Skip to main content

The Contribution of Non-invasive Brain Stimulation to the Study of the Neural Bases of Creativity and Aesthetic Experience

  • Chapter
  • First Online:
Art and Neurological Disorders

Part of the book series: Current Clinical Neurology ((CCNEU))

  • 652 Accesses

Abstract

Non-invasive brain stimulation (NIBS) techniques, such as transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES), are widely employed in cognitive neuroscience to identify causal links between specific brain structures supporting sensory, motor, cognitive and affective functions. During the last decade, NIBS techniques have been increasingly applied to the study of the neural basis of creative thinking and aesthetic perception and appreciation. The present chapter offers an overview of mechanisms of actions of TMS and different types of tES and considers recent studies applying these techniques to shed light on the neural underpinning mediating creativity and the emergence of aesthetic experience. Available findings suggest the existence of some areas of overlap between the neural correlates of creativity and aesthetic experience mainly within prefrontal and parietal cortices (core nodes of the executive control and default mode networks); however, sensorimotor regions and low-level visual areas seem to be selectively dedicated to aesthetic experience of visual stimuli. In the concluding part, we consider current limitations and challenges in using NIBS and suggest future avenues for scientific exploration within these fields to fully exploit the great potential of brain stimulation to the study of the neural bases of creativity and aesthetic experiences.

A. Ciricugno and R.J. Slaby share first co-authorship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benedek M, Fink A. Toward a neurocognitive framework of creative cognition: the role of memory, attention, and cognitive control. Curr Opin Behav Sci. 2019;27:116–22. https://doi.org/10.1016/j.cobeha.2018.11.002.

    Article  Google Scholar 

  2. Benedek M, Christensen AP, Fink A, Beaty RE. Creativity assessment in neuroscience research. Psychol Aesthet Creat Arts. 2019;13:218–26. https://doi.org/10.1037/aca0000215.

    Article  Google Scholar 

  3. Jung RE, Vartanian O. The Cambridge handbook of the neuroscience of creativity. Cambridge University Press; 2018.

    Book  Google Scholar 

  4. Chatterjee A, Vartanian O. Neuroaesthetics. Trends Cogn Sci. 2014;18(7):370–5.

    Article  PubMed  Google Scholar 

  5. Nadal M, Skov M (2015) Neuroesthetics, 2nd edn. In International encyclopedia of the social & behavioral sciences, vol 16. Elsevier, Oxford, pp. 656–663.

    Google Scholar 

  6. Pelowski M, Markey PS, Lauring JO, Leder H. Visualizing the impact of art: an update and comparison of current psychological models of art experience. Front Hum Neurosci. 2016;10:160.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cela-Conde CJ, Marty G, Maestú F, Ortiz T, Munar E, Fernández A, Roca M, Rossello J, Quesney F. Activation of the prefrontal cortex in the human visual aesthetic perception. Proc Natl Acad Sci U S A. 2004;101:6321–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang P, Huang H, Luo Q, Mo L. The difference between aesthetic appreciation of artistic and popular music: evidence from an fMRI study. PLoS One. 2016;11(11):e0165377.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Abraham A. The neuropsychology of creativity. Curr Opin Behav Sci. 2019;27:71–6.

    Article  Google Scholar 

  10. Bieth T, Ovando-Tellez M, Bernard M, Volle E. Contribution of lesion studies to the neuroscience to creativity. Annales Medico-Psychologiques. 2019;177(2):164–8.

    Article  Google Scholar 

  11. Bogousslaysky J. Art, creativity, brain and pain of living. Annales Medico-Psychologiques. 2019;177(2):169–72.

    Google Scholar 

  12. Boccia M, Barbetti S, Piccardi L, Guariglia C, Giannini A. Neuropsychology of aesthetic judgment of ambiguous and non- ambiguous artworks. Behav Sci. 2017;7(1):13.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bromberger B, Sternschein R, Widick P, Smith WI, Chatterjee A. The right hemisphere in esthetic perception. Front Hum Neurosci. 2011;5:109.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vaidya AR, Sefranek M, Fellows LK. Ventromedial frontal lobe damage alters how specific attributes are weighed in subjective valuation. Cereb Cortex. 2018;28(11):3857–67.

    Article  PubMed  Google Scholar 

  15. Pascual-Leone A, Walsh V, Rothwell J. Transcranial magnetic stimulation in cognitive neuroscience–virtual lesion, chronometry, and functional connectivity. Curr Opin Neurobiol. 2000;10(2):232–7.

    Article  CAS  PubMed  Google Scholar 

  16. Silvanto J, Cattaneo Z. Common framework for “virtual lesion” and state-dependent TMS: the facilitatory/suppressive range model of online TMS effects on behavior. Brain Cogn. 2017;119:32–8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Amassian VE, Cracco RQ, Maccabee PJ, Cracco JB, Rudell A, Eberle L. Suppression of visual perception by magnetic coil stimulation of human occipital cortex. Electroencephalogr Clin Neurophysiol. 1989;74(6):458–62.

    Article  CAS  PubMed  Google Scholar 

  18. Bergmann TO, Hartwigsen G. Inferring causality from noninvasive brain stimulation in cognitive neuroscience. J Cogn Neurosci. 2021;33(2):195–225.

    Article  PubMed  Google Scholar 

  19. Hallett M, Di Iorio R, Rossini PM, Park JE, Chen R, Celnik P, et al. Contribution of transcranial magnetic stimulation to assessment of brain connectivity and networks. Clin Neurophysiol. 2017;128(11):2125–39.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Parkin BL, Ekhtiari H, Walsh VF. Non-invasive human brain stimulation in cognitive neuroscience: a primer. Neuron. 2015;87(5):932–45.

    Article  CAS  PubMed  Google Scholar 

  21. Rothwell J. Transcranial brain stimulation: past and future. Brain and neuroscience advances. 2018;2:2398212818818070.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sliwinska MW, Vitello S, Devlin JT. Transcranial magnetic stimulation for investigating causal brain-behavioral relationships and their time course. J Vis Exp: JoVE. 2014;89

    Google Scholar 

  23. Stagg CJ, Antal A, Nitsche MA. Physiology of transcranial direct current stimulation. J ECT. 2018;34(3):144–52.

    Article  PubMed  Google Scholar 

  24. Karabanov AN, Saturnino GB, Thielscher A, Siebner HR. Can transcranial electrical stimulation localize brain function? Front Psychol. 2019;10:213.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Luber B, Lisanby SH. Enhancement of human cognitive performance using transcranial magnetic stimulation (TMS). NeuroImage. 2014;85:961–70.

    Article  PubMed  Google Scholar 

  26. Romei V, Thut G, Silvanto J. Information-based approaches of noninvasive transcranial brain stimulation. Trends Neurosci. 2016;39(11):782–95.

    Article  CAS  PubMed  Google Scholar 

  27. Aldini G. Essai théorique et expérimental sur le galvanisme: avec une série d'expériences faites en présence des commissaires de l'Institut national de France, et en divers amphithéatres anatomiques de Londres. Fournier 1804.

    Google Scholar 

  28. Parent A. Giovanni Aldini: from animal electricity to human brain stimulation. Can J Neurol Sci. 2004;31(4):576–84.

    Article  PubMed  Google Scholar 

  29. Bartholow R. ART. I.—experimental investigations into the functions of the human brain. Am J Med Sci. 1874. (1827-1924);134:305.

    Article  Google Scholar 

  30. Merton PA, Morton HB. Stimulation of the cerebral cortex in the intact human subject. Nature. 1980;285(5762):227.

    Article  CAS  PubMed  Google Scholar 

  31. Faraday M. V. Experimental researches in electricity. Philos Trans R Soc Lond. 1832;122:125–62.

    Google Scholar 

  32. d’Arsonval JA. Action physiologique de courants alternatifs a grande frequence. Arch Physiol Norm et Pathol. 1893;5(401–8):780–90.

    Google Scholar 

  33. Barker AT, Jalinous R, Freeston IL. Non-invasive magnetic stimulation of human motor cortex. Lancet. 1985;325(8437):1106–7.

    Article  Google Scholar 

  34. Bestmann S, Krakauer JW. The uses and interpretations of the motor-evoked potential for understanding behaviour. Exp Brain Res. 2015;233(3):679–89.

    Article  PubMed  Google Scholar 

  35. Salminen-Vaparanta N, Vanni S, Noreika V, Valiulis V, Móró L, Revonsuo A. Subjective characteristics of TMS-induced phosphenes originating in human V1 and V2. Cereb Cortex. 2014;24(10):2751–60.

    Article  PubMed  Google Scholar 

  36. Pascual-Leone A. Transcranial magnetic stimulation: studying the brain--behaviour relationship by induction of ‘virtual lesions’. Philos Trans R Soc Lond B Biol Sci. 1999;354(1387):1229–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fecteau S., & Eldaief M. Offline and online “virtual lesion” protocols. In Transcranial magnetic stimulation. New York, NY: Humana Press; 2014, pp. 143–152.

    Google Scholar 

  38. Beynel L, Appelbaum LG, Luber B, Crowell CA, Hilbig SA, Lim W, et al. Effects of online repetitive transcranial magnetic stimulation (rTMS) on cognitive processing: a meta-analysis and recommendations for future studies. Neurosci Biobehav Rev. 2019;107:47–58.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Deng ZD, Lisanby SH, Peterchev AV. Electric field depth–focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul. 2013;6(1):1–13.

    Article  PubMed  Google Scholar 

  40. Deng ZD, Lisanby SH, Peterchev AV. Coil design considerations for deep transcranial magnetic stimulation. Clin Neurophysiol. 2014;125(6):1202–12.

    Article  PubMed  Google Scholar 

  41. Sack AT, Cohen Kadosh R, Schuhmann T, Moerel M, Walsh V, Goebel R. Optimizing functional accuracy of TMS in cognitive studies: a comparison of methods. J Cogn Neurosci. 2009;21(2):207–21.

    Article  PubMed  Google Scholar 

  42. Zangen A, Roth Y, Voller B, Hallett M. Transcranial magnetic stimulation of deep brain regions: evidence for efficacy of the H-coil. Clin Neurophysiol. 2005;116(4):775–9.

    Article  PubMed  Google Scholar 

  43. Beynel L, Powers JP, Appelbaum LG. Effects of repetitive transcranial magnetic stimulation on resting-state connectivity: a systematic review. NeuroImage. 2020;211:116596.

    Article  PubMed  Google Scholar 

  44. Riedel P, Heil M, Bender S, Dippel G, Korb FM, Smolka MN, Marxen M. Modulating functional connectivity between medial frontopolar cortex and amygdala by inhibitory and excitatory transcranial magnetic stimulation. Hum Brain Mapp. 2019;40(15):4301–15.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jackson RL, Lambon Ralph MA, Pobric G. The timing of anterior temporal lobe involvement in semantic processing. J Cogn Neurosci. 2015;27(7):1388–96.

    Article  PubMed  Google Scholar 

  46. Sliwinska MWW, Khadilkar M, Campbell-Ratcliffe J, Quevenco F, Devlin JT. Early and sustained supramarginal gyrus contributions to phonological processing. Front Psychol. 2012;3:161.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Silvanto J, Cattaneo Z. Nonlinear interaction between stimulation intensity and initial brain state: evidence for the facilitatory/suppressive range model of online TMS effects. Neurosci Lett. 2021;742:135538.

    Article  CAS  PubMed  Google Scholar 

  48. Hanslmayr S, Roux F. Human memory: brain-state-dependent effects of stimulation. Curr Biol: CB. 2017;27(10):R385–7.

    Article  CAS  PubMed  Google Scholar 

  49. Mazzoni N, Jacobs C, Venuti P, Silvanto J, Cattaneo L. State-dependent TMS reveals representation of affective body movements in the anterior intraparietal cortex. J Neurosci. 2017;37(30):7231–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Silvanto J, & Cattaneo Z. State-dependent transcranial magnetic stimulation (TMS) protocols. In Transcranial magnetic stimulation. New York, NY: Humana Press, 2014; pp. 153–176.

    Google Scholar 

  51. Thut G, Bergmann TO, Fröhlich F, Soekadar SR, Brittain JS, Valero-Cabré A, et al. Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: a position paper. Clin Neurophysiol. 2017;128(5):843–57.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bestmann S, Walsh V. Transcranial electrical stimulation. Curr Biol. 2017;27(23):R1258–62.

    Article  CAS  PubMed  Google Scholar 

  53. Yavari F, Jamil A, Samani MM, Vidor LP, Nitsche MA. Basic and functional effects of transcranial electrical stimulation (tES)—an introduction. Neurosci Biobehav Rev. 2018;85:81–92.

    Article  PubMed  Google Scholar 

  54. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(3):633–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jacobson L, Koslowsky M, Lavidor M. tDCS polarity effects in motor and cognitive domains: a meta-analytical review. Exp Brain Res. 2012;216(1):1–10.

    Article  PubMed  Google Scholar 

  56. Antonenko D, Grittner U, Saturnino G, Nierhaus T, Thielscher A, Flöel A. Inter-individual and age-dependent variability in simulated electric fields induced by conventional transcranial electrical stimulation. NeuroImage. 2021;224:117413.

    Article  PubMed  Google Scholar 

  57. Opitz A, Paulus W, Will S, Antunes A, Thielscher A. Determinants of the electric field during transcranial direct current stimulation. NeuroImage. 2015;109:140–50.

    Article  PubMed  Google Scholar 

  58. To WT, De Ridder D, Hart J Jr, Vanneste S. Changing brain networks through non-invasive neuromodulation. Front Hum Neurosci. 2018;12:128.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Alam M, Truong DQ, Khadka N, Bikson M. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS). Phys Med Biol. 2016;61(12):4506.

    Article  PubMed  Google Scholar 

  60. Miranda PC, Callejón-Leblic MA, Salvador R, Ruffini G. Realistic modeling of transcranial current stimulation: the electric field in the brain. Curr Opin Biomed Eng. 2018;8:20–7.

    Article  Google Scholar 

  61. Salvador R, Truong DQ, Bikson M, Opitz A, Dmochowski J, & Miranda PC. Role of computational modeling for dose determination. In Practical guide to transcranial direct current stimulation. Springer, Cham; 2019; pp. 233–262.

    Google Scholar 

  62. Oldrati V, Colombo B, Antonietti A. Combination of a short cognitive training and tDCS to enhance visuospatial skills: a comparison between online and offline neuromodulation. Brain Res. 2018;1678:32–9.

    Article  CAS  PubMed  Google Scholar 

  63. Antal A, Paulus W. Transcranial alternating current stimulation (tACS). Front Hum Neurosci. 2013;7:317.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Riddle J, Frohlich F. Targeting neural oscillations with transcranial alternating current stimulation. Brain Res. 2021;1765:147491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Antal A, Herrmann CS. Transcranial alternating current and random noise stimulation: possible mechanisms. Neural Plast. 2016;2016:3616807.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Murphy OW, Hoy KE, Wong D, Bailey NW, Fitzgerald PB, Segrave RA. Transcranial random noise stimulation is more effective than transcranial direct current stimulation for enhancing working memory in healthy individuals: behavioural and electrophysiological evidence. Brain Stimul. 2020;13(5):1370–80.

    Article  CAS  PubMed  Google Scholar 

  67. Penton T, Dixon L, Evans LJ, Banissy MJ. Emotion perception improvement following high frequency transcranial random noise stimulation of the inferior frontal cortex. Sci Rep. 2017;7(1):1–7.

    Article  CAS  Google Scholar 

  68. Diedrich J, Benedek M, Jauk E, Neubauer AC. Are creative ideas novel and useful? Psychology of aesthetics. Creativity Arts. 2015;9:35–40.

    Google Scholar 

  69. Runco MA, Jaeger GJ. The standard definition of creativity. Creat Res J. 2012;24(1):92–6.

    Article  Google Scholar 

  70. Beaty RE, Benedeck M, Silvia PJ, Schacter DL. Creative cognition and brain network dynamics. Trends Cogn Sci. 2016;20:87–95. https://doi.org/10.1016/j.tics.2015.10.004.

    Article  PubMed  Google Scholar 

  71. Benedek M. The neuroscience of creative idea generation. In: Kapoula Z, Renoult J, Volle E, Andreatta M, editors. Exploring transdisciplinarity in art and science. Cham: Springer Nature Switzerland AG; 2018. p. 31–48. https://doi.org/10.1007/978-3-319-76054-4.

    Chapter  Google Scholar 

  72. Benedek M, Jauk E. Creativity and cognitive control. In: Kaufman J, Sternberg R, editors. Cambridge handbook of creativity. Cambridge: Cambridge University Press; 2019. p. 200–23. https://doi.org/10.1017/9781316979839.012.

    Chapter  Google Scholar 

  73. Boot N, Baas M, van Gaal S, Cools R, De Dreu C. Creative cognition and dopaminergic modulation of fronto-striatal networks: integrative review and research agenda. Neurosci Biobehav Rev. 2017;78:13–23. https://doi.org/10.1016/j.neubiorev.2017.04.007.

    Article  CAS  PubMed  Google Scholar 

  74. Nijstad BA, De Dreu CKW, Rietzschel EF, Baas M. The dual pathway to creativity model: creative ideation as a function of flexibility and persistence. Eur Rev Soc Psychol. 2010;21:34–77.

    Article  Google Scholar 

  75. Seeley WW, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27:2349–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Waskom ML, Kumaran D, Gordon AM, Rissman J, Wagner AD. Frontoparietal representations of task context support the flexible control of goal-directed cognition. J Neurosci. 2014;34(32):10743–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38.

    Article  PubMed  Google Scholar 

  78. Raichle ME, et al. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98:676–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Alexander GE, DeLong MR, Strick PL. Parallel organisation of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357–81.

    Article  CAS  PubMed  Google Scholar 

  80. Cooper S, Robison AJ, Mazei-Robison MS. Reward circuitry in addiction. Neurotherapeutics. 2017;14(3):687–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cools R, Sheridan M, Jacobs E, D’Esposito M. Impulsive personality predicts dopamine-dependent changes in frontostriatal activity during component processes of working memory. J Neurosci. 2007;27:5506–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dodds CM, Clark L, Dove A, Regenthal R, Baumann F, Bullmore E, Robbins TW, Müller U. The dopamine D2 receptor antagonist sulpiride modulates striatal BOLD signal during the manipulation of information in working memory. Psychopharmacology. 2009;207:35–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Durstewitz D, Seamans JK. The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-o-methyltransferase genotypes and schizophrenia. Biol Psychiatry. 2008;64:739–49.

    Article  CAS  PubMed  Google Scholar 

  84. Fink A, Grabner RH, Benedek M, Reishofer G, Hauswirth V, Fally M, Neuper C, Ebner F, Neubauer AC. The creative brain: investigation of brain activity during creative problem solving by means of EEG and FMRI. Hum Brain Mapp. 2009;30(3):734–48.

    Article  PubMed  Google Scholar 

  85. Jauk E, Benedek M, Neubauer AC. Tackling creativity at its roots: evidence for different patterns of EEG α activity related to convergent and divergent modes of task processing. Int J Psychophysiol. 2012;84(2):219–25.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Fink A, Benedek M. EEG alpha power and creative ideation. Neurosci Biobehav Rev. 2014;44(100):111–23. https://doi.org/10.1016/j.neubiorev.2012.12.002.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Fink A, Neubauer AC. EEG alpha oscillations during the performance of verbal creativity tasks: differential effects of sex and verbal intelligence. Int J Psychophysiol. 2006;62(1):46–53.

    Article  PubMed  Google Scholar 

  88. Grabner RH, Fink A, Neubauer AC. Brain correlates of self-rated originality of ideas: evidence from event-related power and phase-locking changes in the EEG. Behav Neurosci. 2007;121(1):224–30.

    Article  PubMed  Google Scholar 

  89. Jung-Beeman M, Bowden EM, Haberman J, Frymiare JL, Arambel-Liu S, Greenblatt R, Reber PJ, Kounios J. Neural activity when people solve verbal problems with insight. PLoS Biol. 2004;2(4):E97.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kaufman JC, Plucker JA, Baer J. Essentials of creativity assessment. Wiley; 2008.

    Google Scholar 

  91. Mednick SA. The associative basis of the creative process. Psychol Rev. 1962;69:220–32.

    Article  CAS  PubMed  Google Scholar 

  92. Guilford JP. Creativity. Am Psychol. 1950;5:444–54. https://doi.org/10.1037/h0063487.

    Article  CAS  PubMed  Google Scholar 

  93. Kounios J, Beeman M. The cognitive neuroscience of insight. Annu Rev Psychol. 2014;65:71–93.

    Article  PubMed  Google Scholar 

  94. Weinberger AB, Green AE, Chrysikou EG. Using transcranial direct current stimulation to enhance creative cognition: interactions between task, polarity, and stimulation site. Front Hum Neurosci. 2017;11:246.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Cerruti C, Schlaug G. Anodal transcranial direct current stimulation of the prefrontal cortex enhances complex verbal associative thought. J Cogn Neurosci. 2009;21(10):1980–7.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Xiang S, Qi S, Li Y, Wang L, Dai DY, Hu W. Trait anxiety moderates the effects of tDCS over the dorsolateral prefrontal cortex (DLPFC) on creativity. Personal Individ Differ. 2021;177 https://doi.org/10.1016/j.paid.2021.110804.

  97. Zmigrod S, Colzato LS, Hommel B. Stimulating creativity: modulation of convergent and divergent thinking by transcranial direct current stimulation (tDCS). Creat Res J. 2015;27(4):353–60.

    Article  Google Scholar 

  98. Peña J, Sampedro A, Ibarretxe-Bilbao N, Zubiaurre-Elorza L, Ojeda N. Improvement in creativity after transcranial random noise stimulation (tRNS) over the left dorsolateral prefrontal cortex. Sci Rep. 2019;9(1):7116. https://doi.org/10.1038/s41598-019-43626-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bartel G, Rameses I, Lamm C, Riečanský I, Marko M. Left prefrontal cortex supports the recognition of meaningful patterns in ambiguous stimuli. Front Neurosci. 2020;14

    Google Scholar 

  100. Colombo B, Bartesaghi N, Simonelli L, Antonietti A. The combined effects of neurostimulation and priming on creative thinking. A preliminary tDCS study on dorsolateral prefrontal cortex. Front Hum Neurosci. 2015;9:403.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Torrance EP, & Personnel Press. Torrance tests of creative thinking. Princeton, NJ: Personnel Press; 1966.

    Google Scholar 

  102. Green AE, Spiegel KA, Giangrande EJ, Weinberger AB, Gallagher NM, Turkeltaub PE. Thinking cap plus thinking zap: tDCS of frontopolar cortex improves creative analogical reasoning and facilitates conscious augmentation of state creativity in verb generation. Cereb Cortex. 2017;27:2628–39. https://doi.org/10.1093/cercor/bhw080.

    Article  PubMed  Google Scholar 

  103. Grabner RH, Krenn J, Fink A, Arendasy M, Benedek M. Effects of alpha and gamma transcranial alternating current stimulation (tACS) on verbal creativity and intelligence test performance. Neuropsychologia. 2018;118(Pt A):91–8.

    Article  PubMed  Google Scholar 

  104. Lustenberger C, Boyle MR, Foulser AA, Mellin JM, Fröhlich F. Functional role of frontal alpha oscillations in creativity. Cortex. 2015;67:74–82. https://doi.org/10.1016/j.cortex.2015.03.012.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Koizumi K, Ueda K, Li Z, Nakao M. Effects of transcranial direct current stimulation on brain networks related to creative thinking. Front Hum Neurosci. 2020;14:541052.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Chrysikou EG, Morrow HM, Flohrschutz A, Denney L. Augmenting ideational fluency in a creativity task across multiple transcranial direct current stimulation montages. Sci Rep. 2021;11(1):8874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chrysikou EG, Hamilton RH, Coslett HB, Datta A, Bikson M, Thompson-Schill SL. Noninvasive transcranial direct current stimulation over the left prefrontal cortex facilitates cognitive flexibility in tool use. Cogn Neurosci. 2013;4:81–9.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ivancovsky T, Kurman J, Morio H, Shamay-Tsoory S. Transcranial direct current stimulation (tDCS) targeting the left inferior frontal gyrus: effects on creativity across cultures. Soc Neurosci. 2019;14(3):277–85.

    Article  PubMed  Google Scholar 

  109. Hertenstein E, Waibel E, Frase L, Riemann D, Feige B, Nitsche MA, Kaller CP, Nissen C. Modulation of creativity by transcranial direct current stimulation. Brain Stimul. 2019;12(5):1213–21. https://doi.org/10.1016/j.brs.2019.06.004.

    Article  PubMed  Google Scholar 

  110. Khalil R, Karim AA, Kondinska A, Godde B. Effects of transcranial direct current stimulation of left and right inferior frontal gyrus on creative divergent thinking are moderated by changes in inhibition control. Brain Struct Funct. 2020;225(6):1691–704.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Mayseless N, Shamay-Tsoory SG. Enhancing verbal creativity: modulating creativity by altering the balance between right and left inferior frontal gyrus with tDCS. Neuroscience. 2015;291:167–76.

    Article  CAS  PubMed  Google Scholar 

  112. Kleinmintz OM, Abecasis D, Tauber A, Geva A, Chistyakov AV, Kreinin I, Klein E, Shamay-Tsoory SG. Participation of the left inferior frontal gyrus in human originality. Brain Struct Funct. 2018;223(1):329–41.

    Article  PubMed  Google Scholar 

  113. Ramanan S, Piguet O, Irish M. Rethinking the role of the angular gyrus in remembering the past and imagining the future: the contextual integration model. Neuroscientist. 2018;24(4):342–52.

    Article  PubMed  Google Scholar 

  114. Tibon R, Fuhrmann D, Levy DA, Simons JS, Henson RN. Multimodal integration and vividness in the angular gyrus during episodic encoding and retrieval. J Neurosci. 2019;39(22):4365–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Berkowitz AL, Ansari D. Expertise-related deactivation of the right temporoparietal junction during musical improvisation. NeuroImage. 2010;49:712–9.

    Article  PubMed  Google Scholar 

  116. Fink A, Grabner RH, Gebauer D, Reishofer G, Koschutnig K, Ebner F. Enhancing creativity by means of cognitive stimulation: evidence from an fMRI study. NeuroImage. 2010;52(4):1687–95.

    Article  PubMed  Google Scholar 

  117. Howard-Jones PA, Blakemore SJ, Samuel EA, Summers IR, Claxton G. Semantic divergence and creative story generation: an fMRI investigation. Brain Res Cogn Brain Res. 2005;25(1):240–50.

    Article  PubMed  Google Scholar 

  118. Kowatari Y, Lee SH, Yamamura H, Nagamori Y, Levy P, Yamane S, Yamamoto M. Neural networks involved in artistic creativity. Hum Brain Mapp. 2009;30(5):1678–90.

    Article  PubMed  Google Scholar 

  119. Lifshitz-Ben-Basat A, Mashal N. Enhancing creativity by altering the frontoparietal control network functioning using transcranial direct current stimulation. Exp Brain Res. 2021;239(2):613–26.

    Article  PubMed  Google Scholar 

  120. Benedek M, Beaty R, Jauk E, Koschutnig K, Fink A, Silvia PJ, Dunst B, Neubauer AC. Creating metaphors: the neural basis of figurative language production. NeuroImage. 2014a;90:99–106. https://doi.org/10.1016/j.neuroimage.2013.12.046.

    Article  PubMed  Google Scholar 

  121. Pick H, Lavidor M. Modulation of automatic and creative features of the remote associates test by angular gyrus stimulation. Neuropsychologia. 2019;129:348–56.

    Article  PubMed  Google Scholar 

  122. Thakral PP, Madore KP, Kalinowski SE, Schacter DL. Modulation of hippocampal brain networks produces changes in episodic simulation and divergent thinking. Proc Natl Acad Sci U S A. 2020;117(23):12729–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Peña J, Sampedro A, Ibarretxe-Bilbao N, Zubiaurre-Elorza L, Aizpurua A, Ojeda N. The effect of transcranial random noise stimulation (tRNS) over bilateral posterior parietal cortex on divergent and convergent thinking. Sci Rep. 2020;10(1):15559.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Miller BL, Cummings J, Mishkin F, Boone K, Prince F, Ponton M, Cotman C. Emergence of artistic talent in frontotemporal dementia. Neurology. 1998;51(4):978–82.

    Article  CAS  PubMed  Google Scholar 

  125. Snyder AW, Mulcahy E, Taylor JL, Mitchell DJ, Sachdev P, Gandevia SC. Savant-like skills exposed in normal people by suppressing the left fronto-temporal lobe. J Integr Neurosci. 2003;2(02):149–58.

    Article  PubMed  Google Scholar 

  126. Young RL, Ridding MC, Morrell TL. Switching skills on by turning off part of the brain. Neurocase. 2004;10(3):215–22.

    Article  PubMed  Google Scholar 

  127. Simis M, Bravo GL, Boggio PS, Devido M, Gagliardi RJ, Fregni F. Transcranial direct current stimulation in de novo artistic ability after stroke. Neuromodulation J Int Neuromodulation Soc. 2014;17(5):497–501.

    Article  Google Scholar 

  128. Woollams AM, Lindley J, Pobric LG, Hoffman P. Laterality of anterior temporal lobe repetitive transcranial magnetic stimulation determines the degree of disruption in picture naming. Brain Struct Funct. 2017;222(8):3749–59.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Chi RP, Snyder AW. Facilitate insight by non-invasive brain stimulation. PLoS One. 2011;6:e16655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chi RP, Snyder AW. Brain stimulation enables the solution of an inherently difficult problem. Neurosci Lett. 2012;515:121–4. https://doi.org/10.1016/j.neulet.2012.03.012.

    Article  CAS  PubMed  Google Scholar 

  131. Luft C, Zioga I, Thompson NM, Banissy MJ, Bhattacharya J. Right temporal alpha oscillations as a neural mechanism for inhibiting obvious associations. Proc Natl Acad Sci U S A. 2018;115(52):E12144–52. https://doi.org/10.1073/pnas.1811465115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Santarnecchi E, Sprugnoli G, Bricolo E, Costantini G, Liew SL, Musaeus CS, Salvi C, Pascual-Leone A, Rossi A, Rossi S. Gamma tACS over the temporal lobe increases the occurrence of Eureka! Moments. Sci Rep. 2019;9(1):5778.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Goel V, Eimontaite I, Goel A, Schindler I. Differential modulation of performance in insight and divergent thinking tasks with tDCS. J Probl Solving. 2015;8:1. https://doi.org/10.7771/1932-6246.1172.

    Article  Google Scholar 

  134. Benedek M, Jauk E, Fink A, Koschutnig K, Reishofer G, Ebner F, Neubauer AC. To create or to recall? Neural mechanisms underlying the generation of creative new ideas. NeuroImage. 2014b;88(100):125–33. https://doi.org/10.1016/j.neuroimage.2013.11.021.

    Article  PubMed  Google Scholar 

  135. Benedek M, Schües T, Beaty R, Jauk E, Koschutnig K, Fink A, Neubauer AC. To create or to recall original ideas: brain processes associated with the imagination of novel object uses. Cortex. 2018;99:93–102. https://doi.org/10.1016/j.cortex.2017.10.024.

    Article  PubMed  Google Scholar 

  136. Matheson HE, Buxbaum LJ, Thompson-Schill SL. Differential tuning of ventral and dorsal streams during the generation of common and uncommon tool uses. J Cogn Neurosci. 2017;29(11):1791–802.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Wu CC, Hamm JP, Lim VK, Kirk IJ. Mu rhythm suppression demonstrates action representation in pianists during passive listening of piano melodies. Exp Brain Res. 2016;234(8):2133–9. https://doi.org/10.1007/s00221-016-4615-7.

    Article  PubMed  Google Scholar 

  138. Pau S, Jahn G, Sakreida K, Domin M, Lotze M. Encoding and recall of finger sequences in experienced pianists compared with musically naïve controls: a combined behavioral and functional imaging study. NeuroImage. 2013;64:379–87.

    Article  CAS  PubMed  Google Scholar 

  139. Boasen J, Takeshita Y, Kuriki S, Yokosawa K. Spectral-spatial differentiation of brain activity during mental imagery of improvisational music performance using MEG. Front Hum Neurosci. 2018;12:156.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Schlegel A, Alexander P, Fogelson SV, Li X, Lu Z, Kohler PJ, Riley E, Tse PU, Meng M. The artist emerges: visual art learning alters neural structure and function. NeuroImage. 2015;105:440–51. https://doi.org/10.1016/j.neuroimage.2014.11.014.

    Article  PubMed  Google Scholar 

  141. Saggar M, Quintin E-M, Bott NT, Kienitz E, Chien Y-H, Hong DWC, et al. Changes in brain activation associated with spontaneous improvization and figural creativity after design-thinking-based training: a longitudinal fMRI study. Cerebr Cortex. 2017;27(7):3542–52.

    Google Scholar 

  142. Anic A, Olsen KN, Thompson WF. Investigating the role of the primary motor cortex in musical creativity: a transcranial direct current stimulation study. Front Psychol. 2018;9:1758. https://doi.org/10.3389/fpsyg.2018.01758.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Vartanian O, Skov M. Neural correlates of viewing paintings: evidence from a quantitative meta-analysis of functional magnetic resonance imaging data. Brain Cogn. 2014;87:52–6.

    Article  PubMed  Google Scholar 

  144. Vessel EA, Starr GG, Rubin N. The brain on art: intense aesthetic experience activates the default mode network. Front Hum Neurosci. 2012;6:66.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Ramachandran VS, Hirstein W. The science of art: a neurological theory of aesthetic experience. J Conscious Stud. 1999;6(6–7):15–51.

    Google Scholar 

  146. Cattaneo L, Rizzolatti G. The mirror neuron system. Arch Neurol. 2009;66(5):557–60.

    Article  PubMed  Google Scholar 

  147. Freedberg D, Gallese V. Motion, emotion and empathy in esthetic experience. Trends Cogn Sci. 2007;11(5):197–203.

    Article  PubMed  Google Scholar 

  148. Ishizu T, Zeki S. Toward a brain-based theory of beauty. PLoS One. 2011;6(7):e21852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kawabata H, Zeki S. Neural correlates of beauty. J Neurophysiol. 2004;91(4):1699–705.

    Article  PubMed  Google Scholar 

  150. Nakamura K, Kawashima R, Nagumo S, Ito K, Sugiura M, Kato T, Nakamura A, Hatano K, Kubota K, Fukuda H, Kojima S. Neuroanatomical correlates of the assessment of facial attractiveness. Neuroreport. 1998;9(4):753–7.

    Article  CAS  PubMed  Google Scholar 

  151. Chatterjee A, Thomas A, Smith SE, Aguirre GK. The neural response to facial attractiveness. Neuropsychology. 2009;23(2):135.

    Article  PubMed  Google Scholar 

  152. Lacey S, Hagtvedt H, Patrick VM, Anderson A, Stilla R, Deshpande G, Hu X, Sato J, Reddy S, Sathian K. Art for reward’s sake: visual art recruits the ventral striatum. NeuroImage. 2011;55(1):420–33.

    Article  PubMed  Google Scholar 

  153. Brown S, Gao X, Tisdelle L, Eickhoff SB, Liotti M. Naturalizing aesthetics: brain areas for aesthetic appraisal across sensory modalities. NeuroImage. 2011;58(1):250–8.

    Article  PubMed  Google Scholar 

  154. Cupchik GC, Vartanian O, Crawley A, Mikulis DJ. Viewing artworks: contributions of cognitive control and perceptual facilitation to aesthetic experience. Brain Cogn. 2009;70(1):84–91.

    Article  PubMed  Google Scholar 

  155. Di Dio C, Ardizzi M, Massaro D, Di Cesare G, Gilli G, Marchetti A, Gallese V. Human, nature, dynamism: the effects of content and movement perception on brain activations during the aesthetic judgment of representational paintings. Front Hum Neurosci. 2016;9:705.

    PubMed  PubMed Central  Google Scholar 

  156. Di Dio C, Canessa N, Cappa SF, Rizzolatti G. Specificity of esthetic experience for artworks: an FMRI study. Front Hum Neurosci. 2011;5:139.

    PubMed  PubMed Central  Google Scholar 

  157. Di Dio C, Macaluso E, Rizzolatti G. The golden beauty: brain response to classical and renaissance sculptures. PLoS One. 2007;2(11):e1201.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Ishizu T, Zeki S. The brain's specialized systems for aesthetic and perceptual judgment. Eur J Neurosci. 2013;37(9):1413–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Osaka N, Minamoto T, Yaoi K, Osaka M. Neural correlates of delicate sadness: an FMRI study based on the neuroaesthetics of Noh masks. Neuroreport. 2012;23(1):26–9.

    Article  PubMed  Google Scholar 

  160. Kirk U, Skov M, Hulme O, Christensen MS, Zeki S. Modulation of aesthetic value by semantic context: an fMRI study. NeuroImage. 2009;44(3):1125–32.

    Article  PubMed  Google Scholar 

  161. Silveira S, Fehse K, Vedder A, Elvers K, Hennig-Fast K. Is it the picture or is it the frame? An fMRI study on the neurobiology of framing effects. Front Hum Neurosci. 2015;9:528.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Belfi AM, Vessel EA, Brielmann A, Isik AI, Chatterjee A, Leder H, Pelli DG, Starr GG. Dynamics of aesthetic experience are reflected in the default-mode network. NeuroImage. 2019;188:584–97.

    Article  PubMed  Google Scholar 

  163. Cela-Conde CJ, Ayala FJ, Munar E, Maestú F, Nadal M, Capó MA, del Río D, López-Ibor JJ, Ortiz T, Mirasso C, Marty G. Sex-related similarities and differences in the neural correlates of beauty. Proc Natl Acad Sci U S A. 2009;106:3847–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Cela-Conde CJ, García-Prieto J, Ramasco JJ, Mirasso CR, Bajo R, Munar E, Flexas A, Del Pozo F, Maestú F. Dynamics of brain networks in the aesthetic appreciation. Proc Natl Acad Sci U S A. 2013;110(Supplement 2):10454–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Vessel EA, Isik AI, Belfi AM, Stahl JL, Starr GG. The default- mode network represents aesthetic appeal that generalizes across visual domains. Proc Natl Acad Sci U S A. 2019;116(38):19155–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Vessel EA, Starr GG, Rubin N. Art reaches within: aesthetic experience, the self and the default mode network. Front Neurosci. 2013;7:258.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Jacobs RH, Renken R, Cornelissen FW. Neural correlates of visual aesthetics–beauty as the coalescence of stimulus and internal state. PLoS One. 2012;7(2):e31248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Jacobsen T, Schubotz RI, Höfel L, Cramon DYV. Brain correlates of aesthetic judgment of beauty. NeuroImage. 2006;29(1):276–85.

