Skip to main content

Hypertension and Type 2 Diabetes

  • Chapter
  • First Online:
Blood Pressure Disorders in Diabetes Mellitus

Part of the book series: Updates in Hypertension and Cardiovascular Protection ((UHCP))

  • 638 Accesses

Abstract

The relationship of type 2 diabetes (T2DM) with hypertension (HTN) has been recognized as having common causal links and relevant bidirectional consequences. The main driving mechanisms of this association are maladaptive endothelial dysfunction, renin-angiotensin-aldosterone system (RAAS) and sympathetic overactivity, abnormal sodium handling, renal dysfunction, and vascular stiffness. Blood pressure (BP) elevation in T2DM has a characteristic phenotype: predominance of systolic BP elevation with wide pulse pressure, high variability, non-dipping pattern, salt sensitivity, and refractory hypertension together with a trend of hyperkalemia. With a high prevalence, the presence of HTN largely increases the risk for CKD and ESRD, as well as cardiovascular disease (acute myocardial infarction, stroke, peripheral vascular disease, atrial fibrillation, and heart failure). To reduce the risk, it is mandatory to control BP; however, controversy exists about utilizing intensive antihypertensive treatment to reduce BP toward 120 mmHg or to the standard, with a goal of 130 mmHg. An appropriate combination of antihypertensive drugs and new glucose-lowering drugs can help to reduce BP and control CV and renal risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Diabetes Federation. IDF Diabetes Atlas 6th Edition. IDF [online]; 2013. http://www.idf.org/sites/default/files/EN_6E_Atlas_Full_0.pdf

  2. Lotfy M, Adeghate J, Kalasz H, Singh J, Adeghate E. Chronic complications of diabetes mellitus: a mini review. Curr Diabetes Rev. 2017;13:3–10. https://doi.org/10.2174/1573399812666151016101622.

    Article  CAS  PubMed  Google Scholar 

  3. DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015;1:15019. https://doi.org/10.1038/nrdp.2015.19.

    Article  PubMed  Google Scholar 

  4. Pavlou DI, Paschou SA, Anagnostis P, Spartalis M, Spartalis E, Vryonidou A, et al. Hypertension in patients with type 2 diabetes mellitus: targets and management. Maturitas. 2018;112:71–7. https://doi.org/10.1016/j.maturitas.2018.03.013.

    Article  PubMed  Google Scholar 

  5. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. LEADER Steering Committee; LEADER Trial Investigators. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375:311–22. https://doi.org/10.1056/NEJMoa1603827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, et al. EMPA-REG OUTCOME Investigators. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375:323–34. https://doi.org/10.1056/NEJMoa1515920.

    Article  CAS  PubMed  Google Scholar 

  7. Colosia AD, Palencia R, Khan S. Prevalence of hypertension and obesity in patients with type 2 diabetes mellitus in observational studies: a systematic literature review. Diabetes Metab Syndr Obes. 2013;6:327–38. https://doi.org/10.2147/DMSO.S51325.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sauri I, Uso R, Trillo JL, Fernandez A, Holgado JL, Lopez C, et al. Impact of hypertension in the morbidity and mortality in diabetes mellitus: a real world data. J Hypertens. 2021;39(e23)

    Google Scholar 

  9. Tryggestad JB, Willi SM. Complications and comorbidities of T2DM in adolescents: findings from the TODAY clinical trial. J Diabetes Complications. 2015;29:307–12. https://doi.org/10.1016/j.jdiacomp.2014.10.009.

    Article  PubMed  Google Scholar 

  10. Castro Torres Y, Katholi RE. Novel treatment approaches in hypertensive type 2 diabetic patients. World J Diabetes. 2014;5:536–45. https://doi.org/10.4239/wjd.v5.i4.536.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yerram P, Whaley-Connell A. Novel role for the incretins in blood pressure regulation. Curr Opin Nephrol Hypertens. 2012;21:463–8. https://doi.org/10.1097/MNH.0b013e328356bccd.

    Article  CAS  PubMed  Google Scholar 

  12. van der Zijl NJ, Moors CC, Goossens GH, Blaak EE, Diamant M. Does interference with the renin-angiotensin system protect against diabetes? Evidence and mechanisms. Diabetes Obes Metab. 2012;14:586–95. https://doi.org/10.1111/j.1463-1326.2012.01559.x.

    Article  PubMed  Google Scholar 

  13. Rizvi S, Raza ST, Rahman Q, Eba A, Zaidi ZH, Mahdi F. Association of endothelial nitric oxide synthase (eNOS) and norepinephrine transporter (NET) genes polymorphism with type 2 diabetes mellitus. Mol Biol Rep. 2019;46:5433–41. https://doi.org/10.1007/s11033-019-04998-y.

    Article  CAS  PubMed  Google Scholar 

  14. Ferrelli F, Pastore D, Capuani B, Lombardo MF, Blot-Chabaud M, Coppola A, et al. Serum glucocorticoid inducible kinase (SGK)-1 protects endothelial cells against oxidative stress and apoptosis induced by hyperglycaemia. Acta Diabetol. 2015;52:55–64. https://doi.org/10.1007/s00592-014-0600-4.

    Article  CAS  PubMed  Google Scholar 

  15. Rojas E, Rodríguez-Molina D, Bolli P, Israili ZH, Faría J, Fidilio E, et al. The role of adiponectin in endothelial dysfunction and hypertension. Curr Hypertens Rep. 2014;16:463–75. https://doi.org/10.1007/s11906-014-0463-7.

    Article  CAS  PubMed  Google Scholar 

  16. Katsiki N, Mikhailidis DP, Banach M. Leptin, cardiovascular diseases and type 2 diabetes mellitus. Acta Pharmacol Sin. 2018;39:1176–88. https://doi.org/10.1038/aps.2018.40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hill MA, Yang Y, Zhang L, Sun Z, Jia G, Parrish AR, Sowers JR. Insulin resistance, cardiovascular stiffening and cardiovascular disease. Metabolism. 2021;119:154766. https://doi.org/10.1016/j.metabol.2021.154766.

    Article  CAS  PubMed  Google Scholar 

  18. Vargas Vargas RA, Varela Millán JM, Fajardo Bonilla E. Renin-angiotensin system: basic and clinical aspects—a general perspective. Endocrinol Diabetes Nutr. 2022;69:52–62.

    Google Scholar 

  19. Hussain M, Awan FR. Hypertension regulating angiotensin peptides in the pathobiology of cardiovascular disease. Clin Exp Hypertens. 2018;40:344–52.

    Article  CAS  PubMed  Google Scholar 

  20. Lips MA, de Groot GH, De Kam M, Berends FJ, Wiezer R, Van Wagensveld BA, et al. Autonomic nervous system activity in diabetic and healthy obese female subjects and the effect of distinct weight loss strategies. Eur J Endocrinol. 2013;169:383–90. https://doi.org/10.1530/EJE-13-0506.

    Article  CAS  PubMed  Google Scholar 

  21. Libianto R, Batu D, MacIsaac RJ, Cooper ME, Ekinci EI. Pathophysiological links between diabetes and blood pressure. Can J Cardiol. 2018;34:585–94. https://doi.org/10.1016/j.cjca.2018.01.010.

    Article  PubMed  Google Scholar 

  22. Gupta R, Woo K, Yi JA. Epidemiology of end-stage kidney disease. Semin Vasc Surg. 2021;34:71–8. https://doi.org/10.1053/j.semvascsurg.2021.02.010.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Anders HJ, Huber TB, Isermann B, Schiffer M. CKD in diabetes: diabetic kidney disease versus nondiabetic kidney disease. Nat Rev Nephrol. 2018;14:361–77. https://doi.org/10.1038/s41581-018-0001-y.

    Article  CAS  PubMed  Google Scholar 

  24. Gilbert RE. Proximal tubulopathy: prime mover and key therapeutic target in diabetic kidney disease. Diabetes. 2017;66:791–800. https://doi.org/10.2337/db16-0796.

    Article  CAS  PubMed  Google Scholar 

  25. Wijkman M, Länne T, Östgren CJ, Nystrom FH. Aortic pulse wave velocity predicts incident cardiovascular events in patients with type 2 diabetes treated in primary care. J Diabetes Complications. 2016;30:1223–8. https://doi.org/10.1016/j.jdiacomp.2016.06.008.

    Article  PubMed  Google Scholar 

  26. Stehouwer CD, Henry RM, Ferreira I. Arterial stiffness in diabetes and the metabolic syndrome: a pathway to cardiovascular disease. Diabetologia. 2008;51:527–39. https://doi.org/10.1007/s00125-007-0918-3.

    Article  CAS  PubMed  Google Scholar 

  27. Venkatachalapathy P, Padhilahouse S, Sellappan M, Subramanian T, Kurian SJ, Miraj SS, et al. Pharmacogenomics and personalized medicine in type 2 diabetes mellitus: potential implications for clinical practice. Pharmgenomics Pers Med. 2021;14:1441–55. https://doi.org/10.2147/PGPM.S329787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Padmanabhan S, Dominiczak AF. Genomics of hypertension: the road to precision medicine. Nat Rev Cardiol. 2021;18:235–50. https://doi.org/10.1038/s41569-020-00466-4.

    Article  CAS  PubMed  Google Scholar 

  29. Radkowski P, Wątor G, Skupien J, Bogdali A, Wołkow P. Analysis of gene expression to predict dynamics of future hypertension incidence in type 2 diabetic patients. BMC Proc. 2016;10(Suppl 7):113–7. https://doi.org/10.1186/s12919-016-0015-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Battistoni A, Michielon A, Marino G, Savoia C. Vascular aging and central aortic blood pressure: from pathophysiology to treatment. High Blood Press Cardiovasc Prev. 2020;27:299–308. https://doi.org/10.1007/s40292-020-00395-w.

    Article  PubMed  Google Scholar 

  31. Laurent S, Chatellier G, Azizi M, Calvet D, Choukroun G, Danchin N, et al. SPARTE Investigators. SPARTE Study: Normalization of arterial stiffness and cardiovascular events in patients with hypertension at medium to very high risk. Hypertension. 2021;78:983–95.

    Article  CAS  PubMed  Google Scholar 

  32. Redon J, Mancia G, Sleight P, Schumacher H, Gao P, Pogue J, et al. ONTARGET Investigators. Safety and efficacy of low blood pressures among patients with diabetes: subgroup analyses from the ONTARGET (ONgoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial). J Am Coll Cardiol. 2012;59:74–83. https://doi.org/10.1016/j.jacc.2011.09.040.

    Article  PubMed  Google Scholar 

  33. Ozawa M, Tamura K, Iwatsubo K, Matsushita K, Sakai M, Tsurumi- Ikeya Y, et al. Ambulatory blood pressure variability is increased in diabetic hypertensives. Clin Exp Hypertens. 2008;30:213–24.

    Article  PubMed  Google Scholar 

  34. Palatini P, Reboldi G, Beilin LJ, Casiglia E, Eguchi K, Imai Y, et al. Added predictive value of night-time blood pressure variability for cardiovascular events and mortality: the Ambulatory Blood Pressure-International Study. Hypertension. 2014;64:487–93.

    Article  CAS  PubMed  Google Scholar 

  35. Rothwell PM, Howard SC, Dolan E, O’Brien E, Dobson JE, Dahlof B, et al. Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. Lancet. 2010;375:895–905.

    Article  PubMed  Google Scholar 

  36. Zhou TL, Kroon AA, Reesink KD, Schram MT, Koster A, Schaper NC, et al. Blood pressure variability in individuals with and without (pre)diabetes: the Maastricht study. J Hypertens. 2018;36:259–67. https://doi.org/10.1097/HJH.0000000000001543.

    Article  CAS  PubMed  Google Scholar 

  37. Kim YS, Davis SCAT, Stok WJ, van Ittersum FJ, van Lieshout JJ. Impaired nocturnal blood pressure dipping in patients with type 2 diabetes mellitus. Hypertens Res. 2019;42:59–66. https://doi.org/10.1038/s41440-018-0130-5.

    Article  CAS  PubMed  Google Scholar 

  38. O'Connor PM, Cowley AW Jr. Modulation of pressure-natriuresis by renal medullary reactive oxygen species and nitric oxide. Curr Hypertens Rep. 2010;12:86–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Päivä H, Laakso J, Kähönen M, Turjanmaa V, Kööbi T, Majahalme S, et al. Asymmetric dimethylarginine and hemodynamic regulation in middle-aged men. Metabolism. 2006;55:771–7.

    Article  PubMed  Google Scholar 

  40. Sousa AG, Cabral JV, El-Feghaly WB, de Sousa LS, Nunes AB. Hyporeninemic hypoaldosteronism and diabetes mellitus: pathophysiology assumptions, clinical aspects and implications for management. World J Diabetes. 2016;7:101–11. https://doi.org/10.4239/wjd.v7.i5.101.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rodríguez Soriano J. Renal tubular acidosis: the clinical entity. J Am Soc Nephrol. 2002;13:2160–70.

    Google Scholar 

  42. Redon J. Improving knowledge of arterial resistant hypertension: what is relevant? Rev Esp Cardiol (Engl Ed). 2014;67:251–3. https://doi.org/10.1016/j.rec.2013.11.015.

    Article  PubMed  Google Scholar 

  43. Aronow WS. Approaches for the management of resistant hypertension in 2020. Curr Hypertens Rep. 2020;22:3–15. https://doi.org/10.1007/s11906-019-1013-0.

    Article  PubMed  Google Scholar 

  44. Crea F, The ESC. Guidelines on heart failure, sacubitril-valsartan in resistant hypertension, and new therapeutic targets in myocardial hypertrophy. Eur Heart J. 2021;42:3581–5. https://doi.org/10.1093/eurheartj/ehab627.

    Article  PubMed  Google Scholar 

  45. McCoy EK, Lisenby KM. Aprocitentan (a dual endothelin-receptor antagonist) for treatment-resistant hypertension. J Cardiovasc Pharmacol. 2021;77:699–706. https://doi.org/10.1097/FJC.0000000000001023.

    Article  CAS  PubMed  Google Scholar 

  46. Alomar SA, Alghabban SA, Alharbi HA, Almoqati MF, Alduraibi Y, Abu-Zaid A. Firibastat, the first-in-class brain aminopeptidase a inhibitor, in the management of hypertension: a review of clinical trials. Avicenna J Med. 2021;11:1–7. https://doi.org/10.4103/ajm.ajm_117_20.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pisano A, Iannone LF, Leo A, Russo E, Coppolino G, Bolignano D. Renal denervation for resistant hypertension. Cochrane Database Syst Rev. 2021;11(11):CD011499. https://doi.org/10.1002/14651858.CD011499.pub3.

    Article  PubMed  Google Scholar 

  48. Schmieder RE, Mahfoud F, Mancia G, Azizi M, Böhm M, Dimitriadis K, et al. Members of the ESH Working Group on Device-Based Treatment of Hypertension. European Society of Hypertension position paper on renal denervation 2021. J Hypertens. 2021;39:1733–41. https://doi.org/10.1097/HJH.0000000000002933.

    Article  CAS  PubMed  Google Scholar 

  49. Ferrannini E, Cushman WC. Diabetes and hypertension: the bad companions. Lancet. 2012;380:601–10.

    Article  PubMed  Google Scholar 

  50. Perreault L, Pan Q, Aroda VR, Barrett-Connor E, Dabelea D, Dagogo-Jack S, et al. Diabetes Prevention Program Research Group. Exploring residual risk for diabetes and microvascular disease in the Diabetes Prevention Program Outcomes Study (DPPOS). Diabet Med. 2017;34:1747–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wei GS, Coady SA, Goff DC Jr, Brancati FL, Levy D, Selvin E, Vasan RS, Fox CS. Blood pressure and the risk of developing diabetes in African Americans and whites: ARIC, CARDIA, and the Framingham heart study. Diabetes Care. 2011;34:873–9.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Aroda VR, Knowler WC, Crandall JP, Perreault L, Edelstein SL, Jeffries SL, et al. Diabetes Prevention Program Research Group. Metformin for diabetes prevention: insights gained from the Diabetes Prevention Program/Diabetes Prevention Program Outcomes Study. Diabetologia. 2017;60:1601–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. de Boer IH, Rue TC, Hall YN, Heagerty PJ, Weiss NS, Himmelfarb J. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA. 2011;305(24):2532–9. https://doi.org/10.1001/jama.2011.861.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ruiz A, Fernandez A, Holgado JL, Lopez C, Vela S, Bea C, et al. BP values and control rates in a general population: Impact of the ESC-ESH and ACC-AHA guidelines. J Hypertens. 2021;39(Suppl 1):e234.

    Article  Google Scholar 

  55. Grams J, Garvey WT. Weight loss and the prevention and treatment of type 2 diabetes using lifestyle therapy, pharmacotherapy, and bariatric surgery: mechanisms of action. Curr Obes Rep. 2015;4:287–302. https://doi.org/10.1007/s13679-015-0155-x.

    Article  CAS  PubMed  Google Scholar 

  56. Lende M, Rijhsinghani A. Gestational diabetes: overview with emphasis on medical management. Int J Environ Res Public Health. 2020;17:9573. https://doi.org/10.3390/ijerph17249573.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. Authors/Task Force Members. 2018 ESC/ESH Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens. 2018;36:1953–2041. https://doi.org/10.1097/HJH.0000000000001940.

  58. Ott C, Schmieder RE. Diagnosis and treatment of arterial hypertension 2021. Kidney Int. 2022;101:36–46. https://doi.org/10.1016/j.kint.2021.09.026.

    Article  PubMed  Google Scholar 

  59. Lamirault G, Artifoni M, Daniel M, Barber-Chamoux N. Nantes University Hospital Working Group on Hypertension. Resistant hypertension: novel insights. Curr Hypertens Rev. 2020;16:61–72. https://doi.org/10.2174/1573402115666191011111402.

    Article  PubMed  Google Scholar 

  60. Li J, Fagbote CO, Zhuo M, Hawley CE, Paik JM. Sodium-glucose cotransporter 2 inhibitors for diabetic kidney disease: a primer for deprescribing. Clin Kidney J. 2019;12:620–8. https://doi.org/10.1093/ckj/sfz100.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Verma S, McGuire DK, Bain SC, Bhatt DL, Leiter LA, Mazer CD, et al. Effects of glucagon-like peptide-1 receptor agonists liraglutide and semaglutide on cardiovascular and renal outcomes across body mass index categories in type 2 diabetes: Results of the LEADER and SUSTAIN 6 trials. Diabetes Obes Metab. 2020;22:2487–92. https://doi.org/10.1111/dom.14160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Reifsnider OS, Kansal AR, Wanner C, Pfarr E, Koitka-Weber A, Brand SB, et al. Cost-effectiveness of empagliflozin in patients with diabetic kidney disease in the united states: findings based on the EMPA-REG OUTCOME Trial. Am J Kidney Dis. 2022:796-806. https://doi.org/10.1053/j.ajkd.2021.09.014.

  63. Furtado RHM, Bonaca MP, Raz I, Zelniker TA, Mosenzon O, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in patients with type 2 diabetes mellitus and previous myocardial infarction. Circulation. 2019;139:2516–27. https://doi.org/10.1161/CIRCULATIONAHA.119.039996.

    Article  CAS  PubMed  Google Scholar 

  64. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. CANVAS Program Collaborative Group. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–57. https://doi.org/10.1056/NEJMoa1611925.

    Article  CAS  PubMed  Google Scholar 

  65. Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. CREDENCE Trial Investigators. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380:2295-306. https://doi.org/10.1056/NEJMoa1811744.

  66. Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, et al. ESC Scientific Document Group. 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J. 2020;41:255–323. https://doi.org/10.1093/eurheartj/ehz486.

    Article  PubMed  Google Scholar 

  67. Mancia G, Cannon CP, Tikkanen I, Zeller C, Ley L, Woerle HJ, et al. Impact of empagliflozin on blood pressure in patients with type 2 diabetes mellitus and hypertension by background antihypertensive medication. Hypertension. 2016;68:1355–64. https://doi.org/10.1161/HYPERTENSIONAHA.116.07703.

    Article  CAS  PubMed  Google Scholar 

  68. ONTARGET Investigators, Yusuf S, Teo KK, Pogue J, Dyal L, Copland I, Schumacher H, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358:1547–59. https://doi.org/10.1056/NEJMoa0801317.

    Article  Google Scholar 

  69. ACCORD Study Group, Cushman WC, Evans GW, Byington RP, Goff DC Jr, Grimm RH Jr, Cutler JA, et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362:1575–85. https://doi.org/10.1056/NEJMoa1001286.

    Article  CAS  Google Scholar 

  70. Bangalore S, Kumar S, Lobach I, Messerli FH. Blood pressure targets in subjects with type 2 diabetes mellitus/impaired fasting glucose: observations from traditional and bayesian random-effects meta-analyses of randomized trials. Circulation. 2011;123:2799–810. https://doi.org/10.1161/CIRCULATIONAHA.110.016337.

    Article  CAS  PubMed  Google Scholar 

  71. Ettehad D, Emdin CA, Kiran A, Anderson SG, Callender T, Emberson J, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016;387:957–67. https://doi.org/10.1016/S0140-6736(15)01225-8.

  72. Brunström M, Carlberg B. Association of blood pressure lowering with mortality and cardiovascular disease across blood pressure levels: a systematic review and meta-analysis. JAMA Intern Med. 2018;178:28–36. https://doi.org/10.1001/jamainternmed.2017.6015.

    Article  PubMed  Google Scholar 

  73. Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure-lowering treatment on cardiovascular outcomes and mortality: 13—benefits and adverse events in older and younger patients with hypertension: overview, meta-analyses and meta-regression analyses of randomized trials. J Hypertens. 2018;36:1622–36. https://doi.org/10.1097/HJH.0000000000001787.

    Article  CAS  PubMed  Google Scholar 

  74. Beddhu S, Chertow GM, Greene T, Whelton PK, Ambrosius WT, Cheung AK, et al. Effects of intensive systolic blood pressure lowering on cardiovascular events and mortality in patients with type 2 diabetes mellitus on standard glycemic control and in those without diabetes mellitus: reconciling results from ACCORD BP and SPRINT. J Am Heart Assoc. 2018;7:e009326. https://doi.org/10.1161/JAHA.118.009326.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Buckley LF, Dixon DL, Wohlford GF 4th, Wijesinghe DS, Baker WL, Van Tassell BW. Intensive versus standard blood pressure control in SPRINT-eligible participants of ACCORD-BP. Diabetes Care. 2017;40:1733–8. https://doi.org/10.2337/dc17-1366.

    Article  CAS  PubMed  Google Scholar 

  76. Ilkun OL, Greene T, Cheung AK, Whelton PK, Wei G, Boucher RE, et al. The influence of baseline diastolic blood pressure on the effects of intensive blood pressure lowering on cardiovascular outcomes and all-cause mortality in type 2 diabetes. Diabetes Care. 2020;43:1878–84. https://doi.org/10.2337/dc19-2047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Böhm M, Schumacher H, Teo KK, Lonn EM, Mahfoud F, Emrich I, et al. Renal outcomes and blood pressure patterns in diabetic and nondiabetic individuals at high cardiovascular risk. J Hypertens. 2021;39:766–74. https://doi.org/10.1097/HJH.0000000000002697.

    Article  CAS  PubMed  Google Scholar 

  78. Beddhu S, Greene T, Boucher R, Cushman WC, Wei G, Stoddard G, et al. Intensive systolic blood pressure control and incident chronic kidney disease in people with and without diabetes mellitus: secondary analyses of two randomised controlled trials. Lancet Diabetes Endocrinol. 2018;6:555–63. https://doi.org/10.1016/S2213-8587(18)30099-8.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Nadkarni GN, Chauhan K, Rao V, Ix JH, Shlipak MG, Parikh CR, et al. Effect of intensive blood pressure lowering on kidney tubule injury: findings from the ACCORD trial study participants. Am J Kidney Dis. 2019;73:31–8. https://doi.org/10.1053/j.ajkd.2018.07.016.

    Article  PubMed  Google Scholar 

  80. Tomson CRV, Cheung AK, Mann JFE, Chang TI, Cushman WC, Furth SL, et al. Management of blood pressure in patients with chronic kidney disease not receiving dialysis: synopsis of the 2021 KDIGO clinical practice guideline. Ann Intern Med. 2021;174:1270–81. https://doi.org/10.7326/M21-0834.

    Article  PubMed  Google Scholar 

  81. Minutolo R, Gabbai FB, Agarwal R, Chiodini P, Borrelli S, Bellizzi V, et al. Assessment of achieved clinic and ambulatory blood pressure recordings and outcomes during treatment in hypertensive patients with CKD: a multicenter prospective cohort study. Am J Kidney Dis. 2014;64:744–52. https://doi.org/10.1053/j.ajkd.2014.06.014.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep Redon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Redon, J., Martinez, F. (2023). Hypertension and Type 2 Diabetes. In: Berbari, A.E., Mancia, G. (eds) Blood Pressure Disorders in Diabetes Mellitus. Updates in Hypertension and Cardiovascular Protection. Springer, Cham. https://doi.org/10.1007/978-3-031-13009-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13009-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13008-3

  • Online ISBN: 978-3-031-13009-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics