Skip to main content

Management of Pediatric Acute Kidney Injury

  • Chapter
  • First Online:
Pediatric Kidney Disease

Abstract

Targeted management and therapy for acute kidney injury (AKI) remains challenging. Much of the care for pediatric AKI to date remains supportive in nature. Earlier detection of AKI may allow intervention with fluid management measures before AKI is fully established, thus allowing the clinician to move beyond supportive care and improve outcomes. Early identification of patients at risk to develop AKI, optimizing fluid and electrolyte status, and avoidance of nephrotoxins are key points in early goal directed management of AKI. Fluid overloaded states may develop in AKI and early renal replacement therapy should be strongly considered to ameliorate and/or allow for correction of volume disturbance and metabolic derangement and permit adequate nutrition to the critically ill pediatric patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bunchman TE. Treatment of acute kidney injury in children: from conservative management to renal replacement therapy. Nat Clin Pract Nephrol. 2008;4(9):510–4.

    Article  CAS  PubMed  Google Scholar 

  2. Himmelfarb J, Joannidis M, Molitoris B, Schietz M, Okusa MD, Warnock D, et al. Evaluation and initial management of acute kidney injury. Clin J Am Soc Nephrol. 2008;3(4):962–7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Andreoli SP. Acute kidney injury in children. Pediatr Nephrol. 2009;24(2):253–63.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zappitelli M, Bernier PL, Saczkowski RS, Tchervenkov CI, Gottesman R, Dancea A, et al. A small post-operative rise in serum creatinine predicts acute kidney injury in children undergoing cardiac surgery. Kidney Int. 2009;76(8):885–92.

    Article  CAS  PubMed  Google Scholar 

  5. Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R, et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350(22):2247–56.

    Article  CAS  PubMed  Google Scholar 

  6. Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H, et al. Sepsis in European intensive care units: results of the SOAP study. Crit Care Med. 2006;34(2):344–53.

    Article  PubMed  Google Scholar 

  7. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. 2012;2(Suppl):1–138.

    Google Scholar 

  8. De Backer D, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoa C, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010;362(9):779–89.

    Article  PubMed  Google Scholar 

  9. Delmas A, Leone M, Rousseau S, Albanese J, Martin C. Clinical review: vasopressin and terlipressin in septic shock patients. Crit Care. 2005;9(2):212–22.

    Article  PubMed  Google Scholar 

  10. Venkataraman R, Kellum JA. Prevention of acute renal failure. Chest. 2007;131(1):300–8.

    Article  CAS  PubMed  Google Scholar 

  11. Bellomo R, Chapman M, Finfer S, Hickling K, Myburgh J. Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial. Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group. Lancet. 2000;356(9248):2139–43.

    Article  CAS  PubMed  Google Scholar 

  12. Friedrich JO, Adhikari N, Herridge MS, Beyene J. Meta-analysis: low-dose dopamine increases urine output but does not prevent renal dysfunction or death. Ann Intern Med. 2005;142(7):510–24.

    Article  CAS  PubMed  Google Scholar 

  13. Lauschke A, Teichgraber UK, Frei U, Eckardt KU. ‘Low-dose’ dopamine worsens renal perfusion in patients with acute renal failure. Kidney Int. 2006;69(9):1669–74.

    Article  CAS  PubMed  Google Scholar 

  14. Cogliati AA, Vellutini R, Nardini A, Urovi S, Hamdan M, Landoni G, et al. Fenoldopam infusion for renal protection in high-risk cardiac surgery patients: a randomized clinical study. J Cardiothorac Vasc Anesth. 2007;21(6):847–50.

    Article  CAS  PubMed  Google Scholar 

  15. Landoni G, Biondi-Zoccai GG, Tumlin JA, Bove T, De Luca M, Calabro MG, et al. Beneficial impact of fenoldopam in critically ill patients with or at risk for acute renal failure: a meta-analysis of randomized clinical trials. Am J Kidney Dis. 2007;49(1):56–68.

    Article  CAS  PubMed  Google Scholar 

  16. Ricci Z, Luciano R, Favia I, Garisto C, Muraca M, Morelli S, et al. High-dose fenoldopam reduces postoperative neutrophil gelatinase-associated lipocaline and cystatin C levels in pediatric cardiac surgery. Crit Care. 2011;15(3):R160.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ranucci M, De Benedetti D, Bianchini C, Castelvecchio S, Ballotta A, Frigiola A, et al. Effects of fenoldopam infusion in complex cardiac surgical operations: a prospective, randomized, double-blind, placebo-controlled study. Minerva Anestesiol. 2010;76(4):249–59.

    CAS  PubMed  Google Scholar 

  18. Cantarovich F, Rangoonwala B, Lorenz H, Verho M, Esnault VL, High-Dose Flurosemide in Acute Renal Failure Study Group. High-dose furosemide for established ARF: a prospective, randomized, double-blind, placebo-controlled, multicenter trial. Am J Kidney Dis. 2004;44(3):402–9.

    Article  CAS  PubMed  Google Scholar 

  19. Mehta RL, Pascual MT, Soroko S, Chertow GM, Group PS. Diuretics, mortality, and nonrecovery of renal function in acute renal failure. JAMA. 2002;288(20):2547–53.

    Article  CAS  PubMed  Google Scholar 

  20. Goldstein SL, Currier H, Graf C, Cosio CC, Brewer ED, Sachdeva R. Outcome in children receiving continuous venovenous hemofiltration. Pediatrics. 2001;107(6):1309–12.

    Article  CAS  PubMed  Google Scholar 

  21. Askenazi DJ, Koralkar R, Hundley HE, Montesanti A, Patil N, Ambalavanan N. Fluid overload and mortality are associated with acute kidney injury in sick near-term/term neonate. Pediatr Nephrol. 2013;28(4):661–6.

    Article  PubMed  Google Scholar 

  22. Williams EL, Hildebrand KL, McCormick SA, Bedel MJ. The effect of intravenous lactated Ringer’s solution versus 0.9% sodium chloride solution on serum osmolality in human volunteers. Anesth Analg. 1999;88(5):999–1003.

    CAS  PubMed  Google Scholar 

  23. Reid F, Lobo DN, Williams RN, Rowlands BJ, Allison SP. (Ab)normal saline and physiological Hartmann’s solution: a randomized double-blind crossover study. Clin Sci. 2003;104(1):17–24.

    Article  CAS  Google Scholar 

  24. Wilcox CS. Regulation of renal blood flow by plasma chloride. J Clin Invest. 1983;71(3):726–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndrome. J Am Coll Cardiol. 2008;52(19):1527–39.

    Article  PubMed  Google Scholar 

  26. Grams ME, Estrella MM, Coresh J, Brower RG, Liu KD, National Heart Lung, and Blood Institute Acute Respiratory Distress Syndrome Network, et al. Fluid balance, diuretic use, and mortality in acute kidney injury. Clin J Am Soc Nephrol. 2011;6(5):966–73.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ho KM, Power BM. Benefits and risks of furosemide in acute kidney injury. Anaesthesia. 2010;65(3):283–93.

    Article  CAS  PubMed  Google Scholar 

  28. Ho KM, Sheridan DJ. Meta-analysis of frusemide to prevent or treat acute renal failure. BMJ. 2006;333(7565):420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Foland JA, Fortenberry JD, Warshaw BL, Pettignano R, Merritt RK, Heard ML, et al. Fluid overload before continuous hemofiltration and survival in critically ill children: a retrospective analysis. Crit Care Med. 2004;32(8):1771–6.

    Article  PubMed  Google Scholar 

  30. Andreoli SP. Management of acute kidney injury in children: a guide for pediatricians. Paediatr Drugs. 2008;10(6):379–90.

    Article  PubMed  Google Scholar 

  31. Andreoli SP. Acute and chronic renal failure in children. In: Gearhart JP, Rink RC, Mouriquand PDE, editors. Pediatric urology. Philadelphia: Saunders; 2001. p. 777–89.

    Google Scholar 

  32. Fiaccadori E, Cremaschi E. Nutritional assessment and support in acute kidney injury. Curr Opin Crit Care. 2009;15(6):474–80.

    Article  PubMed  Google Scholar 

  33. McClave SA, Martindale RG, Vanek VW, McCarthy M, Roberts P, Taylor B, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN Parenter Enteral Nutr. 2009;33(3):277–316.

    Article  Google Scholar 

  34. Fiaccadori E, Cremaschi E, Regolisti G. Nutritional assessment and delivery in renal replacement therapy patients. Semin Dial. 2011;24(2):169–75.

    Article  PubMed  Google Scholar 

  35. Zappitelli M, Goldstein SL, Symons JM, Somers MJ, Baum MA, Brophy PD, et al. Protein and calorie prescription for children and young adults receiving continuous renal replacement therapy: a report from the Prospective Pediatric Continuous Renal Replacement Therapy Registry Group. Crit Care Med. 2008;36(12):3239–45.

    Article  PubMed  Google Scholar 

  36. Fouque D, Kalantar-Zadeh K, Kopple J, Cano N, Chauveau P, Cuppari L, et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 2008;73(4):391–8.

    Article  CAS  PubMed  Google Scholar 

  37. Fiaccadori E, Lombardi M, Leonardi S, Rotelli CF, Tortorella G, Borghetti A. Prevalence and clinical outcome associated with preexisting malnutrition in acute renal failure: a prospective cohort study. J Am Soc Nephrol. 1999;10(3):581–93.

    Article  CAS  PubMed  Google Scholar 

  38. Cano NJ, Aparicio M, Brunori G, Carrero JJ, Cianciaruso B, Fiaccadori E, et al. ESPEN guidelines on parenteral nutrition: adult renal failure. Clin Nutr. 2009;28(4):401–14.

    Article  CAS  PubMed  Google Scholar 

  39. Briassoulis G, Tsorva A, Zavras N, Hatzis T. Influence of an aggressive early enteral nutrition protocol on nitrogen balance in critically ill children. J Nutr Biochem. 2002;13(9):560.

    Article  CAS  PubMed  Google Scholar 

  40. Fiaccadori E, Maggiore U, Giacosa R, Rotelli C, Picetti E, Sagripanti S, et al. Enteral nutrition in patients with acute renal failure. Kidney Int. 2004;65(3):999–1008.

    Article  PubMed  Google Scholar 

  41. Fiaccadori E, Maggiore U, Rotelli C, Giacosa R, Picetti E, Parenti E, et al. Effects of different energy intakes on nitrogen balance in patients with acute renal failure: a pilot study. Nephrol Dial Transplant. 2005;20(9):1976–80.

    Article  PubMed  Google Scholar 

  42. Story DA, Ronco C, Bellomo R. Trace element and vitamin concentrations and losses in critically ill patients treated with continuous venovenous hemofiltration. Crit Care Med. 1999;27(1):220–3.

    Article  CAS  PubMed  Google Scholar 

  43. Nakamura AT, Btaiche IF, Pasko DA, Jain JC, Mueller BA. In vitro clearance of trace elements via continuous renal replacement therapy. J Renal Nutr. 2004;14(4):214–9.

    Article  Google Scholar 

  44. Van Cromphaut SJ. Hyperglycaemia as part of the stress response: the underlying mechanisms. Best Pract Res Clin Anaesthesiol. 2009;23(4):375–86.

    Article  PubMed  Google Scholar 

  45. Van den Berghe G, Wilmer A, Hermans G, Meersseman W, Wouters PJ, Milants I, et al. Intensive insulin therapy in the medical ICU. N Engl J Med. 2006;354(5):449–61.

    Article  PubMed  Google Scholar 

  46. van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345(19):1359–67.

    Article  PubMed  Google Scholar 

  47. Hermans G, Wilmer A, Meersseman W, Milants I, Wouters PJ, Bobbaers H, et al. Impact of intensive insulin therapy on neuromuscular complications and ventilator dependency in the medical intensive care unit. Am J Respir Crit Care Med. 2007;175(5):480–9.

    Article  CAS  PubMed  Google Scholar 

  48. Schetz M, Vanhorebeek I, Wouters PJ, Wilmer A, Van den Berghe G. Tight blood glucose control is renoprotective in critically ill patients. J Am Soc Nephrol. 2008;19(3):571–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:S1–138.

    Google Scholar 

  50. Mehta RL, Pascual MT, Soroko S, Savage BR, Himmelfarb J, Ikizler TA, et al. Spectrum of acute renal failure in the intensive care unit: the PICARD experience. Kidney Int. 2004;66(4):1613–21.

    Article  PubMed  Google Scholar 

  51. Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294(7):813–8.

    Article  CAS  PubMed  Google Scholar 

  52. Kellum JA, Leblanc M, Venkataraman R. Acute renal failure. Clin Evid. 2008;2008:pii 2001.

    Google Scholar 

  53. Misurac JM, Knoderer CA, Leiser JD, Nailescu C, Wilson AC, Andreoli SP. Nonsteroidal anti-inflammatory drugs are an important cause of acute kidney injury in children. J Pediatr. 2013;162(6):1153–9, 9 e1.

    Article  CAS  PubMed  Google Scholar 

  54. Rihal CS, Textor SC, Grill DE, Berger PB, Ting HH, Best PJ, et al. Incidence and prognostic importance of acute renal failure after percutaneous coronary intervention. Circulation. 2002;105(19):2259–64.

    Article  PubMed  Google Scholar 

  55. Barrett BJ, Carlisle EJ. Metaanalysis of the relative nephrotoxicity of high- and low-osmolality iodinated contrast media. Radiology. 1993;188(1):171–8.

    Article  CAS  PubMed  Google Scholar 

  56. Solomon R. The role of osmolality in the incidence of contrast-induced nephropathy: a systematic review of angiographic contrast media in high risk patients. Kidney Int. 2005;68(5):2256–63.

    Article  CAS  PubMed  Google Scholar 

  57. Pannu N, Wiebe N, Tonelli M. Prophylaxis strategies for contrast-induced nephropathy. JAMA. 2006;295(23):2765–79.

    Article  CAS  PubMed  Google Scholar 

  58. Cantley LG, Spokes K, Clark B, McMahon EG, Carter J, Epstein FH. Role of endothelin and prostaglandins in radiocontrast-induced renal artery constriction. Kidney Int. 1993;44(6):1217–23.

    Article  CAS  PubMed  Google Scholar 

  59. Pflueger A, Larson TS, Nath KA, King BF, Gross JM, Knox FG. Role of adenosine in contrast media-induced acute renal failure in diabetes mellitus. Mayo Clin Proc. 2000;75(12):1275–83.

    Article  CAS  PubMed  Google Scholar 

  60. Rudnick MR, Berns JS, Cohen RM, Goldfarb S. Nephrotoxic risks of renal angiography: contrast media-associated nephrotoxicity and atheroembolism – a critical review. Am J Kidney Dis. 1994;24(4):713–27.

    Article  CAS  PubMed  Google Scholar 

  61. Taber SS, Mueller BA. Drug-associated renal dysfunction. Crit Care Clin. 2006;22(2):357–74, viii.

    Article  CAS  PubMed  Google Scholar 

  62. Peixoto AJ. Critical issues in nephrology. Clin Chest Med. 2003;24(4):561–81.

    Article  PubMed  Google Scholar 

  63. McCullough PA. Contrast-induced acute kidney injury. J Am Coll Cardiol. 2008;51(15):1419–28.

    Article  PubMed  Google Scholar 

  64. Weisbord SD, Gallagher M, Jneid H, et al. Outcomes after angiography with sodium bicarbonate and acetylcysteine. NEJM. 2018;378:603–14.

    Article  CAS  PubMed  Google Scholar 

  65. Sharfuddin AA, Molitoris BA. Pathophysiology of ischemic acute kidney injury. Nat Rev Nephrol. 2011;7(4):189–200.

    Article  CAS  PubMed  Google Scholar 

  66. Bernhardt WM, Eckardt KU. Physiological basis for the use of erythropoietin in critically ill patients at risk for acute kidney injury. Curr Opin Crit Care. 2008;14(6):621–6.

    Article  PubMed  Google Scholar 

  67. Endre ZH, Walker RJ, Pickering JW, Shaw GM, Frampton CM, Henderson SJ, et al. Early intervention with erythropoietin does not affect the outcome of acute kidney injury (the EARLYARF trial). Kidney Int. 2010;77(11):1020–30.

    Article  CAS  PubMed  Google Scholar 

  68. Miller SB, Martin DR, Kissane J, Hammerman MR. Insulin-like growth factor I accelerates recovery from ischemic acute tubular necrosis in the rat. Proc Natl Acad Sci U S A. 1992;89(24):11876–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vijayan A, Martin DR, Sadow JL, Kissane J, Miller SB. Hepatocyte growth factor inhibits apoptosis after ischemic renal injury in rats. Am J Kidney Dis. 2001;38(2):274–8.

    Article  CAS  PubMed  Google Scholar 

  70. Gouyon JB, Guignard JP. Theophylline prevents the hypoxemia-induced renal hemodynamic changes in rabbits. Kidney Int. 1988;33(6):1078–83.

    Article  CAS  PubMed  Google Scholar 

  71. Bhat MA, Shah ZA, Makhdoomi MS, Mufti MH. Theophylline for renal function in term neonates with perinatal asphyxia: a randomized, placebo-controlled trial. J Pediatr. 2006;149(2):180–4.

    Article  CAS  PubMed  Google Scholar 

  72. Bakr AF. Prophylactic theophylline to prevent renal dysfunction in newborns exposed to perinatal asphyxia – a study in a developing country. Pediatr Nephrol. 2005;20(9):1249–52.

    Article  PubMed  Google Scholar 

  73. Schneider J, Khemani R, Grushkin C, Bart R. Serum creatinine as stratified in the RIFLE score for acute kidney injury is associated with mortality and length of stay for children in the pediatric intensive care unit. Crit Care Med. 2010;38(3):933–9.

    Article  CAS  PubMed  Google Scholar 

  74. Proulx F, Gauthier M, Nadeau D, Lacroix J, Farrell CA. Timing and predictors of death in pediatric patients with multiple organ system failure. Crit Care Med. 1994;22(6):1025–31.

    Article  CAS  PubMed  Google Scholar 

  75. Flynn JT. Choice of dialysis modality for management of pediatric acute renal failure. Pediatr Nephrol. 2002;17(1):61–9.

    Article  CAS  PubMed  Google Scholar 

  76. Liu KD, Himmelfarb J, Paganini E, Ikizler TA, Soroko SH, Mehta RL, et al. Timing of initiation of dialysis in critically ill patients with acute kidney injury. Clin J Am Soc Nephrol. 2006;1(5):915–9.

    Article  CAS  PubMed  Google Scholar 

  77. Bagshaw SM, Uchino S, Bellomo R, Morimatsu H, Morgera S, Schetz M, et al. Timing of renal replacement therapy and clinical outcomes in critically ill patients with severe acute kidney injury. J Crit Care. 2009;24(1):129–40.

    Article  PubMed  Google Scholar 

  78. Basu RK, Chawla LS, Wheeler DS, Goldstein SL. Renal angina: an emerging paradigm to identify children at risk for acute kidney injury. Pediatr Nephrol. 2012;27(7):1067–78.

    Article  PubMed  Google Scholar 

  79. Basu RK, Zappitelli M, Brunner L, Wang Y, Wong HR, Chawla LS, et al. Derivation and validation of the renal angina index to improve the prediction of acute kidney injury in critically ill children. Kidney Int. 2014;85(3):659–67.

    Article  PubMed  Google Scholar 

  80. Sutherland SM, Zappitelli M, Alexander SR, Chua AN, Brophy PD, Bunchman TE, et al. Fluid overload and mortality in children receiving continuous renal replacement therapy: the prospective pediatric continuous renal replacement therapy registry. Am J Kidney Dis. 2010;55(2):316–25.

    Article  PubMed  Google Scholar 

  81. Bonilla-Felix M. Peritoneal dialysis in the pediatric intensive care unit setting: techniques, quantitations and outcomes. Blood Purif. 2013;35(1–3):77–80.

    Article  PubMed  Google Scholar 

  82. Warady BA, Bunchman T. Dialysis therapy for children with acute renal failure: survey results. Pediatr Nephrol. 2000;15(1–2):11–3.

    Article  CAS  PubMed  Google Scholar 

  83. Gong WK, Tan TH, Foong PP, Murugasu B, Yap HK. Eighteen years experience in pediatric acute dialysis: analysis of predictors of outcome. Pediatr Nephrol. 2001;16(3):212–5.

    Article  CAS  PubMed  Google Scholar 

  84. Anochie IC, Eke FU. Paediatric acute peritoneal dialysis in southern Nigeria. Postgrad Med J. 2006;82(965):228–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Phadke KD, Dinakar C. The challenges of treating children with renal failure in a developing country. Perit Dial Int. 2001;21(Suppl 3):S326–9.

    Article  PubMed  Google Scholar 

  86. Wong SN, Geary DF. Comparison of temporary and permanent catheters for acute peritoneal dialysis. Arch Dis Child. 1988;63(7):827–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chadha V, Warady BA, Blowey DL, Simckes AM, Alon US. Tenckhoff catheters prove superior to cook catheters in pediatric acute peritoneal dialysis. Am J Kidney Dis. 2000;35(6):1111–6.

    Article  CAS  PubMed  Google Scholar 

  88. Reznik VM, Griswold WR, Peterson BM, Rodarte A, Ferris ME, Mendoza SA. Peritoneal dialysis for acute renal failure in children. Pediatr Nephrol. 1991;5(6):715–7.

    Article  CAS  PubMed  Google Scholar 

  89. Schaefer F, Warady BA. Peritoneal dialysis in children with end-stage renal disease. Nat Rev Nephrol. 2011;7(11):659–68.

    Article  PubMed  Google Scholar 

  90. Rabindranath K, Adams J, Macleod AM, Muirhead N. Intermittent versus continuous renal replacement therapy for acute renal failure in adults. Cochrane Database Syst Rev. 2007;3:CD003773.

    Google Scholar 

  91. Bagshaw SM, Berthiaume LR, Delaney A, Bellomo R. Continuous versus intermittent renal replacement therapy for critically ill patients with acute kidney injury: a meta-analysis. Crit Care Med. 2008;36(2):610–7.

    Article  PubMed  Google Scholar 

  92. Abi Antoun T, Palevsky PM. Selection of modality of renal replacement therapy. Semin Dial. 2009;22(2):108–13.

    Article  PubMed  Google Scholar 

  93. Bunchman T, Gardner J, Kershaw D, Maxvold N. Vascular access for hemodialysis or CVVH(D) in infants and children. Nephrol Dial Transplant. 1994;23:314–7.

    Google Scholar 

  94. Muller D, Goldstein SL. Hemodialysis in children with end-stage renal disease. Nat Rev Nephrol. 2011;7(11):650–8.

    Article  PubMed  Google Scholar 

  95. Mehta RL. Indications for dialysis in the ICU: renal replacement vs. renal support. Blood Purif. 2001;19(2):227–32.

    Article  CAS  PubMed  Google Scholar 

  96. Mehta RL, Bouchard J. Dialysis dosage in acute kidney injury: still a conundrum? J Am Soc Nephrol. 2008;19(6):1046–8.

    Article  PubMed  Google Scholar 

  97. Palevsky PM. Renal replacement therapy in acute kidney injury. Adv Chronic Kidney Dis. 2013;20(1):76–84.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Goldstein SL. Overview of pediatric renal replacement therapy in acute renal failure. Artif Organs. 2003;27(9):781–5.

    Article  PubMed  Google Scholar 

  99. Brophy PD, Mottes TA, Kudelka TL, McBryde KD, Gardner JJ, Maxvold NJ, et al. AN-69 membrane reactions are pH-dependent and preventable. Am J Kidney Dis. 2001;38(1):173–8.

    Article  CAS  PubMed  Google Scholar 

  100. Parshuram CS, Cox PN. Neonatal hyperkalemic-hypocalcemic cardiac arrest associated with initiation of blood-primed continuous venovenous hemofiltration. Pediatr Crit Care Med. 2002;3(1):67–9.

    Article  PubMed  Google Scholar 

  101. Pasko DA, Mottes TA, Mueller BA. Pre dialysis of blood prime in continuous hemodialysis normalizes pH and electrolytes. Pediatr Nephrol. 2003;18(11):1177–83.

    Article  PubMed  Google Scholar 

  102. Hackbarth RM, Eding D, Gianoli Smith C, Koch A, Sanfilippo DJ, Bunchman TE. Zero balance ultrafiltration (Z-BUF) in blood-primed CRRT circuits achieves electrolyte and acid-base homeostasis prior to patient connection. Pediatr Nephrol. 2005;20(9):1328–33.

    Article  PubMed  Google Scholar 

  103. Fischbach M, Edefonti A, Schroder C, Watson A. Hemodialysis in children: general practical guidelines. Pediatr Nephrol. 2005;20(8):1054–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Alonso A, Lau J, Jaber BL. Biocompatible hemodialysis membranes for acute renal failure. Cochrane Database Syst Rev. 2008;1:CD005283.

    Google Scholar 

  105. Pannu N, Klarenbach S, Wiebe N, Manns B, Tonelli M. Renal replacement therapy in patients with acute renal failure: a systematic review. JAMA. 2008;299(7):793–805.

    Article  CAS  PubMed  Google Scholar 

  106. Uchino S, Bellomo R, Morimatsu H, Goldsmith D, Davenport P, Cole L, et al. Cytokine dialysis: an ex vivo study. ASAIO J. 2002;48(6):650–3.

    Article  CAS  PubMed  Google Scholar 

  107. Haase M, Bellomo R, Baldwin I, Haase-Fielitz A, Fealy N, Davenport P, et al. Hemodialysis membrane with a high-molecular-weight cutoff and cytokine levels in sepsis complicated by acute renal failure: a phase 1 randomized trial. Am J Kidney Dis. 2007;50(2):296–304.

    Article  CAS  PubMed  Google Scholar 

  108. Haase M, Bellomo R, Morgera S, Baldwin I, Boyce N. High cut-off point membranes in septic acute renal failure: a systematic review. Int J Artif Organs. 2007;30(12):1031–41.

    Article  CAS  PubMed  Google Scholar 

  109. Rimmele T, Assadi A, Cattenoz M, Desebbe O, Lambert C, Boselli E, et al. High-volume haemofiltration with a new haemofiltration membrane having enhanced adsorption properties in septic pigs. Nephrol Dial Transplant. 2009;24(2):421–7.

    Article  CAS  PubMed  Google Scholar 

  110. Warkentin TE, Greinacher A, Koster A, Lincoff AM, American College of Chest Physicians. Treatment and prevention of heparin-induced thrombocytopenia: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest. 2008;133(6 Suppl):340S–80.

    Article  CAS  PubMed  Google Scholar 

  111. Stamatiadis DN, Helioti H, Mansour M, Pappas M, Bokos JG, Stathakis CP. Hemodialysis for patients bleeding or at risk for bleeding, can be simple, safe and efficient. Clin Nephrol. 2004;62(1):29–34.

    Article  CAS  PubMed  Google Scholar 

  112. Caruana RJ, Raja RM, Bush JV, Kramer MS, Goldstein SJ. Heparin free dialysis: comparative data and results in high risk patients. Kidney Int. 1987;31(6):1351–5.

    Article  CAS  PubMed  Google Scholar 

  113. Sanders PW, Taylor H, Curtis JJ. Hemodialysis without anticoagulation. Am J Kidney Dis. 1985;5(1):32–5.

    Article  CAS  PubMed  Google Scholar 

  114. Lohr JW, Slusher S, Diederich D. Safety of regional citrate hemodialysis in acute renal failure. Am J Kidney Dis. 1989;13(2):104–7.

    Article  CAS  PubMed  Google Scholar 

  115. Patel N, Dalal P, Panesar M. Dialysis disequilibrium syndrome: a narrative review. Semin Dial. 2008;21(5):493–8.

    Article  PubMed  Google Scholar 

  116. Rees L. Hemodialysis. In: Avner ED, Harmon WE, Niaudet P, editors. Pediatric nephrology. 5th ed. Philadelphia: Lippincott, Williams & Wilkins; 2004.

    Google Scholar 

  117. Schortgen F, Soubrier N, Delclaux C, Thuong M, Girou E, Brun-Buisson C, et al. Hemodynamic tolerance of intermittent hemodialysis in critically ill patients: usefulness of practice guidelines. Am J Respir Crit Care Med. 2000;162(1):197–202.

    Article  CAS  PubMed  Google Scholar 

  118. Dheu C, Terzic J, Menouer S, Fischbach M. Importance of the curve shape for interpretation of blood volume monitor changes during haemodiafiltration. Pediatr Nephrol. 2009;24(7):1419–23.

    Article  PubMed  Google Scholar 

  119. Bunchman TE, Maxvold NJ, Kershaw DB, Sedman AB, Custer JR. Continuous venovenous hemodiafiltration in infants and children. Am J Kidney Dis. 1995;25(1):17–21.

    Article  CAS  PubMed  Google Scholar 

  120. Davenport A, Will EJ, Davison AM. Hyperlactataemia and metabolic acidosis during haemofiltration using lactate-buffered fluids. Nephron. 1991;59(3):461–5.

    Article  CAS  PubMed  Google Scholar 

  121. Thomas AN, Guy JM, Kishen R, Geraghty IF, Bowles BJ, Vadgama P. Comparison of lactate and bicarbonate buffered haemofiltration fluids: use in critically ill patients. Nephrol Dial Transplant. 1997;12(6):1212–7.

    Article  CAS  PubMed  Google Scholar 

  122. Zimmerman D, Cotman P, Ting R, Karanicolas S, Tobe SW. Continuous veno-venous haemodialysis with a novel bicarbonate dialysis solution: prospective cross-over comparison with a lactate buffered solution. Nephrol Dial Transplant. 1999;14(10):2387–91.

    Article  CAS  PubMed  Google Scholar 

  123. Maxvold N, Flynn J, Smoyer W, et al. Prospective crossover comparison of bicarbonate vs lactate-based dialysate for pediatric CVVHD. Blood Purif. 1999;17:27–9.

    Google Scholar 

  124. Ronco C, Bellomo R, Homel P, Brendolan A, Dan M, Piccinni P, et al. Effects of different doses in continuous veno-venous haemofiltration on outcomes of acute renal failure: a prospective randomised trial. Lancet. 2000;356(9223):26–30.

    Article  CAS  PubMed  Google Scholar 

  125. Di Carlo JV, Alexander SR. Hemofiltration for cytokine-driven illnesses: the mediator delivery hypothesis. Int J Artif Organs. 2005;28(8):777–86.

    Article  PubMed  Google Scholar 

  126. Honore PM, Joannes-Boyau O, Boer W, Collin V. High-volume hemofiltration in sepsis and SIRS: current concepts and future prospects. Blood Purif. 2009;28(1):1–11.

    Article  PubMed  Google Scholar 

  127. Brophy PD, Somers MJ, Baum MA, Symons JM, McAfee N, Fortenberry JD, et al. Multi-centre evaluation of anticoagulation in patients receiving continuous renal replacement therapy (CRRT). Nephrol Dial Transplant. 2005;20(7):1416–21.

    Article  PubMed  Google Scholar 

  128. Mehta RL, McDonald BR, Aguilar MM, Ward DM. Regional citrate anticoagulation for continuous arteriovenous hemodialysis in critically ill patients. Kidney Int. 1990;38(5):976–81.

    Article  CAS  PubMed  Google Scholar 

  129. Chadha V, Garg U, Warady BA, Alon US. Citrate clearance in children receiving continuous venovenous renal replacement therapy. Pediatr Nephrol. 2002;17(10):819–24.

    Article  PubMed  Google Scholar 

  130. Meier-Kriesche HU, Gitomer J, Finkel K, DuBose T. Increased total to ionized calcium ratio during continuous venovenous hemodialysis with regional citrate anticoagulation. Crit Care Med. 2001;29(4):748–52.

    Article  CAS  PubMed  Google Scholar 

  131. Oudemans-van Straaten HM. Citrate anticoagulation for continuous renal replacement therapy in the critically ill. Blood Purif. 2010;29(2):191–6.

    Article  CAS  PubMed  Google Scholar 

  132. Bunchman TE, Maxvold NJ, Barnett J, Hutchings A, Benfield MR. Pediatric hemofiltration: normocarb dialysate solution with citrate anticoagulation. Pediatr Nephrol. 2002;17(3):150–4.

    Article  PubMed  Google Scholar 

  133. Selewski DT, Cornell TT, Blatt NB, Han YY, Mottes T, Kommareddi M, et al. Fluid overload and fluid removal in pediatric patients on extracorporeal membrane oxygenation requiring continuous renal replacement therapy. Crit Care Med. 2012;40(9):2694–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ricci Z, Ronco C, Picardo S. CRRT in series with extracorporeal membrane oxygenation in pediatric patients. Kidney Int. 2010;77(5):469–70; author reply 71.

    Article  PubMed  Google Scholar 

  135. Peng ZY, Kiss JE, Cortese-Hasset A, Carcillo JA, Nguyen TC, Kellum JA. Plasma filtration on mediators of thrombotic microangiopathy: an in vitro study. Int J Artif Organs. 2007;30(5):401–6.

    Article  CAS  PubMed  Google Scholar 

  136. Yorgin PD, Eklund DK, al-Uzri AA, Whitesell L, Theodorou AA. Concurrent centrifugation plasmapheresis and continuous venovenous hemodiafiltration. Pediatr Nephrol. 2000;14(1):18–21.

    Article  CAS  PubMed  Google Scholar 

  137. House AA, Ronco C. Extracorporeal blood purification in sepsis and sepsis-related acute kidney injury. Blood Purif. 2008;26(1):30–5.

    Article  PubMed  Google Scholar 

  138. Servillo G, Vargas M, Pastore A, Procino A, Iannuzzi M, Capuano A, et al. Immunomodulatory effect of continuous venovenous hemofiltration during sepsis: preliminary data. Biomed Res Int. 2013;2013:108951.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Grootendorst AF. The potential role of hemofiltration in the treatment of patients with septic shock and multiple organ dysfunction syndrome. Adv Ren Replace Ther. 1994;1(2):176–84.

    Article  CAS  PubMed  Google Scholar 

  140. Piccinni P, Dan M, Barbacini S, Carraro R, Lieta E, Marafon S, et al. Early isovolaemic haemofiltration in oliguric patients with septic shock. Intensive Care Med. 2006;32(1):80–6.

    Article  CAS  PubMed  Google Scholar 

  141. Symons JM, Brophy PD, Gregory MJ, McAfee N, Somers MJ, Bunchman TE, et al. Continuous renal replacement therapy in children up to 10 kg. Am J Kidney Dis. 2003;41(5):984–9.

    Article  PubMed  Google Scholar 

  142. Flores FX, Brophy PD, Symons JM, Fortenberry JD, Chua AN, Alexander SR, et al. Continuous renal replacement therapy (CRRT) after stem cell transplantation. A report from the prospective pediatric CRRT Registry Group. Pediatr Nephrol. 2008;23(4):625–30.

    Article  PubMed  Google Scholar 

  143. Kudoh Y, Iimura O. Slow continuous hemodialysis – new therapy for acute renal failure in critically ill patients – Part 1. Theoretical consideration and new technique. Jpn Circ J. 1988;52(10):1171–82.

    Article  CAS  PubMed  Google Scholar 

  144. Kudoh Y, Shiiki M, Sasa Y, Hotta D, Nozawa A, Iimura O. Slow continuous hemodialysis – new therapy for acute renal failure in critically ill patients – Part 2. Animal experiments and clinical implication. Jpn Circ J. 1988;52(10):1183–90.

    Article  CAS  PubMed  Google Scholar 

  145. Tam PY, Huraib S, Mahan B, LeBlanc D, Lunski CA, Holtzer C, et al. Slow continuous hemodialysis for the management of complicated acute renal failure in an intensive care unit. Clin Nephrol. 1988;30(2):79–85.

    CAS  PubMed  Google Scholar 

  146. Cruz D, Bobek I, Lentini P, Soni S, Chionh CY, Ronco C. Machines for continuous renal replacement therapy. Semin Dial. 2009;22(2):123–32.

    Article  PubMed  Google Scholar 

  147. Fliser D, Kielstein JT. Technology insight: treatment of renal failure in the intensive care unit with extended dialysis. Nat Clin Pract Nephrol. 2006;2(1):32–9.

    Article  PubMed  Google Scholar 

  148. Marshall MR, Ma T, Galler D, Rankin AP, Williams AB. Sustained low-efficiency daily diafiltration (SLEDD-f) for critically ill patients requiring renal replacement therapy: towards an adequate therapy. Nephrol Dial Transplant. 2004;19(4):877–84.

    Article  PubMed  Google Scholar 

  149. Kumar VA, Craig M, Depner TA, Yeun JY. Extended daily dialysis: a new approach to renal replacement for acute renal failure in the intensive care unit. Am J Kidney Dis. 2000;36(2):294–300.

    Article  CAS  PubMed  Google Scholar 

  150. Morath C, Miftari N, Dikow R, Hainer C, Zeier M, Morgera S, et al. Sodium citrate anticoagulation during sustained low efficiency dialysis (SLED) in patients with acute renal failure and severely impaired liver function. Nephrol Dial Transplant. 2008;23(1):421–2.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lyndsay A. Harshman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harshman, L.A., Brophy, P.D., Symons, J.M. (2023). Management of Pediatric Acute Kidney Injury. In: Schaefer, F., Greenbaum, L.A. (eds) Pediatric Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-11665-0_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11665-0_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11664-3

  • Online ISBN: 978-3-031-11665-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics