Skip to main content

Advertisement

Log in

The uses and interpretations of the motor-evoked potential for understanding behaviour

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The motor-evoked potential (MEP) elicited in peripheral muscles by transcranial magnetic stimulation (TMS) over human motor cortex is one of the hallmark measures for non-invasive quantification of cortical and spinal excitability in cognitive and clinical neuroscience. In the present article, we distinguish three main uses for MEPs in studies of behaviour: for understanding execution and performance of actions, as markers of physiological change in the motor system, and as read-out of upstream processes influencing the motor system. Common to all three approaches is the assumption that different experimental manipulations act on the balance of excitatory and inhibitory pre-synaptic (inter)neurons at the stimulation site; this in turn contributes to levels of (post-synaptic) excitability of cortico-spinal output projections, which ultimately determines the size of MEPs recorded from peripheral muscles. We discuss the types of inference one can draw from human MEP measures given that the detailed physiological underpinnings of MEPs elicited by TMS are complex and remain incompletely understood. Awareness of the different mechanistic assumptions underlying different uses of MEPs can help inform both study design and interpretation of results obtained from human MEP studies of behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bagce HF, Saleh S, Adamovich SV, Krakauer JW, Tunik E (2013) Corticospinal excitability is enhanced after visuomotor adaptation and depends on learning rather than performance or error. J Neurophysiol 109:1097–1106

    PubMed Central  PubMed  Google Scholar 

  • Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1:1106–1107

    CAS  PubMed  Google Scholar 

  • Barker RN, Brauer SG, Barry BK, Gill TJ, Carson RG (2012) Training-induced modifications of corticospinal reactivity in severely affected stroke survivors. Exp Brain Res 221:211–221

    PubMed  Google Scholar 

  • Barthelemy D, Alain S, Grey MJ, Nielsen JB, Bouyer LJ (2012) Rapid changes in corticospinal excitability during force field adaptation of human walking. Exp Brain Res 217:99–115

    CAS  PubMed  Google Scholar 

  • Baud-Bovy G, Prattichizzo D, Rossi S (2008) Contact forces evoked by transcranial magnetic stimulation of the motor cortex in a multi-finger grasp. Brain Res Bull 75:723–736

    PubMed  Google Scholar 

  • Bergmann TO, Mölle M, Schmidt MA, Lindner C, Marshall L, Born J, Siebner HR (2012) EEG-guided transcranial magnetic stimulation reveals rapid shifts in motor cortical excitability during the human sleep slow oscillation. J Neurosci 32:243–253

    CAS  PubMed  Google Scholar 

  • Bestmann S (2012) Functional modulation of primary motor cortex during action selection. In: Chen R, Rothwell JC (eds) Cortical connectivity. Springer, Berlin, pp 183–206

    Google Scholar 

  • Bestmann S, Harrison LM, Blankenburg F, Mars RB, Haggard P, Friston KJ, Rothwell JC (2008) Influence of uncertainty and surprise on human corticospinal excitability during preparation for action. Curr Biol 18:775–780

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buch ER, Mars RB, Boorman ED, Rushworth MF (2010) A network centered on ventral premotor cortex exerts both facilitatory and inhibitory control over primary motor cortex during action reprogramming. J Neurosci 30:1395–1401

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burke D, Gracies JM, Mazevet D, Meunier S, Pierrot-Deseilligny E (1994) Non-monosynaptic transmission of the cortical command for voluntary movement in man. J Physiol 480:191–202

    PubMed Central  PubMed  Google Scholar 

  • Burke D, Hicks R, Stephen J, Woodforth I, Crawford M (1995) Trial-to-trial variability in corticospinal volleys in human subjects. Electeoencephalogr Clin Neurophysiol 97:231–237

    CAS  Google Scholar 

  • Butefisch CM, Netz J, Wessling M, Seitz RJ, Homberg V (2003) Remote changes in cortical excitability after stroke. Brain 126:470–481

    PubMed  Google Scholar 

  • Cash RF, Benwell NM, Murray K, Mastaglia FL, Thickbroom GW (2009) Neuromodulation by paired-pulse TMS at an I-wave interval facilitates multiple I-waves. Exp Brain Res 193:1–7

    CAS  PubMed  Google Scholar 

  • Cash RF, Ziemann U, Thickbroom GW (2011) Inhibitory and disinhibitory effects on I-wave facilitation in motor cortex. J Neurophysiol 105:100–106

    CAS  PubMed  Google Scholar 

  • Chen R (2004) Interactions between inhibitory and excitatory circuits in the human motor cortex. Exp Brain Res 154:1–10

    PubMed  Google Scholar 

  • Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, Mills K, Rosler KM, Triggs WJ, Ugawa Y, Ziemann U (2008) The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 119:504–532

    PubMed  Google Scholar 

  • Cirillo J, Lavender AP, Ridding MC, Semmler JG (2009) Motor cortex plasticity induced by paired associative stimulation is enhanced in physically active individuals. J Physiol 587:5831–5842

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cirillo J, Todd G, Semmler JG (2011) Corticomotor excitability and plasticity following complex visuomotor training in young and old adults. Eur J Neurosci 34:1847–1856

    PubMed  Google Scholar 

  • Civardi C, Cantello R, Asselman P, Rothwell JC (2001) Transcranial magnetic stimulation can be used to test connections to primary motor areas from frontal and medial cortex in humans. Neuroimage 14:1444–1453

    CAS  PubMed  Google Scholar 

  • Classen J, Liepert J, Wise SP, Hallett M, Cohen LG (1998) Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol 79:1117–1123

    CAS  PubMed  Google Scholar 

  • Cohen LG, Ziemann U, Chen R, Classen J, Hallett M, Gerloff C, Butefisch C (1998) Studies of neuroplasticity with transcranial magnetic stimulation. J Clin Neurophysiol 15:305–324

    CAS  PubMed  Google Scholar 

  • Davare M, Andres M, Cosnard G, Thonnard JL, Olivier E (2006) Dissociating the role of ventral and dorsal premotor cortex in precision grasping. J Neurosci 26:2260–2268

    PubMed  Google Scholar 

  • Day BL, Rothwell JC, Thompson PD, Dick JP, Cowan JM, Berardelli A, Marsden CD (1987) Motor cortex stimulation in intact man. 2. Multiple descending volleys. Brain 110:1191–1209

    PubMed  Google Scholar 

  • de Berker AO, Bikson M, Bestmann S (2013) Predicting the behavioral impact of transcranial direct current stimulation: issues and limitations. Front Hum Neurosci 7:613

    PubMed Central  PubMed  Google Scholar 

  • Di Lazzaro V, Ziemann U (2013) The contribution of transcranial magnetic stimulation in the functional evaluation of microcircuits in human motor cortex. Front Neural Circuits 7:18

    PubMed Central  PubMed  Google Scholar 

  • Di Lazzaro V, Oliviero A, Profice P, Saturno E, Pilato F, Insola A, Mazzone P, Tonali P, Rothwell JC (1998) Comparison of descending volleys evoked by transcranial magnetic and electric stimulation in conscious humans. Electroencephalogr Clin Neurophysiol 109:397–401

    PubMed  Google Scholar 

  • Di Lazzaro V, Oliviero A, Profice P, Insola A, Mazzone P, Tonali P, Rothwell JC (1999a) Direct demonstration of interhemispheric inhibition of the human motor cortex produced by transcranial magnetic stimulation. Exp Brain Res 124:520–524

    PubMed  Google Scholar 

  • Di Lazzaro V, Rothwell JC, Oliviero A, Profice P, Insola A, Mazzone P, Tonali P (1999b) Intracortical origin of the short latency facilitation produced by pairs of threshold magnetic stimuli applied to human motor cortex. Exp Brain Res 129:494–499

    PubMed  Google Scholar 

  • Di Lazzaro V, Oliviero A, Meglio M, Cioni B, Tamburrini G, Tonali P, Rothwell JC (2000) Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clin Neurophysiol 111:794–799

    PubMed  Google Scholar 

  • Di Lazzaro V, Oliviero A, Saturno E, Pilato F, Insola A, Mazzone P, Profice P, Tonali P, Rothwell JC (2001) The effect on corticospinal volleys of reversing the direction of current induced in the motor cortex by transcranial magnetic stimulation. Exp Brain Res 138:268–273

    PubMed  Google Scholar 

  • Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Mazzone P, Insola A, Tonali PA, Rothwell JC (2004) The physiological basis of transcranial motor cortex stimulation in conscious humans. Clin Neurophysiol 115:255–266

    PubMed  Google Scholar 

  • Di Lazzaro V, Ziemann U, Lemon RN (2008) State of the art: physiology of transcranial motor cortex stimulation. Brain Stimul 1:345–362

    PubMed  Google Scholar 

  • Di Lazzaro V, Profice P, Ranieri F, Capone F, Dileone M, Oliviero A, Pilato F (2012) I-wave origin and modulation. Brain Stimul 5:512–525

    PubMed  Google Scholar 

  • Dum R, Strick P (1996) Spinal cord terminations of the medial wall motor areas in macaque monkeys. J Neurosci 16:6513–6525

    CAS  PubMed  Google Scholar 

  • Dum RP, Strick PL (2002) Motor areas in the frontal lobe of the primate. Physiol Behav 77:677–682

    CAS  PubMed  Google Scholar 

  • Duque J, Ivry RB (2009) Role of corticospinal suppression during motor preparation. Cereb Cortex 19:2013–2024

    PubMed Central  PubMed  Google Scholar 

  • Duque J, Lew D, Mazzocchio R, Olivier E, Ivry RB (2010) Evidence for two concurrent inhibitory mechanisms during response preparation. J Neurosci 30:3793–3802

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duque J, Labruna L, Cazares C, Ivry RB (2012) Dissociating the role of prefrontal and premotor cortices in controlling inhibitory mechanisms during motor preparation. J Neurosci 32:806–816

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duque J, Labruna L, Cazares C, Ivry RB (2014) Dissociating the influence of response selection and task anticipation on corticospinal suppression during response preparation. Neuropsychologia 65:287–296

    PubMed  Google Scholar 

  • Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD (1992) Interhemispheric inhibition of the human motor cortex. J Physiol 453:525–546

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fisher RJ, Nakamura Y, Bestmann S, Rothwell JC, Bostock H (2002) Two phases of intracortical inhibition revealed by transcranial magnetic threshold tracking. Exp Brain Res 143:240–248

    CAS  PubMed  Google Scholar 

  • Freund P, Rothwell J, Craggs M, Thompson AJ, Bestmann S (2011) Corticomotor representation to a human forearm muscle changes following cervical spinal cord injury. Eur J Neurosci 34:1839–1846

    PubMed  Google Scholar 

  • Galea JM, Ruge D, Buijink A, Bestmann S, Rothwell JC (2013) Punishment-induced behavioral and neurophysiological variability reveals dopamine-dependent selection of kinematic movement parameters. J Neurosci 33:3981–3988

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gelli F, Del SF, Popa T, Mazzocchio R, Rossi A (2007) Factors influencing the relation between corticospinal output and muscle force during voluntary contractions. Eur J Neurosci 25:3469–3475

    CAS  PubMed  Google Scholar 

  • Goetz SM, Luber B, Lisanby SH, Peterchev AV (2014) A novel model incorporating two variability sources for describing motor evoked potentials. Brain Stimul 7:541–552

    PubMed  Google Scholar 

  • Groppa S, Schlaak BH, Munchau A, Werner-Petroll N, Dunnweber J, Baumer T, van Nuenen BF, Siebner HR (2011) The human dorsal premotor cortex facilitates the excitability of ipsilateral primary motor cortex via a short latency cortico-cortical route. Hum Brain Mapp 33:419–430

    PubMed  Google Scholar 

  • Groppa S, Oliviero A, Eisen A, Quartarone A, Cohen LG, Mall V, Kaelin-Lang A, Mima T, Rossi S, Thickbroom GW, Rossini PM, Ziemann U, Valls-Solé J, Siebner HR (2012) A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 123:858–882

