019) Bacteriocins: classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb Pathog 128:171–177

    Article  CAS  PubMed  Google Scholar 

  • Kupper KC, Moretto RK, Fujimoto AJ (2020) Production of antifungal compounds by Bacillus spp isolates and its capacity for controlling citrus black spot under field conditions. World J Microbiol Biotechnol 36:7

    Article  CAS  Google Scholar 

  • Lamichhane JR, Messéan A, Morris CE (2015) Insights into epidemiology and control of diseases of annual plants caused by the Pseudomonas syringae species complex. J Gen Plant Pathol 81:331–350

    Article  Google Scholar 

  • Leães FL, Velho RV, Caldas DGG, Ritter AC, Tsai SM, Brandelli A (2016) Expression of essential genes for biosynthesis of antimicrobial peptides of Bacillus is modulated by inactivated cells of target microorganisms. Res Microbiol 167:83–89

    Article  PubMed  Google Scholar 

  • Leclère V, Bechet M, Adam A, Guez JS et al (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee KD, Gray EJ, Mabood F, Jung WJ, Charles T, Clark SR, Ly A, Souleimanov A, Zhou X, Smith DL (2009) The class IId bacteriocin thuricin-17 increases plant growth. Planta 229:747–755

    Article  CAS  PubMed  Google Scholar 

  • Li M, Mou H, Kong Q, Zhang T, Fu X (2020a) Bacteriostatic effect of lipopeptides from Bacillus subtilis N-2 on Pseudomonas putida using soybean meal by solid-state fermentation. Marine Life Sci Technol:1–9

    Google Scholar 

  • Li Z, Song C, Yi Y, Kuipers OP (2020b) Characterization of plant growth-promoting rhizobacteria from perennial ryegrass and genome mining of novel antimicrobial gene clusters. BMC Genomics 21:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Song C, Yi Y, Kuipers OP (2020c) Characterization of plant growth-promoting rhizobacteria from perennial ryegrass and genome mining of novel antimicrobial gene clusters. BMC Genomics 21:1–11

    Google Scholar 

  • Liu Q, Lin J, Wang W, Huang H, Li S (2015) Production of surfactin isoforms by Bacillus subtilis BS-37 and its applicability to enhanced oil recovery under laboratory conditions. Biochem Eng J 93:31–37

    Article  CAS  Google Scholar 

  • Lucy M, Reed E, Glick BR (2004) Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek 86(1):1–25

    Article  CAS  PubMed  Google Scholar 

  • Lv J, Da R, Cheng Y, Tuo X, Wei J, Jiang K, Han B (2020) Mechanism of antibacterial activity of Bacillus amyloliquefaciens C-1 lipopeptide toward anaerobic Clostridium difficile. BioMed Res Int 2020

    Google Scholar 

  • Marx R, Stein T, Entian KD, Glaser SJ (2001) Structure of the Bacillus subtilis peptide antibiotic subtilosin A determined by 1H-NMR and matrix assisted laser desorption/ionization time-of-flight mass spectrometry. J Protein Chem 20(6):501–506

    Article  CAS  PubMed  Google Scholar 

  • Mizumoto S, Hirai M, Shoda M (2007) Enhanced iturin A production by Bacillus subtilis and its effect on suppression of the plant pathogen Rhizoctonia solani. Appl Microbiol Biotechnol 75:1267–1274

    Article  CAS  PubMed  Google Scholar 

  • Moyne AL, Shelby R, Cleveland TE, Tuzun S (2001) Bacillomycin D: an iturin with antifungal activity against Aspergillus flavus. J Appl Microbiol 90(4):622–629

    Article  CAS  PubMed  Google Scholar 

  • Myo EM, Liu B, Ma J, Shi L, Jiang M, Zhang K, Ge B (2019) Evaluation of Bacillus velezensis NKG-2 for bio-control activities against fungal diseases and potential plant growth promotion. Biol Control 134:23–31

    Article  Google Scholar 

  • Nair D, Vanuopadath M, Nair BG, Pai JG, Nair SS (2016) Identification and characterization of a library of surfactins and fengycins from a marine endophytic Bacillus sp. J Basic Microbiol 56(11):1159–1172

    Article  CAS  PubMed  Google Scholar 

  • Nikiforova OA, Klykov S, Volski A, Dicks LM, Chikindas ML (2016) Subtilosin A production by Bacillus subtilis KATMIRA1933 and colony morphology are influenced by the growth medium. Annals Microbiol 66:661–671

    Article  CAS  Google Scholar 

  • Ongena M, Jacques PT (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16: 115–125

    Google Scholar 

  • Ongena M, Jourdan E, Adam A, et al (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090

    Google Scholar 

  • Papagianni M (2003) Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotechnol Adv 21(6):465–499

    Article  CAS  PubMed  Google Scholar 

  • Peng W, Zhong J, Yang J, Ren Y, Xu T, Xiao S, Zhou J, Tan H (2014) The artificial neural network approach based on uniform design to optimize the fed-batch fermentation condition: application to the production of iturin A. Microbial Cell Factories 13:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Penha RO, Vandenberghe LP, Faulds C, Soccol VT, Soccol CR (2020) Bacillus lipopeptides as powerful pest control agents for a more sustainable and healthy agriculture: recent studies and innovations. Planta 251:1–15

    Article  Google Scholar 

  • Qiao JQ, Wu HJ, Huo R, Gao XW, Borriss R (2014) Stimulation of plant growth and biocontrol by Bacillus amyloliquefaciens subsp. plantarum FZB42 engineered for improved action. Chem Biol Technol Agric 1(1):12

    Article  Google Scholar 

  • Raddadi N, Belaouis A, Tamagnini I, Hansen BM, Hendriksen NB, Boudabous A, Cherif A, Daffonchio D (2009) Characterization of polyvalent and safe Bacillus thuringiensis strains with potential use for biocontrol. J Phytopathol 49:293–303

    CAS  Google Scholar 

  • Riley MA, Wertz JE (2002) Bacteriocin diversity: ecological and evolutionary perspectives. Biochimie 84:357–364

    Article  CAS  PubMed  Google Scholar 

  • Rojas-Solis D, Vences-Guzmán MÁ, Sohlenkamp C et al (2020) Antifungal and plant growth–promoting bacillus under saline stress modify their membrane composition. J Soil Sci Plant Nutr. https://doi.org/10.1007/s42729-020-00246-6

  • Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening J-W, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Pérez-García A (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of bacillus subtilis toward podosphaera fusca. Mol Plant-Microbe Interact 20:430–440

    Article  CAS  PubMed  Google Scholar 

  • Roongsawang N, Washio K, Morikawa MJI (2011) Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. Mol Diversity Preservation Int 12:141–172

    CAS  Google Scholar 

  • Roslan HA, Husaini A, Lihan S, Kota MF (2020) Partial Purification and Characterization of Antifungal Peptides Produced by Bacillus amyloliquefaciens PEP3 Against Phytophthora capsici. Appl Sci Eng Progress 13:56–66

    Article  Google Scholar 

  • Ruiz VV, Gamboa GTG, Rodríguez EDV, Cota FIP, Santoyo G, de los Santos Villalobos S (2020) Lipopéptidos producidos por agentes de control biológico del género Bacillus: revisión de herramientas analíticas utilizadas para su estudio. Revista mexicana de ciencias agrícolas 11(2):419–432

    Article  Google Scholar 

  • Sabaté DC, Petroselli G, Erra-Balsells R, Audisio MC, Brandan CP (2020) Beneficial effect of Bacillus sp P12 on soil biological activities and pathogen control in common bean. Biol Control 141:104131

    Article  Google Scholar 

  • Santoyo G, Orozco-Mosqueda MDC, Govindappa M (2012) Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of bacillus and pseudomonas: a review. Biocontrol Sci Tech 22(8):855–872

    Article  Google Scholar 

  • Santoyo G, Moreno-Hagelsieb G, del Carmen Orozco-Mosqueda M, Glick BR (2016) Plant growth-promoting bacterial endophytes. Microbiol Res 183:92–99

    Article  CAS  PubMed  Google Scholar 

  • Santoyo G, Equihua A, Flores A, Sepulveda E, Valencia-Cantero E, Sanchez-Yañez JM, de los Santos-Villalobos, S. (2019) Plant growth promotion by ACC deaminase-producing bacilli under salt stress conditions. In: Bacilli and agrobiotechnology: phytostimulation and biocontrol. Springer, Cham, pp 81–95

    Chapter  Google Scholar 

  • Saxena AK, Kumar M, Chakdar H, Anuroopa N, Bagyaraj D (2019) Bacillus species in soil as a natural resource for plant health and nutrition. J Appl Microbiol. https://doi.org/10.1111/jam.14506

  • Seel W, Flegler A, Zunabovic-Pichler M, Lipski A (2018) Increased isoprenoid quinone concentration modulates membrane fluidity in listeria monocytogenes at low growth temperatures. J Bacteriol 200(13):e00148–e00118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Zhu X, Lu Y, Zhao H, Lu F, Lu Z (2018) Improving iturin A production of Bacillus amyloliquefaciens by genome shuffling and its inhibition against saccharomyces cerevisiae in orange juice. Front Microbiol 9

    Google Scholar 

  • Shu H-Y, Lin G-H, Wu Y-C, Tschen JS-M, Liu S-T (2002) Amino acids activated by fengycin synthetase FenE. Biochem Biophysical Res Commun 292:789–793

    Article  CAS  Google Scholar 

  • Stachelhaus T, Marahiel MA (1995) Modular structure of genes encoding multifunctional peptide synthetases required for non-ribosomal peptide synthesis. FEMS Microbiol Lett 125:3–14

    Article  CAS  PubMed  Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857

    Article  CAS  PubMed  Google Scholar 

  • Tajbakhsh M, Karimi A, Fallah F, Akhavan M (2017) Overview of ribosomal and non-ribosomal antimicrobial peptides produced by Gram positive bacteria. Cellular Mol Biol 63:20–32

    Article  CAS  Google Scholar 

  • Tan K, Zhou M, Jedrzejczak RP, Wu R, Higuera RA, Borek D, Babnigg G, Joachimiak A (2020) Structures of teixobactin-producing nonribosomal peptide synthetase condensation and adenylation domains. Curr Res Structural Biol 2:14–24

    Article  Google Scholar 

  • Tsuge K, Ano T, Hirai M, Nakamura Y, Shoda M (1999) The genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production. Antimicrobial Agents Chemotherapy 43:2183–2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuge K, Akiyama T, Shoda M (2001) Cloning, sequencing, and characterization of the iturin A operon. Am Soc Microbiol 183:6265–6273

    CAS  Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356

    Article  PubMed  PubMed Central  Google Scholar 

  • Villarreal-Delgado MF, Villa-Rodríguez ED, Cira-Chávez LA, Estrada-Alvarado MI, Parra-Cota FI, de los Santos-Villalobos, S. (2018) The genus Bacillus as a biological control agent and its implications in the agricultural biosecurity. Mex J Phytopathol 36:95–130

    Google Scholar 

  • Wang J, Liu J, Wang X, Yao J, Yu Z (2004) Application of electrospray ionization mass spectrometry in rapid typing of fengycin homologues produced by Bacillus subtilis. Lett Appl Microbiol 39:98–102

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Mandic-Mulec I, Zhang H, Liu Y, Sun X, Feng H, Xun W, Zhang N, Shen Q, Zhang R (2019) Antibiotic Bacillomycin D affects iron acquisition and biofilm formation in bacillus velezensis through a Btr-mediated FeuABC-dependent pathway. Cell Rep 29:1192–1202.e5

    Article  CAS  PubMed  Google Scholar 

  • Yao S, Gao X, Fuchsbauer N, et al (2003) Cloning, sequencing, and characterization of the genetic region relevant to biosynthesis of the lipopeptides iturin A and surfactin in Bacillus subtilis. Curr Microbiol 47:272–277

    Google Scholar 

  • Yuan J, Li B, Zhang N, Waseem R, Shen Q, Huang Q (2012) Production of Bacillomycin- and Macrolactin-type antibiotics by bacillus amyloliquefaciens NJN-6 for suppressing Soilborne plant pathogens. J Agric Food Chem 60:2976–2981

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Kuipers OP (2016) Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. BMC Genomics 17:882

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao P, Quan C, Wang Y, Wang J, Fan S (2014) Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f sp spinaciae. J Basic Microbiol 54:448–456

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

G.S. thanks Consejo Nacional de Ciencia y Tecnología, México (Grant number: A1-S-15956) and Coordinación de la Investigación Científica-UMSNH (2020) for the financial support to research projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Santoyo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khatoon, Z., del Carmen Orozco-Mosqueda, M., Huang, S., Nascimento, F.X., Santoyo, G. (2022). Peptide Antibiotics Produced by Bacillus Species: First Line of Attack in the Biocontrol of Plant Diseases. In: Islam, M.T., Rahman, M., Pandey, P. (eds) Bacilli in Agrobiotechnology. Bacilli in Climate Resilient Agriculture and Bioprospecting. Springer, Cham. https://doi.org/10.1007/978-3-030-85465-2_2

Download citation

Publish with us

Policies and ethics