Skip to main content

Nanotechnologies in the Health Management of Aquatic Animal Diseases

  • Chapter
  • First Online:
Nanotechnological Approaches to the Advancement of Innovations in Aquaculture

Abstract

Aquaculture is a multimillion-dollar business. The aquaculture industry has been suffering huge economic losses due to outbreaks of microbial agents, including viral and bacterial pathogens, which have been a major constraint on aquaculture and its sustainability. Traditionally, antimicrobial agents and other disinfectant chemicals are mostly used to control microbial diseases in aquaculture. Various chemical disinfectants and conventional antimicrobial agents against infections are always associated with problems such as the development of multidrug resistance and adverse side effects in fishes. Over the last few decades, nanotechnology has emerged as one of the most promising technologies to control both viral and bacterial diseases of fish, shrimp, and other crustaceans in aquaculture. Nanoparticles are being used either as immunotherapeutic agents in the treatment of aquatic infectious diseases by site-specific and target-oriented drug and gene delivery, vaccination, or as diagnostic tools. The purpose of this chapter is to review the recent developments and applications of nanosized materials for the treatment of aquatic viral and bacterial infections. Such nanomedicines could revolutionize treatment in aquaculture to produce pathogen-free livestock production without the fear of antimicrobial resistance development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas WT (2021) Advantages and prospective challenges of nanotechnology applications in fish cultures: a comparative review. Environ Sci Pollut Res 28(7):7669–7690. https://doi.org/10.1007/s11356-020-12166-0

    Article  Google Scholar 

  • Abdullah A, Ramly R, Ridzwan MM, Sudirwan F, Abas A, Ahmad K, Murni M, Kua BC (2018) First detection of tilapia lake virus (TiLV) in wild river carp (Barbonymus schwanenfeldii) at Timah Tasoh Lake. Malaysia J Fish Dis 41(9):1459–1462

    Article  PubMed  Google Scholar 

  • Abou El-Nour KMM, Eftaiha AA, Al-Warthan A, Ammar RAA (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3(3):135–140. https://doi.org/10.1016/j.arabjc.2010.04.008

    Article  CAS  Google Scholar 

  • Adamek M, Oschilewski A, Wohlsein P, Jung-Schroers V, Teitge F, Dawson A, Gela D, Piackova V, Kocour M, Adamek J, Bergmann SM (2017) Experimental infections of different carp strains with the carp edema virus (CEV) give insights into the infection biology of the virus and indicate possible solutions to problems caused by koi sleepy disease (KSD) in carp aquaculture. Vet Res 48(1):1–16

    Article  Google Scholar 

  • Adams A (2019) Progress, challenges and opportunities in fish vaccine development. Fish & Shellfish Immunol 90:210–214. https://doi.org/10.1016/j.fsi.2019.04.066

    Article  CAS  Google Scholar 

  • Adomako M et al (2012) Oral DNA vaccination of rainbow trout, Oncorhynchus mykiss (Walbaum), against infectious haematopoietic necrosis virus using PLGA [Poly(D,L-Lactic-Co-Glycolic Acid)] nanoparticles. J Fish Dis 35(3):203–214. https://doi.org/10.1111/j.1365-2761.2011.01338.x

    Article  CAS  PubMed  Google Scholar 

  • Amal MNA, Koh CB, Nurliyana M, Suhaiba M, Nor-Amalina Z, Santha S, Diyana-Nadhirah KP, Yusof MT, Ina-Salwany MY, Zamri-Saad M (2018) A case of natural co-infection of Tilapia Lake Virus and Aeromonas veronii in a Malaysian red hybrid tilapia (Oreochromis niloticus× O. mossambicus) farm experiencing high mortality. Aquaculture 485:12–16

    Article  Google Scholar 

  • Andrade TP, Redman RM, Lightner DV (2008) Evaluation of the preservation of shrimp samples with Davidson’s AFA fixative for infectious myonecrosis virus (IMNV) in situ hybridization. Aquaculture 278(1-4):179–183

    Article  CAS  Google Scholar 

  • Arcier JM, Herman F, Lightner DV, Redman RM, Mari J, Bonami JR (1999) A viral disease associated with mortalities in hatchery-reared postlarvae of the giant freshwater prawn Macrobrachium rosenbergii. Dis Aquat Org 38(3):177–181

    Article  Google Scholar 

  • Arimoto M, Mushiake K, Mizuta Y, Nakai T, Muroge K, Furusawa I (1992) Detection of striped jack nervous necrosis virus (SJNNV) by enzyme-linked immunosorbent assay (ELISA). Fish Pathol 27(4):191–195

    Article  Google Scholar 

  • Azad IS, Shekhar MS, Thirunavukkarasu AR, Poornima M, Kailasam M, Rajan JJS, Ali SA, Abraham M, Ravichandran P (2005) Nodavirus infection causes mortalities in hatchery produced larvae of Lates calcarifer: first report from India. Dis Aquat Org 63(2-3):113–118

    Article  CAS  Google Scholar 

  • Bacharach E, Mishra N, Briese T, Zody MC, Kembou Tsofack JE, Zamostiano R, Berkowitz A, Ng J, Nitido A, Corvelo A, Toussaint NC (2016) Characterization of a novel orthomyxo-like virus causing mass die-offs of tilapia. MBio 7(2):e00431–e00416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker JA, Tweedie A, Rimmer A, Landos M, Lintermans M, Whittington RJ (2014) Incursions of Cyprinid herpesvirus 2 in goldfish populations in Australia despite quarantine practices. Aquaculture 432:53–59

    Article  Google Scholar 

  • Bedekar MK, Kole S (2022) Development of Nano-Conjugated DNA Vaccine Against Edwardsiellosis Disease in Fish. Methods Mol Biol (Clifton, NJ) 2411:195–204. https://doi.org/10.1007/978-1-0716-1888-2_11

    Article  Google Scholar 

  • Behera BK, Pradhan PK, Swaminathan TR, Sood N, Paria P, Das A, Verma DK, Kumar R, Yadav MK, Dev AK, Parida PK (2018) Emergence of tilapia lake virus associated with mortalities of farmed Nile tilapia Oreochromis niloticus (Linnaeus 1758) in India. Aquaculture 484:168–174

    Article  Google Scholar 

  • Belcher CR, Young PR (1998) Colourimetric PCR-based detection of monodon baculovirus in whole Penaeus monodon postlarvae. J Virol Methods 74(1):21–29

    Article  CAS  PubMed  Google Scholar 

  • Belton B, Thilsted SH (2014) Fisheries in transition: Food and nutrition security implications for the global South. Glob Food Sec 3(1):59–66

    Article  Google Scholar 

  • Belton B, Little DC, Zhang W, Edwards P, Skladany M, Thilsted SH (2020) Farming fish in the sea will not nourish the world. Nat Commun 11(1):1–8

    Article  Google Scholar 

  • Béné C, Arthur R, Norbury H, Allison EH, Beveridge M, Bush S, Campling L, Leschen W, Little D, Squires D, Thilsted SH (2016) Contribution of fisheries and aquaculture to food security and poverty reduction: assessing the current evidence. World Dev 79:177–196

    Article  Google Scholar 

  • Boitard PM, Baud M, Labrut S, de Boisséson C, Jamin M, Bigarré L (2016) First detection of Cyprinid Herpesvirus 2 (Cy HV-2) in goldfish (Carassius auratus) in France. J Fish Dis 39(6):673–680

    Article  CAS  PubMed  Google Scholar 

  • Bonami JR, Widada JS (2011) Viral diseases of the giant fresh water prawn Macrobrachium rosenbergii: a review. J Invertebr Pathol 106(1):131–142

    Article  PubMed  Google Scholar 

  • Bonami JR, Mari J, Poulos BT, Lightner DV (1995) Characterization of hepatopancreatic parvo-like virus, a second unusual parvovirus pathogenic for penaeid shrimps. J Gen Virol 76(4):813–817

    Article  CAS  PubMed  Google Scholar 

  • Bonami JR, Shi Z, Qian D, Sri Widada J (2005) White tail disease of the giant freshwater prawn, Macrobrachium rosenbergii: separation of the associated virions and characterization of MrNV as a new type of nodavirus. J Fish Dis 28(1):23–31

    Article  CAS  PubMed  Google Scholar 

  • Bondad-Reantaso MG, Subasinghe RP, Arthur JR, Ogawa K, Chinabut S, Adlard R, Tan Z, Shariff M (2005) Disease and health management in Asian aquaculture. Vet Parasitol 132(3-4):249–272

    Article  PubMed  Google Scholar 

  • Breuil B, Pepin JFP, Boscher S, Thiery R (2002) Experimental vertical transmission of nodavirus from broodfish to eggs and larvae of the sea bass, Dicentrarchus labrax (L.). J Fish Dis 25:697–702

    Article  Google Scholar 

  • Brock JA, Lightner DV (1990) Diseases of crustacean. In: Disease of Marine Animals, vol 3. Biologische Anstalt Helgoland, Kinne, Humberg, pp 245–424

    Google Scholar 

  • Brock JA (1983) Diseases (infectious and non-infectious), metazoan parasites, predators and public health considerations in Macrobrachium culture and fisheries. CRC Handbook Maricult 1:329–370

    Google Scholar 

  • Castric J, Thiery R, Jeffroy J, De Kinkelin P, Raymond JC (2001) Sea bream Sparus aurata, an asymptomatic contagious fish host for nodavirus. Dis Aquat Org 47(1):33–38

    Article  CAS  Google Scholar 

  • Catap, E.S. and Traviña, R.D., 2005. Experimental transmission of hepatopancreatic parvovirus (HPV) infection in Penaeus monodon postlarvae. In Fifth Symposium on Symposium on Diseases in Asian Aquaculture, held in Gold Coast, Australia on 24-28 November 2002 (pp. 415-420). Fish Health Section, Asian Fisheries Society.

    Google Scholar 

  • Chen SN, Lo CF, Lui SM, Kou GH (1989) ‘The first identification of Penaeus monodon baculovirus (MBV) in cultured sand shrimp, Metapenaeus ensis. Bull Eur Assoc Fish Pathol 9:62–64

    Google Scholar 

  • Costa JZ, Thompson KD (2016) Understanding the interaction between Betanodavirus and its host for the development of prophylactic measures for viral encephalopathy and retinopathy. Fish Shellfish Immunol 53:35–49

    Article  CAS  PubMed  Google Scholar 

  • da Silva SMBC, da Silva ADR, Lavander HD, Chaves TCB, Peixoto S, Gálvez AO, Coimbra MRM (2016) Vertical transmission of infectious myonecrosis virus in Litopenaeus vannamei. Aquaculture 459:216–222

    Article  Google Scholar 

  • Dantas MD, Chavante SF, Teixeira DI, Lima JP, Lanza DC (2015) Analysis of new isolates reveals new genome organization and a hypervariable region in infectious myonecrosis virus (IMNV). Virus research 203:66–71

    Google Scholar 

  • Davison AJ, Kurobe T, Gatherer D, Cunningham C, Korf I, Fukuda H, Hedrick RP, Waltzek TB (2013) Comparative genomics of carp herpesviruses. J Virol 87(5):2908–2922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del-Pozo J, Mishra N, Kabuusu R, Cheetham S, Eldar A, Bacharach E, Lipkin WI, Ferguson HW (2017) Syncytial hepatitis of tilapia (Oreochromis niloticus L.) is associated with orthomyxovirus-like virions in hepatocytes. Vet Pathol 54(1):164–170

    Article  CAS  PubMed  Google Scholar 

  • Dong HT, Senapin S, Gangnonngiw W, Nguyen VV, Rodkhum C, Debnath PP, Delamare-Deboutteville J, Mohan CV (2020) Experimental infection reveals transmission of tilapia lake virus (TiLV) from tilapia broodstock to their reproductive organs and fertilized eggs. Aquaculture 515:734541

    Article  CAS  Google Scholar 

  • Doszpoly A, Benko M, Csaba G, Dan A, Lang M, Harrach B (2011) Introduction of the family Alloherpesviridae: the first molecular detection of herpesviruses of cyprinid fish in Hungary. Magyar Allatorvosok Lapja 133(3):174–181

    Google Scholar 

  • Embregts CWE, Forlenza M (2016) Oral vaccination of fish: Lessons from humans and veterinary species. Dev Comp Immunol 64:118–137. https://doi.org/10.1016/j.dci.2016.03.024

    Article  CAS  PubMed  Google Scholar 

  • Escobedo-Bonilla CM, Alday-Sanz V, Wille M, Sorgeloos P, Pensaert MB, Nauwynck HJ (2008) A review on the morphology, molecular characterization, morphogenesis and pathogenesis of white spot syndrome virus. J Fish Dis 31(1):1–18

    Article  CAS  PubMed  Google Scholar 

  • Eyngor M, Zamostiano R, Kembou Tsofack JE, Berkowitz A, Bercovier H, Tinman S, Lev M, Hurvitz A, Galeotti M, Bacharach E, Eldar A (2014) Identification of a novel RNA virus lethal to tilapia. J Clin Microbiol 52(12):4137–4146

    Article  PubMed  PubMed Central  Google Scholar 

  • Fathi M, Dickson C, Dickson M, Leschen W, Baily J, Muir F, Ulrich K, Weidmann M (2017) Identification of Tilapia Lake Virus in Egypt in Nile tilapia affected by ‘summer mortality’syndrome. Aquaculture 473:430–432

    Article  Google Scholar 

  • Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (2005) Totiviridae. In: Virus taxonomy: Classification and nomenclature of viruses. Elsevier, San Francisco, CA, pp 571–580). Eighth Report of the International Committee on the Taxonomy of Viruses

    Google Scholar 

  • Ferguson HW, Kabuusu R, Beltran S, Reyes E, Lince JA, del Pozo J (2014) Syncytial hepatitis of farmed tilapia, Oreochromis niloticus (L.): a case report. J Fish Dis 37(6):583–589

    Article  CAS  PubMed  Google Scholar 

  • Fichi G, Susini F, Cocumelli C, Cersini A, Salvadori M, Guarducci M, Cardeti G (2016) New detection of Cyprinid herpesvirus 2 in mass mortality event of Carassius carassius (L.), in Italy. J Fish Dis 39(12):1523–1527

    Article  CAS  PubMed  Google Scholar 

  • Flegel TW (1997) Major viral diseases of the black tiger prawn (Penaeus monodon) in Thailand. World J Microbiol Biotechnol 13(4):433–442

    Article  Google Scholar 

  • Flegel TW (2006) Detection of major penaeid shrimp viruses in Asia, a historical perspective with emphasis on Thailand. Aquaculture 258(1-4):1–33

    Article  Google Scholar 

  • Flegel TW, Nielsen L, Thamavit V, Kongtim S, Pasharawipas T (2004) Presence of multiple viruses in non-diseased, cultivated shrimp at harvest. Aquaculture 240(1-4):55–68

    Article  Google Scholar 

  • Gangnonngiw W, Laisutisan K, Sriurairatana S, Senapin S, Chuchird N, Limsuwan C, Chaivisuthangkura P, Flegel TW (2010) Monodon baculovirus (MBV) infects the freshwater prawn Macrobrachium rosenbergii cultivated in Thailand. Virus Res 148(1-2):24–30

    Article  CAS  PubMed  Google Scholar 

  • Girisha SK, Kushala KB, Nithin MS, Puneeth TG, Naveen Kumar BT, Vinay TN, Suresh T, Ajay SK, Venugopal MN, Ramesh KS (2021) First report of the infectious spleen and kidney necrosis virus (ISKNV) infection in ornamental fishes in India. Transbound Emerg Dis 68(2):964–972

    Article  CAS  PubMed  Google Scholar 

  • Girisha SK, Puneeth TG, Nithin MS, Kumar BN, Ajay SK, Vinay TN, Suresh T, Venugopal MN, Ramesh KS (2020) Red sea bream iridovirus disease (RSIVD) outbreak in Asian seabass (Lates calcarifer) cultured in open estuarine cages along the west coast of India: First report. Aquaculture 520:734712

    Article  CAS  Google Scholar 

  • Go J, Whittington R (2006) Experimental transmission and virulence of a megalocytivirus (Family Iridoviridae) of dwarf gourami (Colisa lalia) from Asia in Murray cod (Maccullochella peelii peelii) in Australia. Aquaculture 258(1-4):140–149

    Article  Google Scholar 

  • Goodwin AE, Khoo L, LaPatra SE, Bonar C, Key DW, Garner M, Lee MV, Hanson L (2006) Goldfish hematopoietic necrosis herpesvirus (cyprinid herpesvirus 2) in the USA: molecular confirmation of isolates from diseased fish. J Aquat Anim Health 18(1):11–18

    Article  Google Scholar 

  • Goodwin AE, Sadler J, Merry GE, Marecaux EN (2009) Herpesviral haematopoietic necrosis virus (CyHV-2) infection: case studies from commercial goldfish farms. J Fish Dis 32(3):271–278

    Article  CAS  PubMed  Google Scholar 

  • Grotmol S, Totland GK (2000) Surface disinfection of Atlantic halibut Hippoglossus hippoglossus eggs with ozonated sea-water inactivates nodavirus and increases survival of the larvae. Dis Aquat Org 39(2):89–96

    Article  CAS  Google Scholar 

  • Grotmol S, Bergh Ø, Totland GK (1999) Transmission of viral encephalopathy and retinopathy (VER) to yolk-sac larvae of the Atlantic halibut Hippoglossus hippoglossus: occurrence of nodavirus in various organs and a possible route of infection. Dis Aquat Org 36(2):95–106

    Article  CAS  Google Scholar 

  • Hameed AS, Yoganandhan K, Widada JS, Bonami JR (2004) Studies on the occurrence of Macrobrachium rosenbergii nodavirus and extra small virus-like particles associated with white tail disease of M. rosenbergii in India by RT-PCR detection. Aquaculture 238(1-4):127–133

    Article  Google Scholar 

  • Hanson L, Dishon A, Kotler M (2011) Herpesviruses that infect fish. Viruses 3(11):2160–2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao Z et al (2016) Establishment of droplet digital PCR assay for the rapid detection of cyprinid herpesvirus 2. Chinese Veterinary Science/Zhongguo Shouyi Kexue 46(2):167–173

    CAS  Google Scholar 

  • He JG, Deng M, Weng SP, Li Z, Zhou SY, Long QX, Wang XZ, Chan SM (2001) Complete genome analysis of the mandarin fish infectious spleen and kidney necrosis iridovirus. Virology 291(1):126–139

    Article  CAS  PubMed  Google Scholar 

  • He JG, Zeng K, Weng SP, Chan SM (2002) Experimental transmission, pathogenicity and physical–chemical properties of infectious spleen and kidney necrosis virus (ISKNV). Aquaculture 204(1-2):11–24

    Article  CAS  Google Scholar 

  • Heyerdahl LW et al (2018) Innovative vaccine delivery strategies in response to a cholera outbreak in the challenging context of Lake Chilwa. A rapid qualitative assessment. Vaccine 36(44):6491–6496. https://doi.org/10.1016/j.vaccine.2017.10.108

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu Q, Li H, Wang L, Gu H, Fan C (2018) DNA nanotechnology-enabled drug delivery systems. Chem Rev 119(10):6459–6506

    Article  PubMed  Google Scholar 

  • Huang X et al (2021) Oral Probiotic Vaccine Expressing Koi Herpesvirus (KHV) ORF81 Protein Delivered by Chitosan-Alginate Capsules Is a Promising Strategy for Mass Oral Vaccination of Carps against KHV Infection. J Virol 95(12):e00415. https://doi.org/10.1128/jvi.00415-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ICTV, 2018. Virus Taxonomy: 2018b Release. International Committee on Taxonomy of Viruses. https://talk.ictvonline.org/taxonomy

    Google Scholar 

  • Jaemwimol P, Rawiwan P, Tattiyapong P, Saengnual P, Kamlangdee A, Surachetpong W (2018) Susceptibility of important warm water fish species to tilapia lake virus (TiLV) infection. Aquaculture 497:462–468

    Article  CAS  Google Scholar 

  • Jansen MD, Dong HT, Mohan CV (2019) Tilapia lake virus: a threat to the global tilapia industry? Rev Aquac 11(3):725–739

    Article  Google Scholar 

  • Jeffery KR, Bateman K, Bayley A, Feist SW, Hulland J, Longshaw C, Stone D, Woolford G, Way K (2007) Isolation of a cyprinid herpesvirus 2 from goldfish, Carassius auratus (L.), in the UK. J Fish Dis 30(11):649–656

    Article  CAS  PubMed  Google Scholar 

  • Jeong KH, Kim HJ, Kim HJ (2020) Current status and future directions of fish vaccines employing virus-like particles. Fish Shellfish Immunol 100:49–57. https://doi.org/10.1016/j.fsi.2020.02.060

    Article  CAS  PubMed  Google Scholar 

  • Jeong JB, Kim HY, Jun LJ, Lyu JH, Park NG, Kim JK, Do Jeong H (2008) Outbreaks and risks of infectious spleen and kidney necrosis virus disease in freshwater ornamental fishes. Dis Aquat Org 78(3):209–215

    Article  CAS  Google Scholar 

  • Ji J, Torrealba D, Ruyra À, Roher N (2015) Nanodelivery Systems as New Tools for Immunostimulant or Vaccine Administration: Targeting the Fish Immune System. Biology 4(4):664–696. https://doi.org/10.3390/biology4040664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson PT, Lightner DV (1988) Rod-shaped nuclear viruses of crustaceans: gut-infecting species. Dis Aquat Org 5:123–141

    Article  Google Scholar 

  • Jung SJ, Miyazaki T (1995) Herpesviral haematopoietic necrosis of goldfish, Carassius auratus (L.). J Fish Dis 18(3):211–220

    Article  Google Scholar 

  • Jung-Schroers V, Adamek M, Wohlsein P, Wolter J, Wedekind H, Steinhagen D (2016) First outbreak of an infection with infectious spleen and kidney necrosis virus (ISKNV) in ornamental fish in Germany. Dis Aquat Org 119(3):239–244

    Article  CAS  Google Scholar 

  • Karunasagar I, Karunasagar I (1998) Disease problems affecting cultured penaeid shrimp in India. Fish Pathol 33(4):413–419

    Article  Google Scholar 

  • Kawakami H, Nakajima K (2002) Cultured fish species affected by red sea bream iridoviral disease from 1996 to 2000. Fish Pathol 37(1):45–47

    Article  Google Scholar 

  • Kayansamruaj P, Areechon N, Unajak S (2020) Development of fish vaccine in Southeast Asia: A challenge for the sustainability of SE Asia aquaculture. Fish Shellfish Immunol 103:73–87. https://doi.org/10.1016/j.fsi.2020.04.031

    Article  CAS  PubMed  Google Scholar 

  • Kennedy DA, Kurath G, Brito IL, Purcell MK, Read AF, Winton JR, Wargo AR (2016) Potential drivers of virulence evolution in aquaculture. Evol Appl 9(2):344–354

    Article  PubMed  PubMed Central  Google Scholar 

  • Kole S, Qadiri SSN, Shin SM, Kim WS, Lee J, Jung SJ (2019a) Nanoencapsulation of inactivated-viral vaccine using chitosan nanoparticles: Evaluation of its protective efficacy and immune modulatory effects in olive flounder (Paralichthys olivaceus) against viral haemorrhagic septicaemia virus (VHSV) infection. Fish Shellfish Immunol 91:136–147. https://doi.org/10.1016/j.fsi.2019.05.017

    Article  CAS  PubMed  Google Scholar 

  • Kole S, Qadiri SSN, Shin SM, Kim WS, Lee J, Jung SJ (2019b) PLGA encapsulated inactivated-viral vaccine: Formulation and evaluation of its protective efficacy against viral haemorrhagic septicaemia virus (VHSV) infection in olive flounder (Paralichthys olivaceus) vaccinated by mucosal delivery routes. Vaccine 37(7):973–983. https://doi.org/10.1016/j.vaccine.2018.12.063

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Khar S, Dwivedi S, Sharma SK, Sharma H (2015) An overview of fisheries and aquaculture in India. Agro Economist Int J 2(2):1

    Article  Google Scholar 

  • Kurita J, Nakajima K (2012) Megalocytiviruses. Viruses 4(4):521–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • La Fauce KA, Elliman J, Owens L (2007) Molecular characterisation of hepatopancreatic parvovirus (PmergDNV) from Australian Penaeus merguiensis. Virology 362(2):397–403

    Article  PubMed  Google Scholar 

  • Leobert D, Lavilla-Pitogo CR, Villar CBR, Paner MG, Capulos GC (2008) Prevalence of monodon baculovirus (MBV) in wild shrimp Penaeus monodon in the Philippines. Aquaculture 285(1-4):19–22

    Article  Google Scholar 

  • Lewisch E, Gorgoglione B, Way K, El-Matbouli M (2015) Carp edema virus/Koi sleepy disease: An emerging disease in Central-East Europe. Transbound Emerg Dis 62(1):6–12

    Article  CAS  PubMed  Google Scholar 

  • Li L, Lin SL, Deng L, Liu ZG (2013) Potential use of chitosan nanoparticles for oral delivery of DNA vaccine in black seabream Acanthopagrus schlegelii Bleeker to protect from Vibrio parahaemolyticus. J Fish Dis 36(12):987–995. https://doi.org/10.1111/jfd.12032

    Article  CAS  PubMed  Google Scholar 

  • Liamnimitr P, Thammatorn W, Sonicha U, Tattiyapong P, Surachetpong W (2018) Non-lethal sampling for Tilapia Lake Virus detection by RT-qPCR and cell culture. Aquaculture 486:75–80

    Article  CAS  Google Scholar 

  • Lightner DV, Redman RM (1981) A baculovirus-caused disease of the penaeid shrimp, Penaeus monodon. J Invertebr Pathol 38(2):299–302

    Article  Google Scholar 

  • Lightner DV, Redman RM (1985) A parvo-like virus disease of penaeid shrimp. J Invertebr Pathol 45(1):47–53

    Article  Google Scholar 

  • Lightner DV, Redman RM (1998) Shrimp diseases and current diagnostic methods. Aquaculture 164(1-4):201–220

    Article  Google Scholar 

  • Lightner, D.V., 1996a. A handbook of shrimp pathology and diagnostic procedures for diseases of cultured penaeid shrimp.

    Google Scholar 

  • Lightner DV (1996b) Epizootiology, distribution and the impact on international trade of two penaeid shrimp viruses in the Americas. Revue scientifique et technique (International Office of Epizootics) 15(2):579–601

    CAS  PubMed  Google Scholar 

  • Lightner DV (2011) Virus diseases of farmed shrimp in the Western Hemisphere (the Americas): a review. J Invertebr Pathol 106(1):110–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lightner DV, Pantoja CR, Poulos BT, Tang KFJ, Redman RM, Andreas T, Bonami JR (2004) Infectious myonecrosis (IMN): a new virus disease of Litopenaeus vannamei. Aquaculture 242:353

    Google Scholar 

  • Lightner DV, Redman RM, Bell TA (1983a) Observations on the geographic distribution, pathogenesis and morphology of the baculovirus from Penaeus monodon Fabricius. Aquaculture 32(3-4):209–233

    Article  Google Scholar 

  • Lightner DV, Redman RM, Bell TA (1983c) Infectious hypodermal and hematopoietic necrosis, a newly recognized virus disease of penaeid shrimp. J Invertebr Pathol 42(1):62–70

    Article  CAS  PubMed  Google Scholar 

  • Lightner DV, Redman RM, Bell TA, Brock JA (1983b) Detection of IHHN virus in Penaeus stylirostris and P. vannamei imported into Hawaii. J World Maricult Soc 14(1-4):212–225

    Article  Google Scholar 

  • Luis AIS et al (2021) Ecotoxicity evaluation of polymeric nanoparticles loaded with ascorbic acid for fish nutrition in aquaculture. J Nanobiotechnol 19(1):163. https://doi.org/10.1186/s12951-021-00910-8

    Article  CAS  Google Scholar 

  • Luo D, Liang L, Xie J, Wu X (2014) Development of duplex PCR for detection of Cyprinid herpesvirus 2. Zhongguo Yufang Shouyi Xuebao/Chinese Journal of Preventive Veterinary Medicine 36(5):379–382

    CAS  Google Scholar 

  • Manivannan S, Kennedy B, Karunasagar I, Karunasagar I (2004) Prevalence of monodon baculovirus in wild Metapenaeus species along the southwest coast of India. Aquaculture 232(1-4):63–67

    Google Scholar 

  • Manjanaik B, Umesha KR, Karunasagar I, Karunasagar I (2005) Detection of hepatopancreatic parvovirus (HPV) in wild shrimp from India by nested polymerase chain reaction (PCR). Dis Aquat Org 63(2-3):255–259

    Article  CAS  Google Scholar 

  • Matras M, Stachnik M, Borzym E, Maj-Paluch J, Reichert M (2019) Potential vector species of carp edema virus (CEV). J Fish Dis 42(7):959–964

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsuoka S, Inouye K, Nakajima K (1996) Cultured fish species affected by red sea bream iridoviral disease from 1991 to 1995. Fish Pathol 31(4):233–234

    Article  Google Scholar 

  • Miyazaki T, Isshiki T, Katsuyuki H (2005) Histopathological and electron microscopy studies on sleepy disease of koi Cyprinus carpio koi in Japan. Dis Aquat Org 65(3):197–207

    Article  Google Scholar 

  • Mori KI, Nakai T, Muroga K, Arimoto M, Mushiake K, Furusawa I (1992) Properties of a new virus belonging to Nodaviridae found in larval striped jack (Pseudocaranx dentex) with nervous necrosis. Virology 187(1):368–371

    Article  CAS  PubMed  Google Scholar 

  • Motte E, Yugcha E, Luzardo J, Castro F, Leclercq G, Rodrı́guez, J., Miranda, P., Borja, O., Serrano, J., Terreros, M. and Montalvo, K. (2003) Prevention of IHHNV vertical transmission in the white shrimp Litopenaeus vannamei. Aquaculture 219(1-4):57–70

    Article  Google Scholar 

  • Mugimba KK, Chengula AA, Wamala S, Mwega ED, Kasanga CJ, Byarugaba DK, Mdegela RH, Tal S, Bornstein B, Dishon A, Mutoloki S (2018) Detection of tilapia lake virus (Ti LV) infection by PCR in farmed and wild Nile tilapia (Oreochromis niloticus) from Lake Victoria. J Fish Dis 41(8):1181–1189

    Article  CAS  Google Scholar 

  • Mugimba KK, Tal S, Dubey S, Mutoloki S, Dishon A, Evensen Ø, Munang’andu HM (2019) Gray (Oreochromis niloticus x O. aureus) and red (Oreochromis spp.) Tilapia show equal susceptibility and proinflammatory cytokine responses to experimental Tilapia Lake Virus infection. Viruses 11(10):893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munday BL, Kwang J, Moody N (2002) Betanodavirus infections of teleost fish: a review. J Fish Dis 25(3):127–142

    Article  Google Scholar 

  • Murakami Y (1976) Studies on mass mortality of juvenile carp.-about mass mortality showing edema. Report of Research on Fish Disease.

    Google Scholar 

  • Naim S, Tang KF, Yang M, Lightner DV, Nibert ML (2015) Extended genome sequences of penaeid shrimp infectious myonecrosis virus strains from Brazil and Indonesia. Archives of Virology 160:1579–1583

    Google Scholar 

  • Nakajima K, Maeno Y, Honda A, Yokoyama K, Tooriyama T, Manabe S (1999) Effectiveness of a vaccine against red sea bream iridoviral disease in a field trial test. Dis Aquat Org 36(1):73–75

    Article  CAS  Google Scholar 

  • Nanthini R, Abdul Majeed S, Vimal S, Taju G, Sivakumar S, Santhosh Kumar S, Pillai D, Sneha KG, Rakesh CG, Sahul Hameed AS (2019) In vitro propagation of tilapia lake virus in cell lines developed from Oreochromis mossambicus. J Fish Dis 42(11):1543–1552

    Article  CAS  PubMed  Google Scholar 

  • Nunes AJ, Martins PCC, Gesteira TCV (2004) Carcinicultura ameaçada Rev Panoram. Aquic 83:37–51

    Google Scholar 

  • OIE (2003) Chapter 2.1.7 Viral encephalopathy and retinopathy. pp. 135-141. In: Manual of Diagnostic Tests for Aquatic Animals, 4th edn. Office International des Epizooties, Paris, 358 pp

    Google Scholar 

  • OIE (2006) Manual of diagnostic tests for aquatic animals, 5th edn. Office International des Epizooties, Paris, 358p

    Google Scholar 

  • OIE (2019) Manual of diagnostic tests for aquatic animals. Red Sea Bream Iridoviral Disease. Chapter 2.3.8.

    Google Scholar 

  • OIE (2021) Manual of diagnostic tests for aquatic animals. Infection with Infectious myonecrosis virus. Chapter 2.2.5.

    Google Scholar 

  • Oroojalian F et al (2020) Recent advances in nanotechnology-based drug delivery systems for the kidney. J Control Release 321:442–462. https://doi.org/10.1016/j.jconrel.2020.02.027

    Article  CAS  PubMed  Google Scholar 

  • Owens L, La Fauce K, Juntunen K, Hayakijkosol O, Zeng C (2009) Macrobrachium rosenbergii nodavirus disease (white tail disease) in Australia. Dis Aquat Org 85(3):175–180

    Article  CAS  Google Scholar 

  • Oyamatsu, T., Matoyama, H., Yamamoto, K. and Fukuda, H., 1997. A trial for the detection of carp [Cyprinus carpio] edema virus by using polymerase Chain reaction. Suisanzoshoku (Japan)

    Google Scholar 

  • Pantoja CR, Lightner DV (2000) A non-destructive method based on the polymerase chain reaction for detection of hepatopancreatic parvovirus (HPV) of penaeid shrimp. Dis Aquat Org 39(3):177–182

    Article  CAS  Google Scholar 

  • Paynter JL, Vickers JE, Lester RJG (1992) Experimental transmission of Penaeus monodon-type baculovirus (MBV). Diseases in Asian Aquaculture, Asian Fisheries Society, Manila, pp 97–100

    Google Scholar 

  • Peducasse S, Castric J, Thiery R, Jeffroy J, LeVen A, Laurencin FB (1999) Comparative study of viral encephalopathy and retinopathy in juvenile sea bass Dicentrarchus labrax infected in different ways. Dis Aquat Org 36:11–20

    Article  CAS  Google Scholar 

  • Phromjai J, Boonsaeng V, Withyachumnarnkul B, Flegel TW (2002) Detection of hepatopancreatic parvovirus in Thai shrimp Penaeus monodon by in situ hybridization, dot blot hybridization and PCR amplification. Dis Aquat Org 51(3):227–232

    Article  CAS  Google Scholar 

  • Poulos B, Tang K, Pantoja C, Bonami JR, Lightner D (2006) Purification and characterization of infectious myonecrosis virus of penaeid shrimp. J Gen Virol 87:987–996

    Article  CAS  PubMed  Google Scholar 

  • Poulos BT, Lightner DV (2006) Detection of infectious myonecrosis virus (IMNV) of penaeid shrimp by reverse-transcriptase polymerase chain reaction (RT-PCR). Dis Aquat Org 73(1):69–72

    Article  CAS  Google Scholar 

  • Poulos BT, Lightner DV, Trumper B, Bonami JR (1994) Monoclonal antibodies to a penaeid shrimp parvovirus, infectious hypodermal and hematopoietic necrosis virus (IHHNV). J Aquat Anim Health 6(2):149–154

    Article  Google Scholar 

  • Pulido LLH, Mora CM, Hung AL, Dong HT, Senapin S (2019) Tilapia lake virus (TiLV) from Peru is genetically close to the Israeli isolates. Aquaculture 510:61–65

    Article  Google Scholar 

  • Puneeth TG, Baliga P, Girisha SK, Shekar M, Nithin MS, Suresh T, Kumar BN (2021) Complete genome analysis of a red seabream iridovirus (RSIV) isolated from Asian seabass (Lates calcarifer) in India. Virus Res 291:198199

    Article  CAS  PubMed  Google Scholar 

  • Qian D, Shi Z, Zhang S, Cao Z, Liu W, Li L, Xie Y, Cambournac I, Bonami JR (2003) Extra small virus-like particles (XSV) and nodavirus associated with whitish muscle disease in the giant freshwater prawn, Macrobrachium rosenbergii. J Fish Dis 26(9):521–527

    Article  CAS  PubMed  Google Scholar 

  • Rahman MM, Corteel M, Wille M, Alday-Sanz V, Pensaert MB, Sorgeloos P, Nauwynck HJ (2007) The effect of raising water temperature to 33á░ C in Penaeus vannamei juveniles at different stages of infection with white spot syndrome virus (WSSV). Aquaculture 272(1-4):240–245

    Article  Google Scholar 

  • Rai P, Pradeep B, Karunasagar I, Karunasagar I (2009) Detection of viruses in Penaeus monodon from India showing signs of slow growth syndrome. Aquaculture 289(3-4):231–235

    Article  Google Scholar 

  • Rajkumar T, Taju G, Majeed SA, Sajid MS, Kumar SS, Sivakumar S, Thamizhvanan S, Vimal S, Hameed AS (2017) Ontogenetic changes in the expression of immune related genes in response to immunostimulants and resistance against white spot syndrome virus in Litopenaeus vannamei. Dev Comp Immunol 76:132–142

    Article  CAS  PubMed  Google Scholar 

  • Ramasamy P, Brennan GP, Jayakumar R (1995) A record and prevalence of monodon baculovirus from postlarval Penaeus monodon in Madras, India. Aquaculture 130(2-3):129–135

    Article  Google Scholar 

  • Rehman T, Yin L, Latif MB, Zhou Y, Wang K, Geng Y, Huang X, Chen D, Fang J, Chen Z, Guo H (2020) Current findings on carp edema virus, control challenges, and future outlook. Aquac Int 28(5):2015–2026

    Article  Google Scholar 

  • Rijiravanich A, Browdy CL, Withyachumnarnkul B (2008) Knocking down caspase-3 by RNAi reduces mortality in Pacific white shrimp Penaeus (Litopenaeus) vannamei challenged with a low dose of white-spot syndrome virus. Fish Shellfish Immunol 24(3):308–313

    Article  CAS  PubMed  Google Scholar 

  • Rimmer AE, Becker JA, Tweedie A, Lintermans M, Landos M, Stephens F, Whittington RJ (2015) Detection of dwarf gourami iridovirus (Infectious spleen and kidney necrosis virus) in populations of ornamental fish prior to and after importation into Australia, with the first evidence of infection in domestically farmed Platy (Xiphophorus maculatus). Prev Vet Med 122(1-2):181–194

    Article  PubMed  Google Scholar 

  • Robles-Sikisaka R, Bohonak AJ, McClenaghan LR Jr, Dhar AK (2010) Genetic signature of rapid IHHNV (infectious hypodermal and hematopoietic necrosis virus) expansion in wild penaeus shrimp populations. PLoS One 5(7):e11799

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenberry, B., 2003. World shrimp farming 2003. Shrimps news international.

    Google Scholar 

  • Saedi TA, Moeini H, Tan WS, Yusoff K, Daud HM, Chu KB, Tan SG, Bhassu S (2012) Detection and phylogenetic profiling of nodavirus associated with white tail disease in Malaysian Macrobrachium rosenbergii de Man. Mol Biol Rep 39(5):5785–5790

    Article  CAS  PubMed  Google Scholar 

  • Safeena MP, Tyagi A, Rai P, Karunasagar I, Karunasagar I (2010) Complete nucleic acid sequence of Penaeus monodon densovirus (PmDNV) from India. Virus Res 150(1-2):1–11

    Article  CAS  PubMed  Google Scholar 

  • Sahoo PK, Swaminathan TR, Abraham TJ, Kumar R, Pattanayak S, Mohapatra A, Rath SS, Patra A, Adikesavalu H, Sood N, Pradhan PK (2016) Detection of goldfish haematopoietic necrosis herpes virus (Cyprinid herpesvirus-2) with multi-drug resistant Aeromonas hydrophila infection in goldfish: First evidence of any viral disease outbreak in ornamental freshwater aquaculture farms in India. Acta Trop 161:8–17

    Article  CAS  PubMed  Google Scholar 

  • Sahul Hameed AS, Abdul Majeed S, Vimal S, Madan N, Rajkumar T, Santhoshkumar S, Sivakumar S (2017) Studies on the occurrence of infectious myonecrosis virus in pond-reared Litopenaeus vannamei (Boone, 1931) in India. J Fish Dis 40(12):1823–1830

    Article  CAS  PubMed  Google Scholar 

  • Sahul Hameed AS, Anilkumar M, Raj MS, Jayaraman K (1998) Studies on the pathogenicity of systemic ectodermal and mesodermal baculovirus and its detection in shrimp by immunological methods. Aquaculture 160(1-2):31–45

    Article  CAS  Google Scholar 

  • Saleh M, El-Matbouli M (2015) Rapid detection of Cyprinid herpesvirus-3 (CyHV-3) using a gold nanoparticle-based hybridization assay. J Virol Methods 217:50–54. https://doi.org/10.1016/j.jviromet.2015.02.021

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Martínez JG, Aguirre-Guzmán G, Mejía-Ruíz H (2007) White spot syndrome virus in cultured shrimp: a review. Aquac Res 38(13):1339–1354

    Article  Google Scholar 

  • Sánchez-Paz A (2010) White spot syndrome virus: an overview on an emergent concern. Vet Res 41(6):43

    Article  PubMed  PubMed Central  Google Scholar 

  • Sannino D (2021) Types and Classification of Nanomaterials. In: Tahir MB, Rafique M, Sagir M (eds) Nanotechnology: Trends and Future Applications. Springer Singapore, Singapore, pp 15–38

    Chapter  Google Scholar 

  • Sarathi M, Balasubramanian G, Sivakumar VK, Sahul Hameed AS (2008) Artemia is not a vector for monodon baculovirus (MBV) transmission to Penaeus monodon. J Fish Dis 31(8):631–636

    Article  CAS  PubMed  Google Scholar 

  • Senapin S, Phewsaiya K, Briggs M, Flegel TW (2007) Outbreaks of infectious myonecrosis virus (IMNV) in Indonesia confirmed by genome sequencing and use of an alternative RT-PCR detection method. Aquaculture 266(1-4):32–38

    Article  CAS  Google Scholar 

  • Shi CY, Wang YG, Yang SL, Huang J, Wang QY (2004) The first report of an iridovirus-like agent infection in farmed turbot, Scophthalmus maximus, in China. Aquaculture 236(1-4):11–25

    Article  Google Scholar 

  • Shike H, Dhar AK, Burns JC, Shimizu C, Jousset FX, Klimpel KR, Bergoin M (2000) Infectious hypodermal and hematopoietic necrosis virus of shrimp is related to mosquito brevidensoviruses. Virology 277(1):167–177

    Article  CAS  PubMed  Google Scholar 

  • Shiu JY, Hong JR, Ku CC, Wen CM (2018) Complete genome sequence and phylogenetic analysis of megalocytivirus RSIV-Ku: A natural recombination infectious spleen and kidney necrosis virus. Arch Virol 163(4):1037–1042

    Article  CAS  PubMed  Google Scholar 

  • Skliris GP, Richards RH (1999) Nodavirus isolated from experimentally infected tilapia, Oreochromis mossambicus (Peters). J Fish Dis 22(4):315–318

    Article  Google Scholar 

  • Somamoto T, Nakanishi T (2020) Mucosal delivery of fish vaccines: Local and systemic immunity following mucosal immunisations. Fish Shellfish Immunol 99:199–207. https://doi.org/10.1016/j.fsi.2020.01.005

    Article  CAS  PubMed  Google Scholar 

  • Song JY, Kitamura SI, Jung SJ, Miyadai T, Tanaka S, Fukuda Y, Kim SR, Oh MJ (2008) Genetic variation and geographic distribution of megalocytiviruses. J Microbiol 46(1):29–33