    Article  PubMed  Google Scholar 

  169. Vartanian O, Goel V. Neuroanatomical correlates of aesthetic preference for paintings. Neuroreport. 2004;15(5):893–7.

    Article  PubMed  Google Scholar 

  170. Ticini LF. The role of the orbitofrontal and dorsolateral prefrontal cortices in aesthetic preference for art. Behav Sci. 2017;7:2.

    Article  Google Scholar 

  171. Cattaneo Z, Ferrari C, Schiavi S, Alekseichuk I, Antal A, Nadal M. Medial prefrontal cortex involvement in aesthetic appreciation of paintings: a tDCS study. Cogn Process. 2020;21:65.

    Article  PubMed  Google Scholar 

  172. Cattaneo Z, Lega C, Flexas A, Nadal M, Munar E, Cela-Conde CJ. The world can look better: enhancing beauty experience with brain stimulation. Soc Cogn Affect Neurosci. 2014a;9(11):1713–21.

    Article  PubMed  Google Scholar 

  173. Cattaneo Z, Lega C, Gardelli C, Merabet LB, Cela-Conde CJ, Nadal M. The role of prefrontal and parietal cortices in esthetic appreciation of representational and abstract art: a TMS study. NeuroImage. 2014b;99:443–50.

    Article  PubMed  Google Scholar 

  174. Chib VS, Yun K, Takahashi H, Shimojo S. Noninvasive remote activation of the ventral midbrain by transcranial direct current stimulation of prefrontal cortex. Transl Psychiatry. 2013;3(6):e268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Ferrari C, Lega C, Tamietto M, Nadal M, Cattaneo Z. I find you more attractive... After (prefrontal cortex) stimulation. Neuropsychologia. 2015;72:87–93.

    Article  PubMed  Google Scholar 

  176. Koehler S, Ovadia-Caro S, van der Meer E, Villringer A, Heinz A, Romanczuk-Seiferth N, Margulies DS. Increased functional connectivity between prefrontal cortex and reward system in pathological gambling. PLoS One. 2013;8(12):e84565.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Keeser D, Meindl T, Bor J, Palm U, Pogarell O, Mulert C, et al. Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. J Neurosci. 2011;31(43):15284–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Pelowski M, Markey PS, Forster M, Gerger G, Leder H. Move me, astonish me... delight my eyes and brain: the Vienna integrated model of top-down and bottom-up processes in art perception (VIMAP) and corresponding affective, evaluative, and neurophysiological correlates. Phys Life Rev. 2017;21:80–125.

    Article  PubMed  Google Scholar 

  179. Bartolomeo P, Seidel Malkinson T. Hemispheric lateralization of attention processes in the human brain. Curr Opin Psychol. 2019;29:90–6.

    Article  PubMed  Google Scholar 

  180. Fairhall SL, Ishai A. Neural correlates of object indeterminacy in art compositions. Conscious Cogn. 2008;17(3):923–32.

    Article  PubMed  Google Scholar 

  181. Fogassi L, Luppino G. Motor functions of the parietal lobe. Curr Opin Neurobiol. 2005;15:626–31.

    Article  CAS  PubMed  Google Scholar 

  182. Larsen T, O’Doherty JP. Uncovering the spatiotemporal dynamics of value-based decision-making in the human brain: a combined fMRI-EEG study. Philos Trans R Soc Lond Ser B Biol Sci. 2014;369(1655):20130473.

    Article  Google Scholar 

  183. Grosbras MH, Tan H, Pollick F. Dance and emotion in posterior parietal cortex: a low-frequency rTMS study. Brain Stimul. 2012;5(2):130–6.

    Article  PubMed  Google Scholar 

  184. Calvo-Merino B, Glaser DE, Grèzes J, Passingham RE, Haggard P. Action observation and acquired motor skills: an fMRI study with expert dancers. Cereb Cortex. 2005;15(8):1243–9.

    Article  CAS  PubMed  Google Scholar 

  185. Calvo-Merino B, Grèzes J, Glaser DE, Passingham RE, Haggard P. Seeing or doing? Influence of visual and motor familiarity in action observation. Curr Biol. 2006;16(19):1905–10.

    Article  CAS  PubMed  Google Scholar 

  186. Calvo-Merino B, Jola C, Glaser DE, Haggard P. Towards a sensorimotor aesthetics of performing art. Conscious Cogn. 2008;17(3):911–22.

    Article  CAS  PubMed  Google Scholar 

  187. Cross ES, Kirsch L, Ticini LF, Schütz-Bosbach S. The impact of aesthetic evaluation and physical ability on dance perception. Front Hum Neurosci. 2011;5:102.

    Article  PubMed  PubMed Central  Google Scholar 

  188. de Gelder B, Watson R, Zhan M, Diano M, Tamietto M, Vaessen MJ. Classical paintings may trigger pain and pleasure in the gendered brain. cortex. 2018;109:171–80.

    Article  PubMed  Google Scholar 

  189. Nakamura K, Kawabata H. Transcranial direct current stimulation over the medial prefrontal cortex and left primary motor cortex (mPFC-lPMC) affects subjective beauty but not ugliness. Front Hum Neurosci. 2015;9:654.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Battaglia F, Lisanby SH, Freedberg D. Corticomotor excitability during observation and imagination of a work of art. Front Hum Neurosci. 2011;5:79.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Finisguerra A, Ticini LF, Kirsch LP, Cross ES, Kotz SA, Urgesi C. Dissociating embodiment and emotional reactivity in motor responses to artworks. Cognition. 2021;212:104663.

    Article  PubMed  Google Scholar 

  192. Fiori F, Plow E, Rusconi ML, Cattaneo Z. Modulation of corticospinal excitability during paintings viewing: a TMS study. Neuropsychologia. 2020;149

    Google Scholar 

  193. Jola C, Grosbras MH. In the here and now: enhanced motor corticospinal excitability in novices when watching live compared to video recorded dance. Cogn Neurosci. 2013;4(2):90–8.

    Article  PubMed  Google Scholar 

  194. Calvo-Merino B, Urgesi C, Orgs G, Aglioti SM, Haggard P. Extrastriate body area underlies aesthetic evaluation of body stimuli. Exp Brain Res. 2010;204(3):447–56.

    Article  CAS  PubMed  Google Scholar 

  195. Urgesi C, Calvo-Merino B, Haggard P, Aglioti SM. Transcranial magnetic stimulation reveals two cortical pathways for visual body processing. J Neurosci. 2007;27(30):8023–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Cazzato V, Mele S, Urgesi C. Different contributions of visual and motor brain areas during liking judgments of same- and different-gender bodies. Brain Res. 2016;1646:98–108.

    Article  CAS  PubMed  Google Scholar 

  197. Grill-Spector K. The neural basis of object perception. Curr Opin Neurobiol. 2003;13(2):159–66.

    Article  CAS  PubMed  Google Scholar 

  198. Cattaneo Z, Lega C, Ferrari C, Vecchi T, Cela-Conde CJ, Silvanto J, Nadal M. The role of the lateral occipital cortex in aesthetic appreciation of representational and abstract paintings: a TMS study. Brain Cogn. 2015;95:44–53.

    Article  PubMed  Google Scholar 

  199. Osaka N, Matsuyoshi D, Ikeda T, Osaka M. Implied motion because of instability in Hokusai Manga activates the human motion-sensitive extrastriate visual cortex: an fMRI study of the impact of visual art. Neuroreport. 2010;21(4):264–7.

    Article  PubMed  Google Scholar 

  200. Thakral PP, Moo LR, Slotnick SD. A neural mechanism for aesthetic experience. Neuroreport. 2012;23:310–3.

    Article  PubMed  Google Scholar 

  201. Massaro D, Savazzi F, Di Dio C, Freedberg D, Gallese V, Gilli G, Marchetti A. When art moves the eyes: a behavioral and eye-tracking study. PLoS One. 2012;7(5):e37285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Kourtzi Z, Kanwisher N. Activation in human MT/MST by static images with implied motion. J Cogn Neurosci. 2000;12(1):48–55.

    Article  CAS  PubMed  Google Scholar 

  203. Williams AL, Wright MJ. Static representations of speed and their neural correlates in human area MT/V5. Neuroreport. 2009;20(16):1466–70.

    Article  PubMed  Google Scholar 

  204. Cattaneo Z, Schiavi S, Silvanto J, Nadal M. A TMS study on the contribution of visual area V5 to the perception of implied motion in art and its appreciation. Cogn Neurosci. 2017;8(1):59–68.

    Article  PubMed  Google Scholar 

  205. Ferrari C, Schiavi S, Cattaneo Z. TMS over the superior temporal sulcus affects expressivity evaluation of portraits. Cogn Affect Behav Neurosci. 2018;18(6):1188–97.

    Article  PubMed  Google Scholar 

  206. Alekseichuk I, Turi Z, Amador de Lara G, Antal A, Paulus W. Spatial working memory in humans depends on theta and high gamma synchronization in the prefrontal cortex. Curr Biol. 2016;26(12):1513–21.

    Article  CAS  PubMed  Google Scholar 

  207. Manuel AL, David AW, Bikson M, Schnider A. Frontal tDCS modulates orbitofrontal reality filtering. Neuroscience. 2014;265:21–7.

    Article  CAS  PubMed  Google Scholar 

  208. Opitz A, Falchier A, Yan C, Yeagle EM, Linn GS, Megevand P, Thielscher A, Deborah RA, Milham MP, Mehta AD, Schroeder CE. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and non-human primates. Sci Rep. 2016;6:31236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Gamboa OL, Brito A, Abzug Z, D’Arbeloff T, Beynel L, Wing EA, et al. Application of long-interval paired-pulse transcranial magnetic stimulation to motion-sensitive visual cortex does not lead to changes in motion discrimination. Neurosci Lett. 2020;730:135022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Momi D, Neri F, Coiro G, Smeralda C, Veniero D, Sprugnoli G, et al. Cognitive enhancement via network-targeted cortico-cortical associative brain stimulation. Cereb Cortex. 2020;30(3):1516–27.

    Article  CAS  PubMed  Google Scholar 

  211. Bimler DL, Snellock M, Paramei GV. Art expertise in construing meaning of representational and abstract artworks. Acta Psychol. 2019;192:11–22.

    Article  Google Scholar 

  212. Else JE, Ellis J, Orme E. Art expertise modulates the emotional response to modern art, especially abstract: an ERP investigation. Front Hum Neurosci. 2015;9:525.

    Article  PubMed  PubMed Central  Google Scholar 

  213. Era V, Candidi M, Aglioti SM. Contextual and social variables modulate aesthetic appreciation of bodily and abstract art stimuli. Acta Psychol. 2019;199:102881.

    Article  Google Scholar 

  214. Fudali-Czyż A, Francuz P, Augustynowicz P. The effect of art expertise on eye fixation-related potentials during aesthetic judgment task in focal and ambient modes. Front Psychol. 2018;9:1972. https://doi.org/10.3389/fpsyg.2018.01972.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Yeh Y, Peng Y. The influences of aesthetic life experience and expertise on aesthetic judgement and emotion in mundane arts. Int J Art Design Educ. 2019;38(2):492–507.

    Article  Google Scholar 

  216. Levy JM, Zold CL, Namboodiri VMK, Shuler MGH. The timing of reward-seeking action tracks visually cued theta oscillations in primary visual cortex. J Neurosci. 2017;37(43):10408–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Marco-Pallarés J, Münte TF, Rodríguez-Fornells A. The role of high-frequency oscillatory activity in reward processing and learning. Neurosci Biobehav Rev. 2015;49:1–7.

    Article  PubMed  Google Scholar 

  218. Badran BW, Caulfield KA, Stomberg-Firestein S, Summers PM, Dowdle LT, Savoca M, et al. Sonication of the anterior thalamus with MRI-guided transcranial focused ultrasound (tFUS) alters pain thresholds in healthy adults: a double-blind, sham-controlled study. Brain Stimul. 2020;13(6):1805–12.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Cattaneo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ciricugno, A., Slaby, R.J., Benedek, M., Cattaneo, Z. (2023). The Contribution of Non-invasive Brain Stimulation to the Study of the Neural Bases of Creativity and Aesthetic Experience. In: Richard, A., Pelowski, M., Spee, B.T. (eds) Art and Neurological Disorders. Current Clinical Neurology. Humana, Cham. https://doi.org/10.1007/978-3-031-14724-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14724-1_7

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-14723-4

  • Online ISBN: 978-3-031-14724-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics