Skip to main content
Log in

Water retention and controlled release of KCl by using microwave-assisted green synthesis of xanthan gum-cl-poly (acrylic acid)/AgNPs hydrogel nanocomposite

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A novel ecofriendly microwave-assisted xanthan gum-cl-poly (acrylic acid)/AgNPs (MW-XG-cl-pAA/AgNPs) hydrogel nanocomposite has been synthesized by using free radical graft polymerization method. Xanthan gum (XG) acts as stabilizer to produce stable uniform AgNPs in the presence of stem extract of Nepeta leucophylla inside the polymer network. The evidence of incorporation of AgNPs inside the polymer matrix, grafting of acrylic acid (AA) onto backbone XG, surface morphology, crystallinity, thermal properties and effective loading of KCl inside the synthesized hydrogel nanocomposite are attained by using various analytical techniques, such as ultraviolet–visible, Fourier transform infrared, field emission scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction and thermogravimetric analysis. The influence of incorporation of silver nanoparticles inside polymer matrix is also examined. Moreover, in order to explore the swelling and releasing kinetic behavior of synthesized nanocomposite mathematical modeling (Fick’s law) has been used here. Here, the resulting nanocomposite is used for the application of water retention potential of different soil samples and controlled release of KCl. It is evident from the studies that the synthesized nanocomposite acts as water reservoir in different types of soil and maintains the moisture for more than 60 days. Further, the high value of initial diffusion coefficient (\( 5.458 \times 10^{ - 6}\,{\text{m}}^{2} /{\text{h}} \)) as compared to late diffusion coefficient (\( 1.453 \times 10^{ - 7} {\text{m}}^{2} /{\text{h}} \)) represents the controlled release of KCl. Hence, the synthesized nanocomposite with controlled release and decent water retention can prevent the serious environmental hazards.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Welch RM, Graham RD (1999) A new paradigm for world agriculture: meeting human needs. Productive, sustainable, nutritious. Food Crops Res 60:1–10. https://doi.org/10.1016/S0378-4290(98)00129-4

    Article  Google Scholar 

  2. Yang YC, Zhang M, Li Y et al (2012) Improving the quality of polymer-coated urea with recycled plastic, proper additives, and large tablets. J Agric Food Chem 60:11229–11237. https://doi.org/10.1021/jf302813g

    Article  CAS  PubMed  Google Scholar 

  3. Marschner P (2002) Mineral nutrition of higher plants, 2nd edn. Academic Press, Cambridge

    Google Scholar 

  4. Wu L, Liu M (2008) Preparation and properties of chitosan-coated NPK compound fertilizer with controlled-release and water-retention. Carbohydr Polym 72:240–247. https://doi.org/10.1016/j.carbpol.2007.08.020

    Article  CAS  Google Scholar 

  5. Guo M, Liu M, Zhan F, Wu L (2005) Preparation and properties of a slow-release membrane-encapsulated urea fertilizer with superabsorbent and moisture preservation. Ind Eng Chem Res 44:4206–4211. https://doi.org/10.1021/ie0489406

    Article  CAS  Google Scholar 

  6. Zheng T, Liang Y, Ye S, He Z (2009) Superabsorbent hydrogels as carriers for the controlled-release of urea: experiments and a mathematical model describing the release rate. Biosyst Eng 102:44–50. https://doi.org/10.1016/j.biosystemseng.2008.09.027

    Article  Google Scholar 

  7. Sharma R, Kalia S, Kaith BS et al (2017) Ggum-poly(itaconic acid) based superabsorbents via two-step free-radical aqueous polymerization for environmental and antibacterial applications. J Polym Environ 25:176–191. https://doi.org/10.1007/s10924-016-0796-1

    Article  CAS  Google Scholar 

  8. Sharma K, Kaith BS, Kumar V et al (2014) Water retention and dye adsorption behavior of Gg-cl-poly(acrylic acid-aniline) based conductive hydrogels. Geoderma 232–234:45–55. https://doi.org/10.1016/j.geoderma.2014.04.035

    Article  CAS  Google Scholar 

  9. Olad A, Zebhi H, Salari D et al (2018) Water retention and slow release studies of a salep-based hydrogel nanocomposite reinforced with montmorillonite clay. New J Chem. https://doi.org/10.1039/c7nj03667a

    Article  Google Scholar 

  10. Rashidzadeh A, Olad A, Reyhanitabar A (2015) Hydrogel/clinoptilolite nanocomposite-coated fertilizer: swelling, water-retention and slow-release fertilizer properties. Polym Bull 72:2667–2684. https://doi.org/10.1007/s00289-015-1428-y

    Article  CAS  Google Scholar 

  11. Chang C, Duan B, Cai J, Zhang L (2010) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100. https://doi.org/10.1016/j.eurpolymj.2009.04.033

    Article  CAS  Google Scholar 

  12. Zhang Y, Tao L, Li S, Wei Y (2011) Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules. Biomacromol 12:2894–2901. https://doi.org/10.1021/bm200423f

    Article  CAS  Google Scholar 

  13. Singh B, Pal L (2008) Development of sterculia gum based wound dressings for use in drug delivery. Eur Polym J 44:3222–3230. https://doi.org/10.1016/j.eurpolymj.2008.07.013

    Article  CAS  Google Scholar 

  14. Mohana Raju K, Padmanabha Raju M (2001) Synthesis of novel superabsorbing copolymers for agricultural and horticultural applications. Polym Int 50:946–951. https://doi.org/10.1002/pi.721

    Article  Google Scholar 

  15. Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267. https://doi.org/10.1016/j.eurpolymj.2014.11.024

    Article  CAS  Google Scholar 

  16. Tang Q, Sun X, Li Q et al (2009) Synthesis of polyacrylate polyethylene glycol interpenetrating network hydrogel and its sorption of heavy-metal ions. Sci Technol Adv Mater. https://doi.org/10.1088/1468-6996/10/1/015002

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kosemund K, Schlatter H, Ochsenhirt JL et al (2009) Safety evaluation of superabsorbent baby diapers. Regul Toxicol Pharmacol 53:81–89. https://doi.org/10.1016/j.yrtph.2008.10.005

    Article  CAS  PubMed  Google Scholar 

  18. Mittal H, Jindal R, Kaith BS et al (2014) Synthesis and flocculation properties of gum ghatti and poly(acrylamide-co-acrylonitrile) based biodegradable hydrogels. Carbohydr Polym 114:321–329. https://doi.org/10.1016/j.carbpol.2014.08.029

    Article  CAS  PubMed  Google Scholar 

  19. Singh J, Dhaliwal AS (2018) Synthesis, characterization and swelling behavior of silver nanoparticles containing superabsorbent based on grafted copolymer of polyacrylic acid/Guar gum. Vacuum 157:51–60. https://doi.org/10.1016/j.vacuum.2018.08.017

    Article  CAS  Google Scholar 

  20. Ghorai S, Sarkar A, Raoufi M et al (2014) Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica. ACS Appl Mater Interfaces 6:4766–4777. https://doi.org/10.1021/am4055657

    Article  CAS  PubMed  Google Scholar 

  21. Saboktakin MR, Maharramov A, Ramazanov MA (2009) pH-sensitive starch hydrogels via free radical graft copolymerization, synthesis and properties. Carbohydr Polym 77:634–638. https://doi.org/10.1016/j.carbpol.2009.02.004

    Article  CAS  Google Scholar 

  22. Park S, Murthy PSK, Park S et al (2011) Preparation of silver nanoparticle-containing semi-interpenetrating network hydrogels composed of pluronic and poly(acrylamide) with antibacterial property. J Ind Eng Chem 17:293–297. https://doi.org/10.1016/j.jiec.2011.02.026

    Article  CAS  Google Scholar 

  23. Dispenza C, Sabatino MA, Niconov A et al (2012) E-beam crosslinked, biocompatible functional hydrogels incorporating polyaniline nanoparticles. Radiat Phys Chem 81:1456–1459. https://doi.org/10.1016/j.radphyschem.2011.11.043

    Article  CAS  Google Scholar 

  24. Cass P, Knower W, Pereeia E et al (2010) Preparation of hydrogels via ultrasonic polymerization. Ultrason Sonochem 17:326–332. https://doi.org/10.1016/j.ultsonch.2009.08.008

    Article  CAS  PubMed  Google Scholar 

  25. Jabbari E, Karbasi S (2004) Swelling behavior and cell viability of dehydrothermally crosslinked poly(vinyl alcohol) hydrogel grafted with N-vinyl pyrrolidone or acrylic acid using γ-radiation. J Appl Polym Sci 91:2862–2868. https://doi.org/10.1002/app.13494

    Article  CAS  Google Scholar 

  26. Cook JP, Goodall GW, Khutoryanskaya OV, Khutoryanskiy VV (2012) Microwave-assisted hydrogel synthesis: a new method for crosslinking polymers in aqueous solutions. Macromol Rapid Commun 33:332–336. https://doi.org/10.1002/marc.201100742

    Article  CAS  PubMed  Google Scholar 

  27. Shi S, Liu L (2006) Microwave-assisted preparation of temperature sensitive poly(N-isopropylacrylamide) hydrogels in poly(ethylene oxide)-600. J Appl Polym Sci 102:4177–4184. https://doi.org/10.1002/app.24519

    Article  CAS  Google Scholar 

  28. Makhado E, Pandey S, Nomngongo PN, Ramontja J (2017) Fast microwave-assisted green synthesis of xanthan gum grafted acrylic acid for enhanced methylene blue dye removal from aqueous solution. Carbohydr Polym 176:315–326. https://doi.org/10.1016/j.carbpol.2017.08.093

    Article  CAS  PubMed  Google Scholar 

  29. Ghimici L, Nichifor M (2010) Novel biodegradable flocculating agents based on cationic amphiphilic polysaccharides. Bioresour Technol 101:8549–8554. https://doi.org/10.1016/j.biortech.2010.06.049

    Article  CAS  PubMed  Google Scholar 

  30. Ni B, Liu M, Lü S et al (2011) Environmentally friendly slow-release nitrogen fertilizer. J Agric Food Chem 59:10169–10175. https://doi.org/10.1021/jf202131z

    Article  CAS  PubMed  Google Scholar 

  31. Rashidzadeh A, Olad A (2014) Slow-released NPK fertilizer encapsulated by NaAlg-g-poly(AA-co-AAm)/MMT superabsorbent nanocomposite. Carbohydr Polym 114:269–278. https://doi.org/10.1016/j.carbpol.2014.08.010

    Article  CAS  PubMed  Google Scholar 

  32. Sukriti Kaith BS, Jindal R (2017) Controlled biofertilizer release kinetics and moisture retention in gum xanthan-based IPN. Iran Polym J (Engl Ed) 26:563–577. https://doi.org/10.1007/s13726-017-0539-8

    Article  CAS  Google Scholar 

  33. Sharma J, Sukriti Kaith BS, Bhatti MS (2017) Fabrication of biodegradable superabsorbent using RSM design for controlled release of KNO3. J Polym Environ. https://doi.org/10.1007/s10924-017-0959-8

    Article  Google Scholar 

  34. Elbarbary AM, Ghobashy MM (2017) Controlled release fertilizers using superabsorbent hydrogel prepared by gamma radiation. Radiochim Acta 105:865–876. https://doi.org/10.1515/ract-2016-2679

    Article  CAS  Google Scholar 

  35. Wu CS (2008) Controlled release evaluation of bacterial fertilizer using polymer composites as matrix. J Control Release 132:42–48. https://doi.org/10.1016/j.jconrel.2008.08.015

    Article  CAS  PubMed  Google Scholar 

  36. Bajpai AK, Giri A (2002) Swelling dynamics of a ternary interpenetrating polymer network (IPN) and controlled release of potassium nitrate as a model agrochemical. J Macromol Sci Pure Appl Chem 39(A):75–102. https://doi.org/10.1081/MA-120006520

    Article  Google Scholar 

  37. Qi Y, Yang M, Xu W et al (2017) Natural polysaccharides-modified graphene oxide for adsorption of organic dyes from aqueous solutions. J Colloid Interface Sci 486:84–96. https://doi.org/10.1016/j.jcis.2016.09.058

    Article  CAS  PubMed  Google Scholar 

  38. Singh J, Dhaliwal AS (2018) Plasmon induced photocatalytic degradation of methylene blue dye using biosynthesized silver nanoparticles as photocatalyst. Environ Technol. https://doi.org/10.1080/09593330.2018.1540663

    Article  PubMed  Google Scholar 

  39. Sukriti Kaith BS, Jindal R et al (2017) Biodegradable-stimuli sensitive xanthan gum based hydrogel: evaluation of antibacterial activity and controlled agro-chemical release. React Funct Polym 120:1–13. https://doi.org/10.1016/j.reactfunctpolym.2017.08.012

    Article  CAS  Google Scholar 

  40. Song S, Wang Z, Qian Y et al (2012) The release rate of curcumin from calcium alginate beads regulated by food emulsifiers. J Agric Food Chem 60:4388–4395. https://doi.org/10.1021/jf3006883

    Article  CAS  PubMed  Google Scholar 

  41. He Y, Wu Z, Tu L et al (2015) Encapsulation and characterization of slow-release microbial fertilizer from the composites of bentonite and alginate. Appl Clay Sci 109–110:68–75. https://doi.org/10.1016/j.clay.2015.02.001

    Article  CAS  Google Scholar 

  42. Singh B, Sharma N, Chauhan N (2007) Synthesis, characterization and swelling studies of pH responsive psyllium and methacrylamide based hydrogels for the use in colon specific drug delivery. Carbohydr Polym 69:631–643. https://doi.org/10.1016/j.carbpol.2007.01.020

    Article  CAS  Google Scholar 

  43. Ritger PL, Peppas NA (1987) A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release 5:37–42. https://doi.org/10.1016/0168-3659(87)90035-6

    Article  CAS  Google Scholar 

  44. Mahdavinia GR, Mousavi SB, Karimi F et al (2009) Synthesis of porous poly(acrylamide) hydrogels using calcium carbonate and its application for slow release of potassium nitrate. Express Polym Lett 3:279–285. https://doi.org/10.3144/expresspolymlett.2009.35

    Article  CAS  Google Scholar 

  45. Sharma K, Kumar V, Kaith BS et al (2015) Synthesis of biodegradable Gum ghatti based poly(methacrylic acid-aniline) conducting IPN hydrogel for controlled release of amoxicillin trihydrate. Ind Eng Chem Res 54:1982–1991. https://doi.org/10.1021/ie5044743

    Article  CAS  Google Scholar 

  46. Kulkarni AR, Soppimath KS, Aminabhavi TM et al (1999) Urea-formaldehyde crosslinked starch and guar gum matrices for encapsulation of natural liquid pesticide [Azadirachta Indica a. Juss. (neem) seed oil]: swelling and release kinetics. J Appl Polym Sci 73:2437–2446. https://doi.org/10.1002/(SICI)1097-4628(19990919)73:12%3c2437:AID-APP12%3e3.0.CO;2-7

    Article  CAS  Google Scholar 

  47. Singh J, Dhaliwal AS (2018) Novel green synthesis and characterization of the antioxidant activity of silver nanoparticles prepared from Nepeta leucophylla root extract. Anal Lett. https://doi.org/10.1080/00032719.2018.1454936

    Article  Google Scholar 

  48. Lubkowski K, Smorowska A, Grzmil B, Kozłowska A (2015) Controlled-release fertilizer prepared using a biodegradable aliphatic copolyester of poly(butylene succinate) and dimerized fatty acid. J Agric Food Chem 63:2597–2605. https://doi.org/10.1021/acs.jafc.5b00518

    Article  CAS  PubMed  Google Scholar 

  49. Grundy M, Ye Z (2014) Cross-linked polymers of diethynylbenzene and phenylacetylene as new polymer precursors for high-yield synthesis of high-performance nanoporous activated carbons for supercapacitors, hydrogen storage, and CO2 capture. J Mater Chem A 2:20316–20330. https://doi.org/10.1039/c4ta04038d

    Article  CAS  Google Scholar 

  50. Kaith BS, Sharma K, Kumar V et al (2014) Fabrication and characterization of gum ghatti-polymethacrylic acid based electrically conductive hydrogels. Synth Metals 187:61–67. https://doi.org/10.1016/j.synthmet.2013.10.021

    Article  CAS  Google Scholar 

  51. Sharma R, Kalia S, Kaith BS, Srivastava MK (2016) Synthesis of guar gum-acrylic acid graft copolymers based biodegradable adsorbents for cationic dye removal. Int J Plast Technol 20:294–314. https://doi.org/10.1007/s12588-016-9156-1

    Article  CAS  Google Scholar 

  52. Sharma R, Kaith BS, Kalia S et al (2015) Biodegradable and conducting hydrogels based on Guar gum polysaccharide for antibacterial and dye removal applications. J Environ Manag 162:37–45. https://doi.org/10.1016/j.jenvman.2015.07.044

    Article  CAS  Google Scholar 

  53. Bajpai J, Bajpai AK, Mishra S (2006) Dynamics of controlled release of potassium nitrate from a highly swelling binary biopolymeric blend of alginate and pectin. J Macromol Sci Part A 43:165–186. https://doi.org/10.1080/10601320500406040

    Article  CAS  Google Scholar 

  54. Mittal H, Jindal R, Kaith BS et al (2015) Flocculation and adsorption properties of biodegradable gum-ghatti-grafted poly(acrylamide-co-methacrylic acid) hydrogels. Carbohydr Polym 115:617–628. https://doi.org/10.1016/j.carbpol.2014.09.026

    Article  CAS  PubMed  Google Scholar 

  55. Singh B, Sharma V (2014) Correlation study of structural parameters of bioadhesive polymers in designing a tunable drug delivery system. Langmuir 30:8580–8591. https://doi.org/10.1021/la501529f

    Article  CAS  PubMed  Google Scholar 

  56. Guo Y, Liu Z, Zhang M et al (2018) Synthesis and application of urea-formaldehyde for manufacturing a controlled-release potassium fertilizer. Ind Eng Chem Res 57:1593–1606. https://doi.org/10.1021/acs.iecr.7b04629

    Article  CAS  Google Scholar 

  57. Davidson D, Gu FX (2012) Materials for sustained and controlled release of nutrients and molecules to support plant growth. J Agric Food Chem 60:870–876. https://doi.org/10.1021/jf204092h

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the MHRD (Govt. of India), New Delhi, and Sant Longowal Institute of Engineering and Technology, Longowal (SLIET), for providing the essential research facilities. The author (Jagdeep Singh) is also very thankful to the Sophisticated Analytical Instrumentation Facility (SAIF), Panjab University, Chandigarh, for FE-SEM analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Dhaliwal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Dhaliwal, A.S. Water retention and controlled release of KCl by using microwave-assisted green synthesis of xanthan gum-cl-poly (acrylic acid)/AgNPs hydrogel nanocomposite. Polym. Bull. 77, 4867–4893 (2020). https://doi.org/10.1007/s00289-019-02990-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-02990-x

Keywords

Navigation