Skip to main content

Perspectives of Nanotechnology in Aquaculture: Fish Nutrition, Disease, and Water Treatment

  • Chapter
  • First Online:
Emerging Nanomaterials for Advanced Technologies

Abstract

The narrative that aquaculture is one of the significant global food producing sectors of the century is undisputable. However, the expansion of this sector presents doubts on its sustainability because pathogen prevalence, water contamination, environmental destruction, and poor feed quality are some of the challenges negatively impacting aquaculture to perform to its full potential. For this reason, researchers and overseers have been hard at work to discover effective remedies to deal with these challenges in aquaculture. Among the remedies, nanotechnology has emerged as one of the significant innovations with a huge potential to contribute to aquaculture’s sustainability with nanotools such as nanoparticles and nanomaterials that could be used as novel fish growth promoters, vaccines, drug delivery agents, and water filtration and remediation tools. Therefore, this chapter will report on the application of nanotechnology in aquaculture particularly in fish nutrition, disease and water quality management; presenting the trends and perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acheampong MA, Antwi DMB (2016) Modification of titanium dioxide for wastewater treatment application and its recovery for reuse. J Environ Sci Eng Technol 5:498–510

    CAS  Google Scholar 

  • Acosta E (2009) Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr Opin Colloid Interface Sci 14:3–15

    CAS  Google Scholar 

  • Aklakur M, Asharf Rather M, Kumar N (2016) Nanodelivery: an emerging avenue for nutraceuticals and drug delivery. Crit Rev Food Sci Nutr 56:2352–2361

    CAS  PubMed  Google Scholar 

  • Aly HA, Abdel Rahim MM, Lotfy AM et al (2016) The applicability of activated carbon, natural zeolites, and probiotics (EM®) and its effects on ammonia removal efficiency and fry performance of european seabass Dicentrarchus labrax. J Aquac Res Dev 7:11. https://doi.org/10.4172/2155-9546.100045

    Article  Google Scholar 

  • Amin MT, Alazba AA, Manzoor U (2014) A review of removalof pollutants from water/wastewater using different types ofnanomaterials. Adv Mater Sci Eng. https://doi.org/10.1155/2014/825910

  • Anjugam M, Vaseeharan B, Iswarya A et al (2018) Effect of β-1, 3 glucan binding protein based zinc oxide nanoparticles supplemented diet on immune response and disease resistance in Oreochromis mossambicus against Aeromonas hydrophila. Fish Shellfish Immunol 76:247–259

    CAS  PubMed  Google Scholar 

  • Asaikkutti A, Bhavan PS, Vimala K et al (2016) Dietary supplementation of green synthesized manganese-oxide nanoparticles and its effect on growth performance, muscle composition and digestive enzyme activities of the giant freshwater prawn Macrobrachium rosenbergii. J Trace Elem Med Biol 35:7–17

    CAS  PubMed  Google Scholar 

  • Ashouri S, Keyvanshokooh S, Salati AP et al (2015) Effects of different levels of dietary selenium nanoparticles on growth performance, muscle composition, blood biochemical profiles and antioxidant status of common carp (Cyprinus carpio). Aquaculture 446:25–29

    CAS  Google Scholar 

  • Ayala-Núñez NV, Lara HH, Turrent LDCI et al (2009) Silver nanoparticles toxicity and bactericidal effect against methicillin- resistant Staphylococcus aureus: nanoscale does matter. Nanobiotechnology 5:2–9

    Google Scholar 

  • Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. Journal of Nanoparticles, Article ID 689419, https://doi.org/10.1155/2014/689419

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: Synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605−11612. https://doi.org/10.1021/acs.langmuir.5b03081

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

  • Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65. https://doi.org/10.3389/fchem.2019.00065

  • Babu B, Palanisamy S, Vinosha M et al (2020) Bioengineered gold nanoparticles from marine seaweed Acanthophora spicifera for pharmaceutical uses: antioxidant, antibacterial, and anticancer activities. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-020-02408-3

  • Baskaralingam V, Sargunar CG, Lin YC et al (2012) Green synthesis of silver nanoparticles through Calotropis gigantea leaf extracts and evaluation of antibacterial activity against Vibrio alginolyticus. Nanotechnol Dev 2:e3. https://doi.org/10.4081/nd.2012.e3

    Article  CAS  Google Scholar 

  • Berntssen MHG, Julshamn K, Lundebye AK (2010) Chemical contaminants in aquafeeds and Atlantic salmon (Salmo salar) following the use of traditional- versus alternative feed ingredients. Chemosphere 78:637–646

    CAS  PubMed  Google Scholar 

  • Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61

    Google Scholar 

  • Boonanuntanasarn S, Khaomek P, Pitaksong T et al (2014) The effects of the supplementation of activated charcoal on the growth, health status and fillet composition- odor of Nile tilapia (Oreochromis niloticus) before harvesting. Aquac Int 22:1417–1436

    CAS  Google Scholar 

  • Bouwmeester H, Dekkers S, Noordam MY et al (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53:52–62

    CAS  PubMed  Google Scholar 

  • Boyd CE (2001) Decision support systems for water resources management. In: AWRA/UCOWR summer specialty conference, Snowbird, Utah, , 27–30 June 2001, p 153

    Google Scholar 

  • Boyd CE, Tucker CS (1998) Ecology of aquaculture ponds. In: Pond aquaculture water quality management. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5407-3_2

    Chapter  Google Scholar 

  • Cao L, Ding W, Du J et al (2015) Effects of curcumin on antioxidative activities and cytokine production in Jian carp (Cyprinus carpio var. Jian) with CCl4-induced liver damage. Fish Shellfish Immunol 43:150–157

    CAS  PubMed  Google Scholar 

  • Carriquiriborde P, Handy RD, Davies et al (2004) Physiological modulation of iron metabolism in rainbow trout (Oncorhynchus mykiss) fed low and high iron diets. J Exp Biol 207:75–86

    CAS  PubMed  Google Scholar 

  • Cui Y, Zhao Y, Tian Y et al (2012) The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 33:2327–2333

    CAS  PubMed  Google Scholar 

  • Culot A, Grosset N, Gautier M (2019) Overcoming the challenges of phage therapy for industrial aquaculture: a review. Aquaculture 513:734423

    CAS  Google Scholar 

  • De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3:133–149

    PubMed  PubMed Central  Google Scholar 

  • Di Cesare A, Vignaroli C, Luna GM et al (2012) Antibiotic-resistant enterococci in seawater and sediments from a coastal fish farm. Microb Drug Resist 18:502–509

    PubMed  Google Scholar 

  • Elayaraja S, Zagorsek K, Li F et al (2017) In situ synthesis of silver nanoparticles into TEMPO-mediated oxidized bacterial cellulose and their antivibriocidal activity against shrimp pathogens. Carbohydr Polym 166:329–337

    CAS  PubMed  Google Scholar 

  • ElBasuini MF, El-Hais AM, Dawood MAO et al (2017) Effects of dietary copper nanoparticles and vitamin C supplementations on growth performance, immune response and stress resistance of red sea bream, Pagrus major. Aquacult Nutrit 23:1329–1340

    CAS  Google Scholar 

  • Elgendy M, Hakim A, Ibrahim et al (2016) Immunomodulatory effects of curcumin on nile tilapia, Oreochromis niloticus and its antimicrobial properties against Vibrio alginolyticus. J Fish Aquat Sci 11:206–215

    CAS  Google Scholar 

  • FAO (2020) The state of the world fisheries and aquaculture 2020. FAO, Rome

    Google Scholar 

  • Fatima R, Priya M, Indurthi L et al (2020) Biosynthesis of silver nanoparticles using red algae Portieria hornemannii and its antibacterial activity against fish pathogens. Microb Pathog 138:103780. https://doi.org/10.1016/j.micpath.2019.103780

    Article  CAS  PubMed  Google Scholar 

  • Fenaroli F, Westmoreland D, Benjaminsen J et al (2014) Nanoparticles as drug delivery system against tuberculosis in zebrafish embryos: direct visualization and treatment. ACS Nano 8:7014–7026

    CAS  PubMed  Google Scholar 

  • Fernando SID, Cruz KGJ (2020) Ethnobotanical biosynthesis of gold nanoparticles and its downregulation of Quorum Sensing-linked AhyR gene in Aeromonas hydrophila. SN Appl Sci 2:1–8

    Google Scholar 

  • Food Safety Authority of Ireland (2008) The relevance of food safety of applications of nanotechnology in the food and feed industries. Court lower abbey street, Abbey, Dublin 1. www.fsai.ie

  • Fraser TWK, Reinardy HC, Shaw BJ et al (2010) Dietary toxicity of single-walled carbon nanotubes and fullerenes (C60) in rainbow trout (Oncorhynchus mykiss). Nanotoxicology 5:98–108

    PubMed  Google Scholar 

  • Friends of the Earth (2008) Out of the laboratory and onto our plates: nanotechnology in food and agriculture, 2nd edn A report prepared for Friends of the Earth

    Google Scholar 

  • Gehrke I, Geiser A, Somborn-Schulz A (2015) Innovations in nanotechnology for water treatment. Nanotechnol Sci Appl 8:1–17

    PubMed  PubMed Central  Google Scholar 

  • Gunalan S, Sivaraj R, Rajendran V (2012) Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog Nat Sci 22:693–700

    Google Scholar 

  • Hafiz S, Srivastava KK, Newton JC et al (2017) Efficacy of curcumin as an immunostimulatory dietary supplement for channel catfish. Am J Anim Vet Sci 12:1–7

    CAS  Google Scholar 

  • Handy RD (2012) FSBI briefing paper: nanotechnology in fisheries and aquaculture. Fisheries Society of the British Isles, pp 1–29

    Google Scholar 

  • Handy RD, Poxton MG (1993) Nitrogen pollution in mariculture – toxicity and excretion of nitrogenous compounds by marine fish. Rev Fish Biol Fish 3:205–241

    Google Scholar 

  • Hoet P, Bruske-Hohlfeld I, Salata O (2004) Nanoparticles-known and unknown health risks. J Nanobiotechnol 2:12–27

    Google Scholar 

  • Hoseini SM, Yousefi M, Hoseinifar SH et al (2019) Effects of dietary arginine supplementation on growth, biochemical, and immunological responses of common carp (Cyprinus carpio L.), stressed by stocking density. Aquaculture 503:452–459

    CAS  Google Scholar 

  • Huang CM, Chen CH, Pornpattananangkul D et al (2011) Eradication of drug resistant Staphylococcus aureus by liposomal oleic acids. Biomaterials 32:214–221

    CAS  PubMed  Google Scholar 

  • Huang S, Wang L, Liu L et al (2015) Nanotechnology in agriculture, livestock, and aquaculture in China. A review. Agron Sustain Dev 35:369–400

    Google Scholar 

  • Izquierdo MS, Ghrab W, Roo J et al (2017) Organic, inorganic and nanoparticles of Se, Zn and Mn in early weaning diets for gilthead seabream (Sparus aurata; Linnaeus, 1758). Aquac Res 48:2852–2867

    CAS  Google Scholar 

  • Jafari SM, McClements DJ (2017) Chapter one - Nanotechnology approaches for increasing nutrient bioavailability. Adv Food Nutr Res 81:1–30

    PubMed  Google Scholar 

  • Jayaseelan C, Rahuman AA, Kirthi AV et al (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta Part A Mol Biomol Spectrosc 90:78–84

    CAS  Google Scholar 

  • Jiang Y, Chekuri S, Fang RH et al (2019) Engineering biological interactions on the nanoscale. Curr Opin Biotechnol 55:1–8

    Google Scholar 

  • Joye IJ, Davidov-Pardo G, McClements DJ (2014) Nanotechnology for increased micronutrient bioavailability. Trends Food Sci Technol 40:168–182

    CAS  Google Scholar 

  • Kalishwaralal K, Deepak V, Ramkumarpandian S et al (2008) Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett 62(29):4411–4413

    CAS  Google Scholar 

  • Kerepeczki É, Gál D, Kosáros T et al (2011) Natural water treatment method for intensive aquaculture effluent purification. Studia Universitatis" Vasile Goldis" Arad. Seria Stiintele Vietii (Life Sciences Series) 21: 827

    Google Scholar 

  • Khosravi-Katuli K, Prato E, Lofrano G et al (2017) Effects of nanoparticles in species of aquaculture interest. Environ Sci Pollut Res 24:17326–17346

    Google Scholar 

  • Korni FMM, Khalil F (2017) Effect of ginger and its nanoparticles on growth performance, cognition capability, immunity and prevention of motile Aeromonas septicaemia in Cyprinus carpio fingerlings. Aquac Nutr 23:1492–1499

    CAS  Google Scholar 

  • Kunjiappan S, Bhattacharjee C, Chowdhury R (2015) Hepatoprotective and antioxidant effects of Azolla microphylla based gold nanoparticles against acetaminophen induced toxicity in a fresh water common carp fish (Cyprinus carpio L.). Nanomedicine 2:88–110

    Google Scholar 

  • Lara HH, Ayala-Núnez NV, Turrent LDCI et al (2010) Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotechnol 26:615–621

    CAS  Google Scholar 

  • Lavertu M, Methot S, Tran-Khanh N et al (2006) High efficiency gene transfer using chitosan/DNA nanoparti-cles with specific combinations of molecular weight anddegree of deacetylation. Biomaterials 27:4815–4824

    CAS  PubMed  Google Scholar 

  • Le AT, Pung SY, Sreekantan S et al (2019) Mechanisms of removal of heavy metal ions by ZnO particles. Heliyon 5:e01440. https://doi.org/10.1016/j.heliyon.2019.e01440

    Article  PubMed  PubMed Central  Google Scholar 

  • Leya T, Ahmad I, Sharma R et al (2020) Bicistronic DNA vaccine macromolecule complexed with poly lactic-co-glycolic acid-chitosan nanoparticles enhanced the mucosal immunity of Labeo rohita against Edwardsiella tarda infection. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.04.048

  • Leya T, Raman RP, Srivastava PP et al (2017) Effects of curcumin supplemented diet on growth and non-specific immune parameters of Cirrhinus mrigala against Edwardsiella tarda infection. Int J Curr Microbiol Appl Sci 6:1230–1243

    Google Scholar 

  • Li L, Lin SL, Deng L et al (2013) Potential use of chitosan nanoparticles for oral delivery of DNA vaccine in black seabream Acanthopagrus schlegelii Bleeker to protect from Vibrio parahaemolyticus. J Fish Dis 36:987–995

    CAS  PubMed  Google Scholar 

  • Li X, Robinson SM, Gupta A et al (2014) Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano 8:10682–10686

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lima E, Guerra R, Lara V et al (2013) Gold nanoparticles as efficient antimicrobial agents for Escherichia coli and Salmonella typhi. Chem Cent J 7:11. https://doi.org/10.1186/1752-153X-7-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Litter MI (2015) Mechanisms of removal of heavy metals and arsenic from water by TiO2-heterogeneous photocatalysis. Pure Appl Chem 87:557–567

    CAS  Google Scholar 

  • Liu YJ, He LL, Mustapha A et al (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7. J Appl Microbiol 107:1193–1201

    CAS  PubMed  Google Scholar 

  • Lü JM, Wang X, Marin-Muller C et al (2009) Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 9:325–341

    PubMed  PubMed Central  Google Scholar 

  • Maddela NR, Chakraborty S, Prasad R (2021) Nanotechnology for Advances in Medical Microbiology. Springer Singapore (ISBN 978-981-15-9915-6) https://www.springer.com/gp/book/9789811599156

  • Mahmoud HK, Al-Sagheer AA, Reda FM et al (2017) Dietary curcumin supplement influence on growth, immunity, antioxidant status, and resistance to Aeromonas hydrophila in Oreochromis niloticus. Aquaculture 475:16–23

    CAS  Google Scholar 

  • Malheiros DF, Sarquis IR, Ferreira IM et al (2020) Nanoemulsions with oleoresin of Copaifera reticulata (Leguminosae) improve anthelmintic efficacy in the control of monogenean parasites when compared to oleoresin without nanoformulation. J Fish Dis 43:687–695

    CAS  PubMed  Google Scholar 

  • Manal I (2018) Impact of garlic and curcumin on the hepatic histology and cytochrome P450 gene expression of aflatoxicosis Oreochromis niloticus using RT-PCR. Turkish J Fish Aquat Sci 18:405–415

    Google Scholar 

  • Manju M, Sherin TG, Rajasekharan KN et al (2009) Curcumin analogue inhibits lipid peroxidation in a freshwater teleost, Anabas testudineus (Bloch) -an in vitro and in vivo study. Fish Physio Biochem 35:413–420

    CAS  Google Scholar 

  • Manju M, Vijayasree AS, Akbarsha MA et al (2013) Protective effect of dietary curcumin in Anabas testudineus (Bloch) with a special note on DNA fragmentation assay on hepatocytes and micronucleus assay on erythrocytes in vivo. Fish Physiol Biochem 39:1323–1330

    CAS  PubMed  Google Scholar 

  • Manju S, Malaikozhundan B, Vijayakumar S et al (2016) Antibacterial, antibiofilm and cytotoxic effects of Nigella sativa essential oil coated gold nanoparticles. Microb Pathog 91:129–135

    CAS  PubMed  Google Scholar 

  • Manju M, Akbarsha MA, Oommen OV (2012) In vivo protective effect of dietary curcumin in fish Anabas testudineus (Bloch). Fish Physiol Biochem 38:309–318

    Google Scholar 

  • Masoumbaigi H, Rezaee A, Hosseini H et al (2015) Water disinfection by zinc oxide nanoparticle prepared with solution combustion method. Desalin Water Treat 56:2376–2381

    CAS  Google Scholar 

  • Meneses-Márquez JC, Hamdan-Partida A, del Carmen M-DM et al (2019) Use of silver nanoparticles to control Vibrio fluvialis in cultured angelfish Pterophyllum scalare. Dis Aquat Org 137:65–72

    Google Scholar 

  • Midhun SJ, Arun D, Edatt L et al (2016) Modulation of digestive enzymes, GH, IGF-1 and IGF-2 genes in the teleost, Tilapia (Oreochromis mossambicus) by dietary curcumin. Aquac Int 24:1277–1286

    CAS  Google Scholar 

  • Moges FD, Patel P, Parashar SKS et al (2020) Mechanistic insights into diverse nano-based strategies for aquaculture enhancement: a holistic review. Aquaculture 519:734770. https://doi.org/10.1016/j.aquaculture.2019.734770

    Article  Google Scholar 

  • Mohammadi N, Tukmechi A (2015) The effects of iron nanoparticles in combination with Lactobacillus casei on growth parameters and probiotic counts in rainbow trout (Oncorhynchus mykiss) intestine. J Vet Res 70:47–53

    Google Scholar 

  • Moustafa MT (2017) Removal of pathogenic bacteria from wastewater using silver nanoparticles synthesized by two fungal species. Water Sci 31:164–176

    Google Scholar 

  • Muralisankar T, Saravana Bhavan P, Radhakrishnan S et al (2016) The effect of copper nanoparticles supplementation on freshwater prawn Macrobrachium rosenbergii post larvae. J Trace Elem Med Biol 34:39–49

    CAS  PubMed  Google Scholar 

  • Murata J, Ohya Y, Ouchi T (1998) Design of quaternary chitosan conjugate having antennary galactose residues as a gene delivery tool. Carbohydr Polym 32:105–109

    Google Scholar 

  • Muzammil A, Miandad R, Muhammad W et al (2016) Remediation of wastewater using various nano-materials. Arab J Chem. https://doi.org/10.1016/j.arabjc.2016.10.004

  • Ninh NTH, Dung NM, Cuong HN (2016) Water quality management for sustainable aquaculture production in the Mekong Delta. In: International conference of the Mekong, Salween and red river: sharing knowledge and perspectives across borders, Faculty of Political Science, 12 Nov 2016. Chulalongkorn University, Bangkok

    Google Scholar 

  • Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2:32. https://doi.org/10.1186/2228-5326-2-32

    Article  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. Journal of Nanoparticles, Article ID 963961, 2014, https://doi.org/10.1155/2014/963961

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan

  • Prasad R, Jha A, Prasad K (2018) Exploring the Realms of Nature for Nanosynthesis. Springer International Publishing (ISBN 978-3-319-99570-0 https://www.springer.com/978-3-319-99570-0

  • Rajeshkumar S, Ishaq AVP, Parameswaran V et al (2008) Potential use of chitosan nanoparticles for oral delivery of DNA vaccine in Asian sea bass (Lates calcarifer) to protect from Vibrio (Listonella) anguillarum. Fish Shellfish Immunol 25:47–56

    CAS  Google Scholar 

  • Rajeshkumar S, Venkatesan C, Sarathi M et al (2009) Oral delivery of DNA construct using chitosan nanoparticles to protect the shrimp from white spot syndrome virus (WSSV). Fish Shellfish Immun 26:429–437

    CAS  Google Scholar 

  • Ramamoorthy S, Kannaiyan P, Moturi M et al (2013) Antibacterial activity of zinc oxide nanoparticles against Vibrio harveyi. Indian J Fish 60:107–112

    Google Scholar 

  • Ramsden CS, Smith TJ, Shaw BS, Handy RD (2009) Dietary exposure to titanium dioxide nanoparticles in rainbow trout, (Oncorhynchus mykiss): no effect on growth, but subtle biochemical disturbances in the brain. Ecotoxicology 18:939–951

    CAS  PubMed  Google Scholar 

  • Rasmussen TB, Bjarnsholt T, Skindersoe ME et al (2005) Screening for quorum-sensing inhibitors (QSI) by use of a novel genetic system, the QSI selector. J Bacteriol 187:1799–1814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rather MA, Bhat IA, Sharma N et al (2017) Synthesis and characterization of Azadirachta indica constructed silver nanoparticles and their immunomodulatory activity in fish. Aquac Res 48:3742–3754

    CAS  Google Scholar 

  • Rivas-Aravena A, Fuentes Y, Cartagena J et al (2015) Development of a nano- particle-based oral vaccine for Atlantic salmon against ISAV using an alphavirus re-plicon as adjuvant. Fish Shellfish Immunol 45:157–166

    CAS  PubMed  Google Scholar 

  • Romero J, Feijoo CG, Navarrete P (2012) Antibiotics in aquaculture – use, abuse and alternatives. In: Carvalho D, David SG, Silva R (eds) Health and environment in aquaculture. InTech, Croatia

    Google Scholar 

  • Russell-Jones GJ (2001) The potential use of receptormediated endocytosis for oral drug delivery. Adv Drug Deliv Rev 46:59–73

    CAS  PubMed  Google Scholar 

  • Russell-Jones GJ, Arthur L, Walker H (1999) Vitamin B12 mediated transport of nanoparticles across Caco-2 cells. Int J Pharm 179:247–255

    CAS  PubMed  Google Scholar 

  • Sahu S, Das BK, Mishra BK et al (2008) Effect of dietary Curcuma longa on enzymatic and immunological profiles of rohu, Labeo rohita (Ham.), infected with Aeromonas hydrophila. Aquac Res 39:1720–1730

    CAS  Google Scholar 

  • Sarma H, Joshi S, Prasad R, Jampilek J (2021) Biobased Nanotechnology for Green Applications. Springer International Publishing (ISBN 978-3-030-61985-5) https://www.springer.com/gp/book/9783030619848

  • Semo E, Kesselman E, Danino D, Livney YD (2007) Casein micelle as a natural nano-capsular vehicle for nutraceuticals. Food Hydrocoll 21:936–942

    CAS  Google Scholar 

  • Shaalan M, El-Mahdy M, Theiner S et al (2018) Silver nanoparticles: their role as antibacterial agent against Aeromonas salmonicida subsp. salmonicida in rainbow trout (Oncorhynchus mykiss). Res Vet Sci 119:196–204

    CAS  PubMed  Google Scholar 

  • Shaalan M, Saleh M, El-Mahdy M et al (2016) Recent progress in applications of nanoparticles in fish medicine: a review. Nanomed Nanotechnol 12:701–710

    CAS  Google Scholar 

  • Shaalan MI, El-Mahdy MM, Theiner S et al (2017) In vitro assessment of the antimicrobial activity of silver and zinc oxide nanoparticles against fish pathogens. Acta Vet Scand 59:49

    PubMed  PubMed Central  Google Scholar 

  • Shah BR, Mraz J (2019) Advances in nanotechnology for sustainable aquaculture and fisheries. Rev Aquacult 12:925–942

    Google Scholar 

  • Shah BR, Mraz J (2020) Advances in nanotechnology for sustainable aquaculture and fisheries. Rev Aquacult 12:925–942

    Google Scholar 

  • Sharif Rohani M, Haghighi M, Bazari Moghaddam S (2017) Study on nanoparticles of Aloe vera extract on growth performance, survival rate and body composition in Siberian sturgeon (Acipenser baerii). Iran J Fish Sci 16:457–468

    Google Scholar 

  • Shinn AP, Pratoomyot J, Bron JE et al (2015) Economic costs of protistan and metazoan parasites to global mariculture. Parasitology 142:196

    CAS  PubMed  Google Scholar 

  • Sichula J, Makasa ML, Nkonde GK et al (2011) Removal of ammonia from aquaculture water using maize cob activated carbon. Malawi J Aquac Fish 1:10–15

    Google Scholar 

  • Sikder MNA, Min WW, Ziyad AO et al (2016) Sustainable treatment of aquaculture effluents in future-a review. Int Res J Adv Eng Sci 1:190–193

    Google Scholar 

  • Silva AA (2010) Nanotechnology applications and approaches for neuroregeneration and drug delivery to the central nervous system. Ann N Y Acad Sci 1199:221–230

    CAS  PubMed  Google Scholar 

  • Sivakumar SM (2016) Therapeutic potential of chitosan nanoparticles as antibiotic delivery system: challenges to treat multiple drug resistance. Asian J Pharm 10:S63. https://doi.org/10.22377/ajp.v10i2.624

    Article  Google Scholar 

  • Sneddon LU, Wolfenden DCC, Thomson JS (2016) Stress management and welfare. Fish Physiol 35:463–539

    Google Scholar 

  • Sørum H (2008) Antibiotic resistance associated with veterinary drug use in fish farms. In: Lie Ø (ed) Improving farmed fish quality and safety. Food science, technology, and nutrition. Woodhead Publishing, pp 157–182

    Google Scholar 

  • Srivastava S, Usmani Z, Atanasov AG, Singh VK, Singh NP, Abdel-Azeem AM, Prasad R, Gupta G, Sharma M, Bhargava A (2021) Biological nanofactories: Using living forms for metal nanoparticle synthesis. Mini-Reviews in Medicinal Chemistry 21:245–265

    Google Scholar 

  • Swain P, Das R, Das A et al (2019) Effects of dietary zinc oxide and selenium nanoparticles on growth performance, immune responses and enzyme activity in rohu, Labeo rohita (Hamilton). Aquac Nutr 25:486–494

    CAS  Google Scholar 

  • Swain P, Nayak SK, Sasmal A et al (2014) Antimicrobial activity of metal based nanoparticles against microbes associated with diseases in aquaculture. World J Microbiol Biotechnol 30:2491–2502

    CAS  PubMed  Google Scholar 

  • Tandberg J, Lagos L, Ropstad E et al (2018) The use of chitosan-coated membrane vesicles for immunization against salmonid rickettsial septicemia in an adult zebrafish model. Zebrafish 15:372–381

    CAS  PubMed  Google Scholar 

  • Tandel GM, John KR, George MR et al (2017) Current status of viral diseases in Indian shrimp aquaculture. Acta Virol 61:131–137

    CAS  PubMed  Google Scholar 

  • Tello-Olea M, Rosales-Mendoza S, Campa-Córdova AI et al (2019) Gold nanoparticles (AuNP) exert immunostimulatory and protective effects in shrimp (Litopenaeus vannamei) against Vibrio parahaemolyticus. Fish Shellfish Immunol 84:756–767

    CAS  PubMed  Google Scholar 

  • Thangadurai D, Sangeetha J, Prasad R (2020) Functional Bionanomaterials. Springer International Publishing (ISBN 978-3-030-41464-1) https://www.springer.com/gp/book/9783030414634

  • Thangadurai D, Sangeetha J, Prasad R (2021) Nanotechnology for Food, Agriculture, and Environment. Springer International Publishing (ISBN 978-3-030-31937-3) https://www.springer.com/gp/book/9783030319373

  • Thines RK, Mubarak NM, Nizamuddin S et al (2017) Application potential of carbon nanomaterials in water and wastewater treatment: a review. J Taiwan Inst Chem Eng 72:116–133

    CAS  Google Scholar 

  • Thulasi A, Rajendran D, Jash S et al (2013) Nanobiotechnology in animal nutrition. In: Sampath KT, Ghosh J, Bhatta R (eds) Animal nutrition and reproductive physiology. Satish Serial Publishing House, New Delhi

    Google Scholar 

  • Trapani A, Mandracchia D, Di Franco C, Cordero H, Morcillo P, Comparelli R, et al (2015) In vitro characterization of 6-Coumarin loaded solid lipid nanoparticles and their uptake by immunocompetent fish cells. Colloids Surf B: Biointerfaces 127:79–88

    Google Scholar 

  • Vaseeharan B, Ramasamy P, Chen JC (2010) Antibacterial activity of silver nanoparticles (AgNps) synthesized by tea leaf extracts against pathogenic Vibrio harveyi and its protective efficacy on juvenile Feneropenaeus indicus. Lett Appl Microbiol 50:352–356

    CAS  PubMed  Google Scholar 

  • Velmurugan P, Iydroose M, Lee SM et al (2014) Synthesis of silver and gold nanoparticles using cashew nutshell liquid and its antibacterial activity against fish pathogens. Indian J Microbiol 54:196–202

    CAS  PubMed  Google Scholar 

  • Venegas MA, Bollaert MD, Jafari A et al (2018) Nanoparticles against resistant Pseudomonas spp. Microb Pathog 118:115–117

    CAS  PubMed  Google Scholar 

  • Verma SK, Jha E, Panda PK et al (2018) Rapid novel facile biosynthesized silver nanoparticles from bacterial release induce biogenicity and concentration dependent in vivo cytotoxicity with embryonic zebrafish-a mechanistic insight. Toxicol Sci 161:125–138

    CAS  PubMed  Google Scholar 

  • Verma SK, Jha E, Sahoo B et al (2017) Mechanistic insight into the rapid one-step facile biofabrication of antibacterial silver nanoparticles from bacterial release and their biogenicity and. RSC Adv 7:40034–40045

    CAS  Google Scholar 

  • Vijayakumar S, Vaseeharan B, Malaikozhundan B et al (2017) A novel antimicrobial therapy for the control of Aeromonas hydrophila infection in aquaculture using marine polysaccharide coated gold nanoparticle. Microb Pathog 110:140–151

    CAS  PubMed  Google Scholar 

  • Wang R, Wang WX (2012) Contrasting mercury accumulation patterns in tilapia (Oreochromis niloticus) and implications on somatic growth dilution. Aquat Toxicol 114:23–30

    PubMed  Google Scholar 

  • Wang X, Lu J, Xu M et al (2008) Sorption of pyrene by regular and nanoscaled metal oxide particles: influence of adsorbed organic matter. Environ Sci Technol 42:7267–7272

    CAS  PubMed  Google Scholar 

  • Wei H, Zhang XZ, Chen WQ et al (2007) Self-assembled thermosensitive micelles based on poly (L-lac-tide-star block-N-isopropylacrylamide) for drug delivery. J Biomed Mater Res A 83:980–989

    PubMed  Google Scholar 

  • Wu MJ, Bak T, O’Doherty et al (2014) Photocatalysis of titanium dioxide for water disinfection: challenges and future perspectives. Int J Photochem 2014:1–9

    Google Scholar 

  • Zhang J, Fu X, Zhang Y et al (2019) Chitosan andanisodamine improve the immune efficacy of inactivated infectious spleen and kidney necrosis virus vaccinein Siniperca chuatsi. Fish Shellfish Immunol 89:52–60

    CAS  PubMed  Google Scholar 

  • Zhu W, Zhang Y, Zhang J et al (2019) Astragalus polysaccharides, chitosan andpoly(I:C) obviously enhance inactivated Edwardsiella ictaluri vaccine potency in yellow catfish Pelteobagrus fulvidraco. Fish Shellfish Immunol 87:379–385

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ndakalimwe Naftal Gabriel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gabriel, N.N., Habte-Tsion, HM., Haulofu, M. (2022). Perspectives of Nanotechnology in Aquaculture: Fish Nutrition, Disease, and Water Treatment. In: Krishnan, A., Ravindran, B., Balasubramanian, B., Swart, H.C., Panchu, S.J., Prasad, R. (eds) Emerging Nanomaterials for Advanced Technologies. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-80371-1_15

Download citation

Publish with us

Policies and ethics