Skip to main content
Log in

Modulation of Pressure-Natriuresis by Renal Medullary Reactive Oxygen Species and Nitric Oxide

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

The renal pressure-natriuresis mechanism is the dominant controller of body fluid balance and long-term arterial pressure. In recent years, it has become clear that the balance of reactive oxygen and nitrogen species within the renal medullary region is a key determinant of the set point of the renal pressure-natriuresis curve. The development of renal medullary oxidative stress causes dysfunction of the pressure-natriuresis mechanism and contributes to the development of hypertension in numerous disease models. The purpose of this review is to point out the known mechanisms within the renal medulla through which reactive oxygen and nitrogen species modulate the pressure-natriuresis response and to update the reader on recent advances in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Guyton AC: Dominant role of the kidneys and accessory role of whole-body autoregulation in the pathogenesis of hypertension. Am J Hypertens 1989, 2(7):575–585.

    CAS  PubMed  Google Scholar 

  2. Cowley AW Jr, Mattson DL, Lu S, Roman RJ: The renal medulla and hypertension. Hypertension 1995, 25(4 Pt 2):663–673.

    PubMed  Google Scholar 

  3. Cowley AW Jr: Renal medullary oxidative stress, pressure-natriuresis, and hypertension. Hypertension 2008, 52(5):777–786.

    Article  CAS  PubMed  Google Scholar 

  4. Evans RG, Majid DS, Eppel GA: Mechanisms mediating pressure natriuresis: what we know and what we need to find out. Clin Exp Pharmacol Physiol 2005, 32(5–6):400–409.

    Article  CAS  PubMed  Google Scholar 

  5. Cowley AW, Roman RJ, Fenoy FJ, Mattson DL: Effect of renal medullary circulation on arterial pressure. J Hypertens Suppl 1992, 10(7):S187–S193.

    Article  CAS  PubMed  Google Scholar 

  6. Garcia-Estan J, Roman RJ: Role of renal interstitial hydrostatic pressure in the pressure diuresis response. Am J Physiol 1989, 256(1 Pt 2):F63–F70.

    CAS  PubMed  Google Scholar 

  7. Williams JM, Sarkis A, Lopez B, et al.: Elevations in renal interstitial hydrostatic pressure and 20-hydroxyeicosatetraenoic acid contribute to pressure natriuresis. Hypertension 2007, 49(3):687–694.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang YB, Magyar CE, Holstein-Rathlou NH, McDonough AA: The cytochrome P-450 inhibitor cobalt chloride prevents inhibition of renal Na,K-ATPase and redistribution of apical NHE-3 during acute hypertension. J Am Soc Nephrol 1998, 9(4):531–537.

    CAS  PubMed  Google Scholar 

  9. Cowley AW Jr: Long-term control of arterial blood pressure. Physiol Rev 1992, 72(1):231–300.

    PubMed  Google Scholar 

  10. Majid DS, Navar LG: Nitric oxide in the mediation of pressure natriuresis. Clin Exp Pharmacol Physiol 1997, 24(8):595–599.

    Article  CAS  PubMed  Google Scholar 

  11. Guarasci GR, Kline RL: Pressure natriuresis following acute and chronic inhibition of nitric oxide synthase in rats. Am J Physiol 1996, 270(2 Pt 2):R469–R478.

    CAS  PubMed  Google Scholar 

  12. Mattson DL, Roman RJ, Cowley AW Jr: Role of nitric oxide in renal papillary blood flow and sodium excretion. Hypertension 1992, 19(6 Pt 2):766–769.

    CAS  PubMed  Google Scholar 

  13. Mattson DL, Lu S, Nakanishi K, et al.: Effect of chronic renal medullary nitric oxide inhibition on blood pressure. Am J Physiol 1994, 266(5 Pt 2):H1918–H1926.

    CAS  PubMed  Google Scholar 

  14. Szentivanyi M Jr, Zou AP, Mattson DL, et al.: Renal medullary nitric oxide deficit of Dahl S rats enhances hypertensive actions of angiotensin II. Am J Physiol Regul Integr Comp Physiol 2002, 283(1):R266–R272.

    CAS  PubMed  Google Scholar 

  15. O’Connor PM, Cowley AW Jr: Vasopressin-induced nitric oxide production in rat inner medullary collecting duct is dependent on V2 receptor activation of the phosphoinositide pathway. Am J Physiol Renal Physiol 2007, 293(2):F526–532.

    Article  PubMed  Google Scholar 

  16. Szentivanyi M Jr, Maeda CY, Cowley AW Jr: Local renal medullary L-NAME infusion enhances the effect of long-term angiotensin II treatment. Hypertension 1999, 33(1 Pt 2):440–445.

    CAS  PubMed  Google Scholar 

  17. Park F, Zou AP, Cowley AW Jr: Arginine vasopressin-mediated stimulation of nitric oxide within the rat renal medulla. Hypertension 1998, 32(5):896–901.

    CAS  PubMed  Google Scholar 

  18. Yuan B, Cowley AW Jr: Evidence that reduced renal medullary nitric oxide synthase activity of dahl s rats enables small elevations of arginine vasopressin to produce sustained hypertension. Hypertension 2001, 37(2 Part 2):524–528.

    Google Scholar 

  19. Fenoy FJ, Ferrer P, Carbonell L, Garcia-Salom M: Role of nitric oxide on papillary blood flow and pressure natriuresis. Hypertension 1995, 25(3):408–414.

    CAS  PubMed  Google Scholar 

  20. •• Jin C, Hu C, Polichnowski A, et al.: Effects of renal perfusion pressure on renal medullary hydrogen peroxide and nitric oxide production. Hypertension 2009, 53(6):1048–1053. Using in vivo microdialysis techniques, Jin et al. demonstrate that increasing renal perfusion pressure stimulates renal medullary NO and H 2 O 2 . Importantly, NO stimulation was not affected by renal decapsulation and inhibition of the renal natriuretic response, suggesting that the increased production of NO may be a primary event in the renal pressure-natriuresis cascade.

  21. Ortiz PA, Hong NJ, Garvin JL: NO decreases thick ascending limb chloride absorption by reducing Na(+)-K(+)-2Cl(-) cotransporter activity. Am J Physiol Renal Physiol 2001, 281(5):F819–F825.

    CAS  PubMed  Google Scholar 

  22. • Lieb DC, Kemp BA, Howell NL, et al.: Reinforcing feedback loop of renal cyclic guanosine 3′5′-monophosphate and interstitial hydrostatic pressure in pressure-natriuresis. Hypertension 2009, 54(6):1278–1283. Lieb et al. demonstrate that cyclic guanosine 35-monophosphate is produced in response to increases in RIHP and also acts to increase RIHP through an unknown mechanism. By activating a positive feedback loop, cyclic guanosine 35-monophosphate may allow the kidney to rapidly reduce sodium and water reabsorption when renal perfusion pressure is elevated.

  23. Wu F, Park F, Cowley AW Jr, Mattson DL: Quantification of nitric oxide synthase activity in microdissected segments of the rat kidney. Am J Physiol 1999, 276(6 Pt 2):F874–F881.

    CAS  PubMed  Google Scholar 

  24. Zhang Z, Pallone TL: Response of descending vasa recta to luminal pressure. Am J Physiol Renal Physiol 2004, 287(3):F535–F542.

    Article  CAS  PubMed  Google Scholar 

  25. •• Schneider MP, Ge Y, Pollock DM, et al.: Collecting duct-derived endothelin regulates arterial pressure and Na excretion via nitric oxide. Hypertension 2008, 51(6):1605–1610. Schneider et al. demonstrate that that mice lacking collecting-duct endothelin display elevated blood pressure and an altered pressure-natriuresis response, indicating that this pathway contributes to long-term blood pressure control.

  26. Nakano D, Pollock JS, Pollock DM: Renal medullary ETB receptors produce diuresis and natriuresis via NOS1. Am J Physiol Renal Physiol 2008, 294(5):F1205–F1211.

    Article  CAS  PubMed  Google Scholar 

  27. Abe M, O’Connor P, Kaldunski M, et al.: Effect of sodium delivery on superoxide and nitric oxide in the medullary thick ascending limb. Am J Physiol Renal Physiol 2006, 291(2):F350–F357.

    Article  CAS  PubMed  Google Scholar 

  28. Hong NJ, Garvin JL: Flow increases superoxide production by NADPH oxidase via activation of Na-K-2Cl cotransport and mechanical stress in thick ascending limbs. Am J Physiol Renal Physiol 2007, 292(3):F993–F998.

    Article  CAS  PubMed  Google Scholar 

  29. Makino A, Skelton MM, Zou AP, et al.: Increased renal medullary oxidative stress produces hypertension. Hypertension 2002, 39(2 Pt 2):667–672.

    Article  CAS  PubMed  Google Scholar 

  30. Taylor NE, Cowley AW Jr: Effect of renal medullary H2O2 on salt-induced hypertension and renal injury. Am J Physiol Regul Integr Comp Physiol 2005, 289(6):R1573–R1579.

    CAS  PubMed  Google Scholar 

  31. Chen YF, Cowley AW Jr, Zou AP: Increased H(2)O(2) counteracts the vasodilator and natriuretic effects of superoxide dismutation by tempol in renal medulla. Am J Physiol Regul Integr Comp Physiol 2003, 285(4):R827–R833.

    CAS  PubMed  Google Scholar 

  32. Mori T, O’Connor PM, Abe M, Cowley AW Jr: Enhanced superoxide production in renal outer medulla of Dahl salt-sensitive rats reduces nitric oxide tubular-vascular cross-talk. Hypertension 2007, 49(6):1336–1341.

    Article  CAS  PubMed  Google Scholar 

  33. •• Hong NJ, Garvin JL: Nitric oxide reduces flow-induced superoxide production via cGMP-dependent protein kinase in thick ascending limbs. Am J Physiol Renal Physiol 2009, 296(5):F1061–F1066. Hong et al. demonstrate that most of the reduction of O 2 levels in medullary thick ascending limb in response to increased NO produced by luminal flow occurs via the activation of cellular cGMP and protein kinase G (PKG), not direct scavenging of O 2 by NO to form OONO .

  34. Muzaffar S, Shukla N, Bond M, et al.: Acute inhibition of superoxide formation and Rac1 activation by nitric oxide and iloprost in human vascular smooth muscle cells in response to the thromboxane A2 analogue, U46619. Prostaglandins Leukot Essent Fatty Acids 2008, 78(4–5):247–255.

    Article  CAS  PubMed  Google Scholar 

  35. Juncos R, Garvin JL: Superoxide enhances Na-K-2Cl cotransporter activity in the thick ascending limb. Am J Physiol Renal Physiol 2005, 288(5):F982–F987.

    Article  CAS  PubMed  Google Scholar 

  36. Juncos R, Hong NJ, Garvin JL: Differential effects of superoxide on luminal and basolateral Na+/H + exchange in the thick ascending limb. Am J Physiol Regul Integr Comp Physiol 2006, 290(1):R79–R83.

    CAS  PubMed  Google Scholar 

  37. Taylor NE, Glocka P, Liang M, Cowley AW Jr: NADPH oxidase in the renal medulla causes oxidative stress and contributes to salt-sensitive hypertension in Dahl S rats. Hypertension 2006, 47(4):692–698.

    Article  CAS  PubMed  Google Scholar 

  38. Garcia NH, Plato CF, Stoos BA, Garvin JL: Nitric oxide-induced inhibition of transport by thick ascending limbs from Dahl salt-sensitive rats. Hypertension 1999, 34(3):508–513.

    CAS  PubMed  Google Scholar 

  39. Riazi S, Tiwari S, Sharma N, et al.: Abundance of the Na-K-2Cl cotransporter NKCC2 is increased by high-fat feeding in Fischer 344 X Brown Norway (F1) rats. Am J Physiol Renal Physiol 2009, 296(4):F762–F770.

    Article  CAS  PubMed  Google Scholar 

  40. Kurtz TW: Genetic models of hypertension. Lancet 1994, 344(8916):167–168.

    Article  CAS  PubMed  Google Scholar 

  41. Li N, Yi FX, Spurrier JL, et al.: Production of superoxide through NADH oxidase in thick ascending limb of Henle’s loop in rat kidney. Am J Physiol Renal Physiol 2002, 282(6):F1111–F1119.

    CAS  PubMed  Google Scholar 

  42. • O’Connor PM, Lu L, Schreck C, Cowley AW Jr: Enhanced amiloride-sensitive superoxide production in renal medullary thick ascending limb of Dahl salt-sensitive rats. Am J Physiol Renal Physiol 2008, 295(3):F726–F733. The authors demonstrate that O 2 production is enhanced in medullary thick ascending limb from Dahl salt-sensitive rats and that this enhanced O 2 production is sensitive to inhibition by amiloride analogues.

  43. •• O’Connor PM, Lu L, Liang M, Cowley AW Jr: A novel amiloride-sensitive H+ transport pathway mediates enhanced superoxide production in thick ascending limb of salt-sensitive rats, not Na+/H+ exchange. Hypertension 2009, 54(2):248–254. In this follow-up study, the authors demonstrate that excess amiloride-sensitive O 2 production observed in medullary thick ascending limb of Dahl salt-sensitive rats is related to activation of a novel H + transport pathway, a pathway that is upregulated in the Dahl salt-sensitive rat.

  44. O’Connor PM: Renal oxygen delivery: matching delivery to metabolic demand. Clin Exp Pharmacol Physiol 2006, 33(10):961–967.

    Article  PubMed  Google Scholar 

  45. Herrera M, Ortiz PA, Garvin JL: Regulation of thick ascending limb transport: role of nitric oxide. Am J Physiol Renal Physiol 2006, 290(6):F1279–F1284.

    Article  CAS  PubMed  Google Scholar 

  46. Brown GC: Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett 1995, 369(2–3):136–139.

    Article  CAS  PubMed  Google Scholar 

  47. Welch WJ: Intrarenal oxygen and hypertension. Clin Exp Pharmacol Physiol 2006, 33(10):1002–1005.

    Article  CAS  PubMed  Google Scholar 

  48. Welch WJ, Blau J, Xie H, et al.: Angiotensin-induced defects in renal oxygenation: role of oxidative stress. Am J Physiol Heart Circ Physiol 2005, 288(1):H22–H28.

    Article  CAS  PubMed  Google Scholar 

  49. Chen Y, Gill PS, Welch WJ: Oxygen availability limits renal NADPH-dependent superoxide production. Am J Physiol Renal Physiol 2005, 289(4):F749–F753.

    Article  CAS  PubMed  Google Scholar 

  50. •• Li N, Chen L, Yi F, et al.: Salt-sensitive hypertension induced by decoy of transcription factor hypoxia-inducible factor-1alpha in the renal medulla. Circ Res 2008, 102(9):1101–1108. Li et al. demonstrate the importance of HIF signaling in the maintenance of blood pressure in rats fed high-sodium diets. Inhibition of HIF signaling specifically in the renal medulla resulted in marked salt sensitivity of blood pressure in otherwise normotensive, salt-resistant Sprague-Dawley rats.

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. O’Connor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Connor, P.M., Cowley, A.W. Modulation of Pressure-Natriuresis by Renal Medullary Reactive Oxygen Species and Nitric Oxide. Curr Hypertens Rep 12, 86–92 (2010). https://doi.org/10.1007/s11906-010-0094-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-010-0094-6

Keywords

Navigation