    Article  PubMed  Google Scholar 

  • Stentiford GD, Bonami JR, Alday-Sanz V (2009) A critical review of susceptibility of crustaceans to Taura syndrome, Yellowhead disease and White Spot Disease and implications of inclusion of these diseases in European legislation. Aquaculture 291(1-2):1–17

    Article  Google Scholar 

  • Stentiford GD, Neil DM, Peeler EJ, Shields JD, Small HJ, Flegel TW, Vlak JM, Jones B, Morado F, Moss S, Lotz J (2012) Disease will limit future food supply from the global crustacean fishery and aquaculture sectors. J Invertebr Pathol 110(2):141–157

    Article  CAS  PubMed  Google Scholar 

  • Subramaniam K, Shariff M, Omar AR, Hair-Bejo M (2012) Megalocytivirus infection in fish. Rev Aquac 4(4):221–233

    Article  Google Scholar 

  • Sudhakaran R, Ishaq Ahmed VP, Haribabu P, Mukherjee SC, Sri Widada J, Bonami JR, Sahul Hameed AS (2007) Experimental vertical transmission of Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus (XSV) from brooders to progeny in Macrobrachium rosenbergii and Artemia. J Fish Dis 30(1):27–35

    Article  CAS  PubMed  Google Scholar 

  • Sudhakaran R, Musthaq SS, Haribabu P, Mukherjee SC, Gopal C, Hameed AS (2006a) Experimental transmission of Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus (XSV) in three species of marine shrimp (Penaeus indicus, Penaeus japonicus and Penaeus monodon). Aquaculture 257(1-4):136–141

    Article  Google Scholar 

  • Sudhakaran R, Yoganandhan K, Ahmed VI, Hameed AS (2006b) Artemia as a possible vector for Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus transmission (XSV) to Macrobrachium rosenbergii post-larvae. Dis Aquat Org 70(1-2):161–166

    Article  CAS  Google Scholar 

  • Suganthi G, UMA A, REBECCA G, SARAVANABAVA K (2012) Strain Variations in Monodon Baculovirus (Mbv) Infecting Penaeus Monodon (Tiger Shrimp) in India. CIBTech J Biotechnol 1(1):22–26

    Google Scholar 

  • Sukenda S, Lila G, Zairin M Jr, Angela L, Alimuddin A (2020) Identification of giant gourami iridovirus (GGIV): a new infectious spleen and kidney necrosis virus (ISKNV) from natural outbreak in cultured Osphronemus goramy. Aquac Int 28(3):1069–1082

    Article  CAS  Google Scholar 

  • Sukhumsirichart W, Attasart P, Boonsaeng V, Panyim S (2006) Complete nucleotide sequence and genomic organization of hepatopancreatic parvovirus (HPV) of Penaeus monodon. Virology 346(2):266–277

    Article  CAS  PubMed  Google Scholar 

  • Surachetpong W, Janetanakit T, Nonthabenjawan N, Tattiyapong P, Sirikanchana K, Amonsin A (2017) Outbreaks of tilapia lake virus infection, Thailand, 2015–2016. Emerg Infect Dis 23(6):1031

    Article  PubMed  PubMed Central  Google Scholar 

  • Swaminathan TR, Kumar R, Dharmaratnam A, Basheer VS, Sood N, Pradhan PK, Sanil NK, Vijayagopal P, Jena JK (2016) Emergence of carp edema virus in cultured ornamental koi carp, Cyprinus carpio koi, in India. J Gen Virol 97(12):3392–3399

    Article  CAS  PubMed  Google Scholar 

  • Taengphu S, Sangsuriya P, Phiwsaiya K, Debnath PP, Delamare-Deboutteville J, Mohan CV, Dong HT, Senapin S (2020) Genetic diversity of tilapia lake virus genome segment 1 from 2011 to 2019 and a newly validated semi-nested RT-PCR method. Aquaculture 526:735423

    Article  CAS  Google Scholar 

  • Takahashi Y, Itami T, Kondo M, Maeda M, Fujii R, Tomonaga S, Supamattaya K, Boonyaratpalin S (1994) Electron microscopic evidence of bacilliform virus infection in kuruma shrimp (Penaeus japonicus). Fish Pathol 29(2):121–125

    Article  Google Scholar 

  • Tang KF, Durand SV, White BL, Redman RM, Mohney LL, Lightner DV (2003) Induced resistance to white spot syndrome virus infection in Penaeus stylirostris through pre-infection with infectious hypodermal and hematopoietic necrosis virus—a preliminary study. Aquaculture 216(1-4):19–29

    Article  Google Scholar 

  • Tang KF, Pantoja CR, Lightner DV (2008) Nucleotide sequence of a Madagascar hepatopancreatic parvovirus (HPV) and comparison of genetic variation among geographic isolates. Dis Aquat Org 80(2):105–112

    Article  CAS  Google Scholar 

  • Tang KF, Pantoja CR, Poulos BT, Redman RM, Lightner DV (2005) In situ hybridization demonstrates that Litopenaeus vannamei, L. stylirostris and Penaeus monodon are susceptible to experimental infection with infectious myonecrosis virus (IMNV). Dis Aquat Org 63(2-3):261–265

    Article  Google Scholar 

  • Tang KFJ, Bondad-Reantaso MG, Surachetpong W, Dong HT, Fejzic N, Wang Q, Wajsbrot N, Hao B (2021) Tilapia lake virus disease strategy manual, vol 1220. Food & Agriculture Organisation

    Google Scholar 

  • Tattiyapong P, Dachavichitlead W, Surachetpong W (2017) Experimental infection of Tilapia Lake Virus (TiLV) in Nile tilapia (Oreochromis niloticus) and red tilapia (Oreochromis spp.). Vet Microbiol 207:170–177

    Article  PubMed  Google Scholar 

  • Thangaraj RS, Nithianantham SR, Dharmaratnam A, Kumar R, Pradhan PK, Thangalazhy Gopakumar S, Sood N (2021) Cyprinid herpesvirus-2 (CyHV-2): a comprehensive review. Rev Aquac 13(2):796–821

    Article  Google Scholar 

  • Thilsted SH, Thorne-Lyman A, Webb P, Bogard JR, Subasinghe R, Phillips MJ, Allison EH (2016) Sustaining healthy diets: The role of capture fisheries and aquaculture for improving nutrition in the post-2015 era. Food Policy 61:126–131

    Article  Google Scholar 

  • Thirumalaikumar E et al (2021) Oral delivery of pVAX-OMP and pVAX-hly DNA vaccine using chitosan-tripolyphosphate (Cs-TPP) nanoparticles in Rohu, (Labeo rohita) for protection against Aeromonas hydrophila infection. Fish Shellfish Immunol 115:189–197. https://doi.org/10.1016/j.fsi.2021.06.004

    Article  CAS  PubMed  Google Scholar 

  • Thwaite R et al (2018) Protein Nanoparticles Made of Recombinant Viral Antigens: A Promising Biomaterial for Oral Delivery of Fish Prophylactics. Front Immunol 9:1652. https://doi.org/10.3389/fimmu.2018.01652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umesha RK, Uma A, Otta SK, Karunasagar I, Karunasagar I (2003) Detection by PCR of hepatopancreatic parvovirus (HPV) and other viruses in hatchery-reared Penaeus monodon postlarvae. Dis Aquat Org 57(1-2):141–146