    CAS  PubMed  Google Scholar 

  • Hamada M, Hanajima R, Terao Y, Arai N, Furubayashi T, Inomata-Terada S, Yugeta A, Matsumoto H, Shirota Y, Ugawa Y (2007) Origin of facilitation in repetitive, 1.5 ms interval, paired pulse transcranial magnetic stimulation (rPPS) of the human motor cortex. Clin Neurophysiol 118:1596–1601

    PubMed  Google Scholar 

  • Hanajima R, Ugawa Y, Machii K, Mochizuki H, Terao Y, Enomoto H, Furubayashi T, Shiio Y, Uesugi H, Kanazawa I (2001) Interhemispheric facilitation of the hand motor area in humans. J Physiol 531:849–859

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hanajima R, Furubayashi T, Iwata NK, Shiio Y, Okabe S, Kanazawa I, Ugawa Y (2003) Further evidence to support different mechanisms underlying intracortical inhibition of the motor cortex. Exp Brain Res 151:427–434

    PubMed  Google Scholar 

  • Hasan A, Galea JM, Casula EP, Falkai P, Bestmann S, Rothwell JC (2013) Muscle and timing-specific functional connectivity between the dorsolateral prefrontal cortex and the primary motor cortex. J Cogn Neurosci 25:558–570

    PubMed Central  PubMed  Google Scholar 

  • Hasbroucq T, Osman A, Possamai CA, Burle B, Carron S, Depy D, Latour S, Mouret I (1999) Cortico-spinal inhibition reflects time but not event preparation: neural mechanisms of preparation dissociated by transcranial magnetic stimulation. Acta Psychol (Amst) 101:243–266

    CAS  Google Scholar 

  • Hiraoka K, Kamata N, Matsugi A, Iwata A (2010) Premovement facilitation of corticospinal excitability before simple and sequential movement. Percept Mot Skills 111:129–140

    PubMed  Google Scholar 

  • Jayaram G, Stagg CJ, Esser P, Kischka U, Stinear J, Johansen-Berg H (2012) Relationships between functional and structural corticospinal tract integrity and walking post stroke. Clin Neurophysiol 123:2422–2428

    PubMed Central  PubMed  Google Scholar 

  • Kaneko K, Kawai S, Fuchigami Y, Morita H, Ofuji A (1996) The effect of current direction induced by transcranial magnetic stimulation on the corticospinal excitability in human brain. Electroencephalogr Clin Neurophysiol 101:478–482

    CAS  PubMed  Google Scholar 

  • Kiers L, Cros D, Chiappa KH, Fang J (1993) Variability of motor potentials evoked by transcranial magnetic stimulation. Electroencephalogr Clin Neurophysiol 89:415–423

    CAS  PubMed  Google Scholar 

  • Klein-Flugge MC, Bestmann S (2012) Time-dependent changes in human corticospinal excitability reveal value-based competition for action during decision processing. J Neurosci 32:8373–8382

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klein-Flugge MC, Nobbs D, Pitcher JB, Bestmann S (2013) Variability of human corticospinal excitability tracks the state of action preparation. J Neurosci 33:5564–5572

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koch G, Franca M, Del Olmo MF, Cheeran B, Milton R, Alvarez SM, Rothwell JC (2006) Time course of functional connectivity between dorsal premotor and contralateral motor cortex during movement selection. J Neurosci 26:7452–7459

    CAS  PubMed  Google Scholar 

  • Koch G, Fernandez DO, Cheeran B, Schippling S, Caltagirone C, Driver J, Rothwell JC (2008) Functional interplay between posterior parietal and ipsilateral motor cortex revealed by twin-coil transcranial magnetic stimulation during reach planning toward contralateral space. J Neurosci 28:5944–5953

    PubMed Central  PubMed  Google Scholar 

  • Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lemon RN (2002) Basic physiology of transcranial magnetic stimulation. In: Pascual-Leone A, Davey NJ, Rothwell J, Wassermann EM, Puri BK (eds) Handbook of transcranial magnetic stimulation. Arnold, London, pp 61–77

    Google Scholar 

  • Leocani L, Cohen LG, Wassermann EM, Ikoma K, Hallett M (2000) Human corticospinal excitability evaluated with transcranial magnetic stimulation during different reaction time paradigms. Brain 123:1161–1173

    PubMed  Google Scholar 

  • Liepert J, Restemeyer C, Kucinski T, Zittel S, Weiller C (2005) Motor strokes: the lesion location determines motor excitability changes. Stroke 36:2648–2653

    PubMed  Google Scholar 

  • Liuzzi G, Horniss V, Hoppe J, Heise K, Zimerman M, Gerloff C, Hummel FC (2010) Distinct temporospatial interhemispheric interactions in the human primary and premotor cortex during movement preparation. Cereb Cortex 20:1323–1331

    PubMed  Google Scholar 

  • Mars RB, Bestmann S, Rothwell JC, Haggard P (2007) Effects of motor preparation and spatial attention on corticospinal excitability in a delayed-response paradigm. Exp Brain Res 182:125–129

    PubMed  Google Scholar 

  • McDonnell MN, Ridding MC (2006) Transient motor evoked potential suppression following a complex sensorimotor task. Clin Neurophysiol 117:1266–1272

    CAS  PubMed  Google Scholar 

  • Mills KR, Murray NM, Hess CW (1987) Magnetic and electrical transcranial brain stimulation: physiological mechanisms and clinical applications. Neurosurgery 20:164–168

    CAS  PubMed  Google Scholar 

  • Muellbacher W, Ziemann U, Boroojerdi B, Hallett M (2000) Effects of low-frequency transcranial magnetic stimulation on motor excitability and basic motor behavior. Clin Neurophysiol 111:1002–1007

    CAS  PubMed  Google Scholar 

  • Muellbacher W, Ziemann U, Boroojerdi B, Cohen L, Hallett M (2001) Role of the human motor cortex in rapid motor learning. Exp Brain Res 136:431–438

    CAS  PubMed  Google Scholar 

  • Murase N, Duque J, Mazzocchio R, Cohen LG (2004) Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol 55:400–409

    PubMed  Google Scholar 

  • Murray EA, Coulter JD (1981) Organization of corticospinal neurons in the monkey. J Comp Neurol 195:339–365

    CAS  PubMed  Google Scholar 

  • Nakamura H, Kitagawa H, Kawaguchi Y, Tsuji H (1997) Intracortical facilitation and inhibition after transcranial magnetic stimulation in conscious humans. J Physiol 498(Pt 3):817–823

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neubert FX, Mars RB, Olivier E, Rushworth MF (2011) Modulation of short intra-cortical inhibition during action reprogramming. Exp Brain Res 211:265–276

    PubMed  Google Scholar 

  • Ni Z, Gunraj C, Wagle-Shukla A, Udupa K, Mazzella F, Lozano AM, Chen R (2011) Direct demonstration of inhibitory interactions between long interval intracortical inhibition and short interval intracortical inhibition. J Physiol 589:2955–2962

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nitsche MA, Paulus W (2011) Transcranial direct current stimulation–update 2011. Restor Neurol Neurosci 29:463–492

    PubMed  Google Scholar 

  • Nitsche MA, Doemkes S, Karakose T, Antal A, Liebetanz D, Lang N, Tergau F, Paulus W (2007) Shaping the effects of transcranial direct current stimulation of the human motor cortex. J Neurophysiol 97:3109–3117

    CAS  PubMed  Google Scholar 

  • Oathes DJ, Ray WJ (2006) Depressed mood, index finger force and motor cortex stimulation: a transcranial magnetic stimulation (TMS) study. Biol Psychol 72:271–277

    PubMed  Google Scholar 

  • Oliviero A, Leon AM, Holler I, Vila JF, Siebner HR, Della MG, Di Lazzaro V, Alvarez JT (2005) Reduced sensorimotor inhibition in the ipsilesional motor cortex in a patient with chronic stroke of the paramedian thalamus. Clin Neurophysiol 116:2592–2598

    CAS  PubMed  Google Scholar 

  • Patton HD, Amassian VE (1954) Single and multiple-unit analysis of cortical stage of pyramidal tract activation. J Neurophysiol 17:345–363

    CAS  PubMed  Google Scholar 

  • Pearce AJ, Kidgell DJ (2009) Corticomotor excitability during precision motor tasks. J Sci Med Sport 12:280–283

    PubMed  Google Scholar 

  • Perez MA, Cohen LG (2009a) Interhemispheric inhibition between primary motor cortices: what have we learned? J Physiol 587:725–726

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perez MA, Cohen LG (2009b) Scaling of motor cortical excitability during unimanual force generation. Cortex 45:1065–1071

    PubMed  Google Scholar 

  • Perez MA, Cohen LG (2009c) The corticospinal system and transcranial magnetic stimulation in stroke. Top Stroke Rehabil 16:254–269

    PubMed  Google Scholar 

  • Porter R, Lemon RN (1995) Corticospinal function and voluntary movement. Clarendon Press, Oxford

    Google Scholar 

  • Reis J, Swayne OB, Vandermeeren Y, Camus M, Dimyan MA, Harris-Love M, Perez MA, Ragert P, Rothwell JC, Cohen LG (2008) Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. J Physiol 586:325–351

    CAS  PubMed Central  PubMed  Google Scholar 

  • Romaiguere P, Possamai CA, Hasbroucq T (1997) Motor cortex involvement during choice reaction time: a transcranial magnetic stimulation study in man. Brain Res 755:181–192

    CAS  PubMed  Google Scholar 

  • Rothwell JC (1997) Techniques and mechanisms of action of transcranial stimulation of the human motor cortex. J Neurosci Methods 74:113–122

    CAS  PubMed  Google Scholar 

  • Rothwell JC, Day BL, Thompson PD, Dick JP, Marsden CD (1987a) Some experiences of techniques for stimulation of the human cerebral motor cortex through the scalp. Neurosurgery 20:156–163

    CAS  PubMed  Google Scholar 

  • Rothwell JC, Thompson PD, Day BL, Dick JP, Kachi T, Cowan JM, Marsden CD (1987b) Motor cortex stimulation in intact man. 1. General characteristics of EMG responses in different muscles. Brain 110:1173–1190

    PubMed  Google Scholar 

  • Rothwell JC, Gandevia SC, Burke D (1990) Activation of fusimotor neurones by motor cortical stimulation in human subjects. J Physiol 431:743–756

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rothwell JC, Hallett M, Berardelli A, Eisen A, Rossini P, Paulus W (1999) Magnetic stimulation: motor evoked potentials. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl. 52:97–103

    Google Scholar 

  • Rusu CV, Murakami M, Ziemann U, Triesch J (2014) A model of TMS-induced I-waves in motor cortex. Brain Stimul 7:401–414

    PubMed  Google Scholar 

  • Schmidt S, Cichy RM, Kraft A, Brocke J, Irlbacher K, Brandt SA (2009) An initial transient-state and reliable measures of corticospinal excitability in TMS studies. Clin Neurophysiol 120:987–993

    CAS  PubMed  Google Scholar 

  • Shimazu H, Maier MA, Cerri G, Kirkwood PA, Lemon RN (2004) Macaque ventral premotor cortex exerts powerful facilitation of motor cortex outputs to upper limb motoneurons. J Neurosci 24:1200–1211

    CAS  PubMed  Google Scholar 

  • Sinclair C, Hammond GR (2009) Excitatory and inhibitory processes in primary motor cortex during the foreperiod of a warned reaction time task are unrelated to response expectancy. Exp Brain Res 194:103–113

    PubMed  Google Scholar 

  • Soto D, Montoro PR, Humphreys GW (2009) Transcranial magnetic stimulation of the primary motor cortex modulates response interference in a flanker task. Neurosci Lett 451:261–265

    CAS  PubMed  Google Scholar 

  • Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD (2007) Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 130:170–180

    PubMed  Google Scholar 

  • Swayne OB, Rothwell JC, Ward NS, Greenwood RJ (2008) Stages of motor output reorganization after hemispheric stroke suggested by longitudinal studies of cortical physiology. Cereb Cortex 18:1909–1922

    PubMed Central  PubMed  Google Scholar 

  • Tandonnet C, Garry MI, Summers JJ (2010) Cortical activation during temporal preparation assessed by transcranial magnetic stimulation. Biol Psychol 85:481–486

    CAS  PubMed  Google Scholar 

  • Taylor JL (2006) Stimulation at the cervicomedullary junction in human subjects. J Electromyogr Kinesiol 16:215–223

    PubMed  Google Scholar 

  • Terao Y, Ugawa Y, Uesaka Y, Hanajima R, Gemba-Shimizu K, Ohki Y, Kanazawa I (1995) Input-output organization in the hand area of the human motor cortex. Electroencephalogr Clin Neurophysiol 97:375–381

    CAS  PubMed  Google Scholar 

  • Thickbroom GW (2011) A model of the contribution of late I-waves to alpha-motoneuronal activation: implications for paired-pulse TMS. Brain Stimul 4:77–83

    PubMed  Google Scholar 

  • Todd G, Rogasch NC, Flavel SC, Ridding MC (2009) Voluntary movement and repetitive transcranial magnetic stimulation over human motor cortex. J Appl Physiol 106:1593–1603

    PubMed  Google Scholar 

  • Tokimura H, Di Lazzaro V, Tokimura Y, Oliviero A, Profice P, Insola A, Mazzone P, Tonali P, Rothwell JC (2000) Short latency inhibition of human hand motor cortex by somatosensory input from the hand. J Physiol 523:503–513

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uehara K, Higashi T, Tanabe S, Sugawara K (2011) Alterations in human motor cortex during dual motor task by transcranial magnetic stimulation study. Exp Brain Res 208:277–286

    PubMed  Google Scholar 

  • Verleger R, Kuniecki M, Möller F, Fritzmannova M, Siebner HR (2009) On how the motor cortices resolve an inter-hemispheric response conflict: an event-related EEG potential-guided TMS study of the flankers task. Eur J Neurosci 30:318–326

    PubMed  Google Scholar 

  • Ward NS, Newton JM, Swayne OB, Lee L, Thompson AJ, Greenwood RJ, Rothwell JC, Frackowiak RS (2006) Motor system activation after subcortical stroke depends on corticospinal system integrity. Brain 129:809–819

    PubMed Central  PubMed  Google Scholar 

  • Ward NS, Newton JM, Swayne OB, Lee L, Frackowiak RS, Thompson AJ, Greenwood RJ, Rothwell JC (2007) The relationship between brain activity and peak grip force is modulated by corticospinal system integrity after subcortical stroke. Eur J Neurosci 25:1865–1873

    PubMed Central  PubMed  Google Scholar 

  • Werhahn KJ, Fong JK, Meyer BU, Priori A, Rothwell JC, Day BL, Thompson PD (1994) The effect of magnetic coil orientation on the latency of surface EMG and single motor unit responses in the first dorsal interosseous muscle. Electroencephalogr Clin Neurophysiol 93:138–146

    CAS  PubMed  Google Scholar 

  • Wong AL, Haith AM, Krakauer JW (2014) Motor planning. Neuroscientist [Epub ahead of print]

  • Ziemann U (2004) TMS and drugs. Clin Neurophysiol 115:1717–1729

    CAS  PubMed  Google Scholar 

  • Ziemann U, Rothwell JC (2000) I-waves in motor cortex. J Clin Neurophysiol 17:397–405

    CAS  PubMed  Google Scholar 

  • Ziemann U, Lonnecker S, Steinhoff BJ, Paulus W (1996a) The effect of lorazepam on the motor cortical excitability in man. Exp Brain Res 109:127–135

    CAS  PubMed  Google Scholar 

  • Ziemann U, Rothwell JC, Ridding MC (1996b) Interaction between intracortical inhibition and facilitation in human motor cortex. J Physiol 496:873–881

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Bestmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bestmann, S., Krakauer, J.W. The uses and interpretations of the motor-evoked potential for understanding behaviour. Exp Brain Res 233, 679–689 (2015). https://doi.org/10.1007/s00221-014-4183-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-4183-7

Keywords

Navigation