Skip to main content

Structural Properties of Biosurfactants of Lab

  • Chapter
  • First Online:
Biosurfactants of Lactic Acid Bacteria

Part of the book series: SpringerBriefs in Microbiology ((BRIEFSMICROBIOL))

Abstract

Unlike surfactants of chemical origin, which are characterized according to their nature, biosurfactants are generally characterized mostly by their chemical composition and origin. Biosurfactants are composed of hydrophilic moiety (polar, head) containing of amino acids, peptides, polysaccharides; and hydrophobic moiety (nonpolar tail) composed of fatty acids. The main cause that confines its commercialization is the inadequate knowledge of structural composition, so as to limiting its application as pharmaceuticals and therapeutic agents. Generally, biosurfactants obtained from LAB are found as multicomponent mixtures composed of polysaccharides, lipids, phosphate groups, and proteins. Structural properties are vital to design customized biosurfactants based on specific applications. Still, only inadequate information is available in the literature related to the biosurfactants derived from the LAB. Development in advanced chromatographic techniques, enhanced purification of the biosurfactant, and production from simpler medium could lead to determine structurally purified biosurfactants for future applications in food and therapeutics formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillussubtilis: Isolation, characterization and its inhibition of fibrin clot formation. Biochem Bioph Res Co 31(3):488–494

    Google Scholar 

  • Asselineau C, Asselineau J (1978) Trehalose-containing glycolipids. Prog Chem Fats Lipids 16:59–99

    Google Scholar 

  • Banat IM (1995) Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresource Technol 51(1):1–12

    Google Scholar 

  • Busscher HJ, Van der Mei HC (1997) Physico-chemical interactions in initial microbial adhesion and relevance for biofilm formation. Adv Dent Res 11(1):24–32

    Google Scholar 

  • Cirigliano MC, Carman GM (1984) Isolation of a bioemulsifier from Candida lipolytica. Appl Environ Microb 48(4):747–750

    Google Scholar 

  • Cooper DG, Goldenberg BG (1983) Surface-active agents from two Bacillus species. Appl Environ Microbiol 53(2):224–229

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cooper DG, Paddock DA (1983) Torulopsis petrophilum and surface activity. Appl Environ Microbiol 46(6):1426–1429

    Google Scholar 

  • Cooper DG, Paddock DA (1984) Production of a biosurfactant from Torulopsis bombicola. Appl Environ Microbiol 47(1):173–176

    PubMed Central  CAS  PubMed  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61(1):47–64

    PubMed Central  CAS  PubMed  Google Scholar 

  • Falagas ME, Makris GC (2009) Probiotic bacteria and biosurfactants for nosocomial infection control: a hypothesis. J Hosp Infec 71(4):301–306

    Google Scholar 

  • Goŀek P, Bednarski W, Brzozowski B, Dziuba B (2009) The obtaining and properties of biosurfactants synthesized by bacteria of the genus Lactobacillus. Ann Microbiol 59(1):119–126

    Article  Google Scholar 

  • Gudiña EJ, Teixeira JA, Rodrigues LR (2010) Isolation and functional characterization of a biosurfactant produced by Lactobacillus paracasei. Colloids Surf B 76(1):298–304

    Google Scholar 

  • Hommel R, Stiiwer O, Stuber W, Haferburg D, Kleber HP (1987) Production of water-soluble surface-active exolipids by Torulopsis apicola. Appl Microbiol Biote 26(3):199–205

    Google Scholar 

  • Käppeli O, Finnerty WR (1979) Partition of alkane by an extracellular vesicle derived from hexadecane-grown Acinetobacter. J Bacteriol 140(2):707–712

    PubMed Central  PubMed  Google Scholar 

  • Kitamoto D, Yanagishita H, Shinbo T, Nakane T, Kamisawa C, Nakahara T (1993) Surface active properties and antimicrobial activities of mannosylerythritol lipids as biosurfactants produced by Candida antarctica. J Biotechnol 29(1):91–96

    Article  CAS  Google Scholar 

  • Kitamoto D, Akiba S, Hioki C, Tabuchi T (1990) Extracellular accumulation of mannosylerythritol lipids by a strain of Candida antarctica. Agric Biol Chem 54(1):31–36

    Google Scholar 

  • Kretschmer A, Bock H, Wagner F (1982) Chemical and physical characterization of interfacial-active lipids from Rhodococcus erythropolis grown on n-alkanes. Appl Environ Microb 44(4):864–870

    Google Scholar 

  • Kuyukina MS, Ivshina IB, Philp JC, Christofi N, Dunbar SA, Ritchkova MI (2001) Recovery of Rhodococcus biosurfactants using methyl tertiary-butyl ether extraction. J Microbiol Methods 46(2):149–156

    Article  CAS  PubMed  Google Scholar 

  • Madhu AN, Prapulla SG (2014) Evaluation and functional characterization of a biosurfactant produced by Lactobacillus plantarum CFR 2194. Appl Biochem Biotechnol 172(4):1777–1789

    Article  CAS  PubMed  Google Scholar 

  • Maneerat S, Bamba T, Harada K, Kobayashi A, Yamada H, Kawai F (2006) A novel crude oil emulsifier excreted in the culture supernatant of a marine bacterium, Myroides sp. strain SM1. Appl Microbiol Biotechnol 70(2):254–259

    Article  CAS  PubMed  Google Scholar 

  • Matsuyama T, Murakami T, Fujita M, Fujita S, Yano I (1986) Extracellular vesicle formation and biosurfactant production by Serratia marcescens. Microbiol 132(4):865–875

    Google Scholar 

  • Morita T, Fukuoka T, Imura T, Kitamoto D (2012) Formation of the two novel glycolipid biosurfactants, mannosylribitol lipid and mannosylarabitol lipid, by Pseudozyma parantarctica JCM 11752T. Appl Microbiol Biotechnol 96(4):931–938

    Google Scholar 

  • Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D (2006) Discovery of Pseudozyma rugulosa NBRC 10877 as a novel producer of the glycolipid biosurfactants, mannosylerythritol lipids, based on rDNA sequence. Appl Microbiol Biotechnol 73(2):305–313

    Article  CAS  PubMed  Google Scholar 

  • Müller MM, Kügler JH, Henkel M, Gerlitzki M, Hörmann B, Pöhnlein M, … Hausmann R (2012) Rhamnolipids—next generation surfactants? J Biotechnol 162(4):366–380

    Google Scholar 

  • Nitschke M, Costa SG, Contiero J (2005) Rhamnolipid surfactants: an update on the general aspects of these remarkable biomolecules. Biotechnol Prog 21(6):1593–1600

    Article  CAS  PubMed  Google Scholar 

  • Parra JL, Guinea J, Manresa MA, Robert M, Mercade ME, Comelles F, Bosch MP (1989) Chemical characterization and physicochemical behavior of biosurfactants. J Am Oil Chem Soc 66(1):141–145

    Google Scholar 

  • Partovi M, Lotfabad TB, Roostaazad R, Bahmaei M, Tayyebi S (2013) Management of soybean oil refinery wastes through recycling them for producing biosurfactant using Pseudomonas aeruginosa MR01. World J Microbiol Biotechnol 29(6):1039–1047

    Google Scholar 

  • Perfumo A, Smyth TJP, Marchant R, Banat IM (2010) Production and roles of biosurfactants and bioemulsifiers in accessing hydrophobic substrates. In Handbook of hydrocarbon and lipid microbiology, Springer, Berlin Heidelberg, pp 1501–1512

    Google Scholar 

  • Rapp P, Bock H, Wray V, Wagner F (1979) Formation, isolation and characterization of trehalose dimycolates from Rhodococcus erythropolis grown on n-alkanes. Microbiol 115(2):491–503

    Google Scholar 

  • Robert M, Mercade ME, Bosch MP, Parra JL, Espuny MJ, Manresa MA, Guinea J (1989) Effect of the carbon source on biosurfactant production byPseudomonas aeruginosa 44T1. Biotechnol Lett 11(12):871–874

    Article  CAS  Google Scholar 

  • Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57(4):609–618

    Google Scholar 

  • Rodrigues L, Van der Mei H, Teixeira JA, Oliveira R (2004) Biosurfactant from Lactococcus lactis 53 inhibits microbial adhesion on silicone rubber. Appl Microbiol Biotechnol 66(3):306–311

    Google Scholar 

  • Rosenberg E, Ron EZ (1999) High-and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52(2):154–162

    Article  CAS  PubMed  Google Scholar 

  • Saharan BS, Grewal A, Kumar P (2014) Biotechnological production of polyhydroxyalkanoates: a review on trends and latest developments. Chinese J Biol 2014

    Google Scholar 

  • Saharan BS, Sahu RK, Sharma D (2011) A review on biosurfactants: fermentation, current developments and perspectives. Genetic Eng Biotechnol J 2011(1):1–14

    Google Scholar 

  • Saravanakumari P, Mani K (2010) Structural characterization of a novel xylolipid biosurfactant from Lactococcus lactis and analysis of antibacterial activity against multi-drug resistant pathogens. Bioresour Technol 101(22):8851–8854

    Article  CAS  PubMed  Google Scholar 

  • Sánchez M, Teruel JA, Espuny MJ, Marqués A, Aranda FJ, Manresa Á, Ortiz A (2006) Modulation of the physical properties of dielaidoylphosphatidylethanolamine membranes by a dirhamnolipid biosurfactant produced by Pseudomonas aeruginosa. Chem Phys Lipids 142(1):118–127

    Google Scholar 

  • Sauvageau J, Ryan J, Lagutin K, Sims IM, Stocker BL, Timmer MS (2012) Isolation and structural characterisation of the major glycolipids from Lactobacillus plantarum. Carbohydr Res 357:151–156

    Article  CAS  PubMed  Google Scholar 

  • Shabtai YOSSEF, Gutnick DL (1985) Exocellular esterase and emulsan release from the cell surface of Acinetobacter calcoaceticus. J Bacteriol 161(3):1176–1181

    Google Scholar 

  • Sharma D, Saharan BS, Chauhan N, Procha S, Lal S (2015a) Isolation and functional characterization of novel biosurfactant produced by Enterococcus faecium. SpringerPlus 4(1):4

    Article  PubMed Central  PubMed  Google Scholar 

  • Sharma D, Saharan BS, Chauhan N, Procha S, Lal S (2015b) Isolation and functional characterization of novel biosurfactant produced by Enterococcus faecium. SpringerPlus 4(1):4

    Article  PubMed Central  PubMed  Google Scholar 

  • Sharma D, Saharan BS (2014) Simultaneous Production of biosurfactants and bacteriocins by probiotic Lactobacillus casei MRTL3. Int J Microbiol 2014

    Google Scholar 

  • Sharma D, Saharan BS, Chauhan N, Bansal A, Procha S (2014) Production and structural characterization of Lactobacillus helveticus derived biosurfactant. Sci World J 2014

    Google Scholar 

  • Singh M, Saini VS, Adhikari DK, Desai JD, Sista VR (1990) Production of bioemulsifier by a SCP-producing strain of Candida tropicalis during hydrocarbon fermentation. Biotechnol Lett 12(10):743–746

    Google Scholar 

  • Syldatk C, Lang S, Wagner F, Wray V, Witte L (1985) Chemical and physical characterization of four interfacial-active rhamnolipids from Pseudomonas spec. DSM 2874 grown on n-alkanes. Zeitschrift für Naturforschung C 40(1–2):51–60

    Google Scholar 

  • Tahmourespour A, Salehi R, Kermanshahi RK (2011) Lactobacillus acidophilus-derived biosurfactant effect on gtfB and gtfC expression level in Streptococcus mutans biofilm cells. Braz J Microbiol 42(1):330–339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thavasi R, Jayalakshmi S, Banat IM (2011) Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil. Bioresour Technol 102(3):3366–3372

    Article  CAS  PubMed  Google Scholar 

  • Thavasi R, Jayalakshmi S, Balasubramanian T, Banat IM (2008) Production and characterization of a glycolipid biosurfactant from Bacillus megaterium using economically cheaper sources. World J Microbiol Biot 24(7):917–925

    Google Scholar 

  • Toribio J, Escalante AE, Caballero-Mellado J, González-González A, Zavala S, Souza V, Soberón-Chávez G (2011) Characterization of a novel biosurfactant producing Pseudomonas koreensis lineage that is endemic to Cuatro Ciénegas Basin. Syst Appl Microbiol 34(7):531–535

    Google Scholar 

  • Van Hoogmoed CG, Van der Mei HC, Busscher HJ (2004) The influence of biosurfactants released by S. mitis BMS on the adhesion of pioneer strains and cariogenic bacteria. Biofouling 20(6):261–267

    Google Scholar 

  • Vecino X, Barbosa-Pereira L, Devesa-Rey R, Cruz JM, Moldes AB (2015) Optimization of extraction conditions and fatty acid characterization of Lactobacillus pentosus cell-bound biosurfactant/bioemulsifier. J Sci Food Agric 95(2):313–320

    Article  CAS  PubMed  Google Scholar 

  • Vecino X, Devesa-Rey R, Moldes AB, Cruz JM (2014) Formulation of an alginate-vineyard pruning waste composite as a new eco-friendly adsorbent to remove micronutrients from agroindustrial effluents. Chemosphere 111: 24–31

    Google Scholar 

  • Velraeds MM, Van der Mei HC, Reid G, Busscher HJ (1996) Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates. Appl Environ Microbiol 62(6):1958–1963

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepansh Sharma .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Sharma, D., Saharan, B.S., Kapil, S. (2016). Structural Properties of Biosurfactants of Lab. In: Biosurfactants of Lactic Acid Bacteria. SpringerBriefs in Microbiology. Springer, Cham. https://doi.org/10.1007/978-3-319-26215-4_4

Download citation

Publish with us

Policies and ethics