    Article  CAS  Google Scholar 

  • Van Hulten MC, Reijns M, Vermeesch AM, Zandbergen F, Vlak JM (2002) Identification of VP19 and VP15 of white spot syndrome virus (WSSV) and glycosylation status of the WSSV major structural proteins. J Gen Virol 83(1):257–265

    Article  PubMed  Google Scholar 

  • Van Hulten MC, Witteveldt J, Peters S, Kloosterboer N, Tarchini R, Fiers M, Sandbrink H, Lankhorst RK, Vlak JM (2001a) The white spot syndrome virus DNA genome sequence. Virology 286(1):7–22

    Article  PubMed  Google Scholar 

  • Van Hulten MC, Witteveldt J, Snippe M, Vlak JM (2001b) White spot syndrome virus envelope protein VP28 is involved in the systemic infection of shrimp. Virology 285(2):228–233

    Article  PubMed  Google Scholar 

  • Venkatesan C, Vimal S, Hameed ASS (2013) Synthesis and Characterization of Chitosan Tripolyphosphate Nanoparticles and its Encapsulation Efficiency Containing Russell’s Viper Snake Venom. J Biochem Mol Toxicol 27(8):406–411. https://doi.org/10.1002/jbt.21502

    Article  CAS  PubMed  Google Scholar 

  • Verma DK, Sood N, Paria A, Swaminathan TR, Mohan CV, Rajendran KV, Pradhan PK (2022) Reassortment and evolutionary dynamics of tilapia lake virus genomic segments. Virus Res 308:198625

    Article  CAS  PubMed  Google Scholar 

  • Vijayan, K.K., Alavandi, S.V., Rajendran, K.V. and Alagarswami, K., 1995. Prevalence and Histopathology of Monodon Baculovirus (MBV) infection in Penaeus monodon and P. indicus in shrimp farms in the south–east coast of India.

    Google Scholar 

  • Vimal S et al (2014) Delivery of DNA vaccine using chitosan–tripolyphosphate (CS/TPP) nanoparticles in Asian sea bass, Lates calcarifer (Bloch, 1790) for protection against nodavirus infection. Aquaculture 420-421:240–246. https://doi.org/10.1016/j.aquaculture.2013.11.017

    Article  CAS  Google Scholar 

  • Walker PJ, Winton JR (2010) Emerging viral diseases of fish and shrimp. Vet Res 41(6):51

    Article  PubMed  PubMed Central  Google Scholar 

  • Waltzek TB, Kurobe T, Goodwin AE, Hedrick RP (2009) Development of a polymerase chain reaction assay to detect cyprinid herpesvirus 2 in goldfish. J Aquat Anim Health 21(1):60–67

    Article  PubMed  Google Scholar 

  • Wang Q, Ji W, Xu Z (2020) Current use and development of fish vaccines in China. Fish Shellfish Immunol 96:223–234. https://doi.org/10.1016/j.fsi.2019.12.010

    Article  CAS  PubMed  Google Scholar 

  • Wang, C.S., Chang, J.S., Shih, H.H. and Chen, S.N., 2006. RT-PCR amplification and sequence analysis of Macrobrachium rosenbergii nodavirus and extra small virus (XSV) associated with white tail disease of M. rosenbergii (de Man) cultured in Taiwan. GenBank Direct Submission

    Google Scholar 

  • Wang Y, Jehle JA (2009) Nudiviruses and other large, double-stranded circular DNA viruses of invertebrates: new insights on an old topic. J Invertebr Pathol 101(3):187–193

    Article  CAS  PubMed  Google Scholar 

  • Way K, Stone D (2013) Emergence of carp edema virus-like (CEV-like) disease in the UK. CEFAS Finfish News 15:32–34

    Google Scholar 

  • Widada JS, Bonami JR (2004) Characteristics of the monocistronic genome of extra small virus, a virus-like particle associated with Macrobrachium rosenbergii nodavirus: possible candidate for a new species of satellite virus. J Gen Virol 85(3):643–646

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Zeng L, Zhang H, Zhou Y, Ma J, Fan Y (2013) Cyprinid herpesvirus 2 infection emerged in cultured gibel carp, Carassius auratus gibelio in China. Vet Microbiol 166(1-2):138–144

    Article  PubMed  Google Scholar 

  • Yang YT, Lee DY, Wang Y, Hu JM, Li WH, Leu JH, Chang GD, Ke HM, Kang ST, Lin SS, Kou GH (2014) The genome and occlusion bodies of marine Penaeus monodon nudivirus (PmNV, also known as MBV and PemoNPV) suggest that it should be assigned to a new nudivirus genus that is distinct from the terrestrial nudiviruses. BMC Genomics 15(1):1–24

    Article  Google Scholar 

  • Yoganandhan K, Leartvibhas M, Sriwongpuk S, Limsuwan C (2006) White tail disease of the giant freshwater prawn Macrobrachium rosenbergii in Thailand. Dis Aquat Org 69(2-3):255–258

    Article  CAS  Google Scholar 

  • Yoshikoshi K, Inoue K (1990) Viral nervous necrosis in hatchery-reared larvae and juveniles of Japanese parrotfish, Oplegnathus fasciatus (Temminck & Schlegel). J Fish Dis 13(1):69–77

    Article  Google Scholar 

  • Zhang C et al (2020) Application of Biomimetic Cell-Derived Nanoparticles with Mannose Modification as a Novel Vaccine Delivery Platform against Teleost Fish Viral Disease. ACS Biomat Sci Eng 6(12):6770–6777. https://doi.org/10.1021/acsbiomaterials.0c01302

    Article  CAS  Google Scholar 

  • Zhang H, Zeng L, Fan Y, Zhou Y, Xu J, Ma J (2014) A Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Cyprinid Herpesvirus 2 in Gibel Carp (Carassius auratus gibelio). Sci World J 2014:716413. https://doi.org/10.1155/2014/716413

  • Zhang W et al (2021) pH-Controlled Release of Antigens Using Mesoporous Silica Nanoparticles Delivery System for Developing a Fish Oral Vaccine. Front Immunol 12:644396. https://doi.org/10.3389/fimmu.2021.644396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z et al (2020) Single-walled carbon nanotubes as delivery vehicles enhance the immunoprotective effect of an immersion DNA vaccine against infectious spleen and kidney necrosis virus in mandarin fish. Fish Shellfish Immunol 97:432–439. https://doi.org/10.1016/j.fsi.2019.12.072

    Article  CAS  PubMed  Google Scholar 

  • Zhao R, Geng Y, Yu Z, Wang K, OuYang P, Chen D, Huang X, He C, Peng G, Lai W (2019) New detection of Cyprinid herpesvirus 2 associated with mass mortality in colour crucian carp (Carassius auratus), in China. Aquac Res 50(6):1705–1709

    Article  Google Scholar 

  • Zhu B, Zhang C, Zhao Z, Wang GX (2020) Targeted Delivery of Mannosylated Nanoparticles Improve Prophylactic Efficacy of Immersion Vaccine against Fish Viral Disease. Vaccine 8(1):87. https://doi.org/10.3390/vaccines8010087

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raj, N.S., Arivarasan, V.K., Hameed, A.S.S., Swaminathan, T.R. (2023). Nanotechnologies in the Health Management of Aquatic Animal Diseases. In: Kirthi, A.V., Loganathan, K., Karunasagar, I. (eds) Nanotechnological Approaches to the Advancement of Innovations in Aquaculture. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-15519-2_9

Download citation

Publish with us

Policies and ethics