Skip to main content

Innovations in Intensive Care Nephrology

  • Chapter
  • First Online:
Innovations in Nephrology

Abstract

Acute kidney injury (AKI) is a sudden loss of kidney function that results in the accumulation of urea and other nitrogenous waste products as well as abnormal control of extracellular fluid volume and electrolytes. With rising incidence worldwide among critically ill patients, AKI is associated with an increased risk of both short-term and long-term mortality. During the past decade, many advances in the field of critical care nephrology have occurred including innovations in setting standard criteria for diagnosis and staging of AKI (Kidney Disease Improving Global Outcomes, KDIGO 2012 criteria). These criteria do not only unify the diagnostic criteria but also emphasizes the important of early AKI detection. With the delay in rising of serum creatinine after kidney injury, the discovery of novel AKI biomarkers such as neutrophil gelatinase-associated lipocalin, or tissue inhibitor of metalloproteinase-2 and insulin-like growth factor-binding protein 7 has filled the gap of early AKI detection. Most AKI patients requiring renal support die due to multiple-organ failure, not renal dysfunction. Novel technologies in renal replacement therapy and blood purification will support hemodynamic instability and may improve outcome. Survivors from severe AKI have the consequences including incident chronic kidney disease (CKD), CKD progression, end stage renal disease. The multidisciplinary care team may improve those complication. Finally, these innovations in critical care nephrology have worked to greatly improve AKI outcomes.

Prit Kusirisin and Piyanut Kaewdoungtien are co-first author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute Dialysis Quality Initiative workgroup. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8(4):R204–12.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Work Group Membership. Kidney Int Suppl (2011). 2012;2(1):2.

    Google Scholar 

  4. Lameire NH, Levin A, Kellum JA, Cheung M, Jadoul M, Winkelmayer WC, et al. Harmonizing acute and chronic kidney disease definition and classification: report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney Int. 2021;100(3):516–26.

    Article  PubMed  Google Scholar 

  5. Huang J, Gretz N. Light-emitting agents for noninvasive assessment of kidney function. ChemistryOpen. 2017;6(4):456–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schock-Kusch D, Sadick M, Henninger N, Kraenzlin B, Claus G, Kloetzer H-M, et al. Transcutaneous measurement of glomerular filtration rate using FITC-sinistrin in rats. Nephrol Dial Transplant. 2009;24(10):2997–3001.

    Article  CAS  PubMed  Google Scholar 

  7. Shieh J-J, Riley IR, Rogers TE, Kao L-F, Dorshow RB. Characterization of MB-102, a new fluorescent tracer agent for point-of-care renal function monitoring. J Pharm Sci. 2020;109(2):1191–8.

    Article  CAS  PubMed  Google Scholar 

  8. Debreczeny MP, Dorshow RB. Transdermal optical renal function monitoring in humans: development, verification, and validation of a prototype device. J Biomed Opt. 2018;23(5):1–9.

    Article  PubMed  Google Scholar 

  9. Jin K, Murugan R, Sileanu FE, Foldes E, Priyanka P, Clermont G, et al. Intensive monitoring of urine output is associated with increased detection of acute kidney injury and improved outcomes. Chest. 2017;152(5):972–9.

    Article  PubMed  Google Scholar 

  10. Hersch M, Einav S, Izbicki G. Accuracy and ease of use of a novel electronic urine output monitoring device compared with standard manual urinometer in the intensive care unit. J Crit Care. 2009;24(4):629.e13–7.

    Article  Google Scholar 

  11. Goldman A, Azran H, Stern T, Grinstein M, Wilner D. A novel electronic device for measuring urine flow rate: A clinical investigation. Clin Med Insights Trauma Intensive Med. 2017;8:117956031773003.

    Article  Google Scholar 

  12. Willner D, Goldman A, Azran H, Stern T, Kirshenbom D, Rosenthal G. Early identification of acute kidney injury in the ICU with real-time urine output monitoring: a clinical investigation. BMC Nephrol. 2021;22(1):293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ostermann M, Zarbock A, Goldstein S, Kashani K, et al. Recommendations on Acute Kidney Injury Biomarkers From the Acute Disease Quality Initiative Consensus Conference: A Consensus Statement. JAMA Netw Open. 2020;3(10):e2019209.

    Article  PubMed  Google Scholar 

  14. Mårtensson J, Bell M, Oldner A, Xu S, Venge P, Martling C-R. Neutrophil gelatinase-associated lipocalin in adult septic patients with and without acute kidney injury. Intensive Care Med. 2010;36(8):1333–40.

    Article  PubMed  Google Scholar 

  15. Shemin D, Dworkin LD. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for early acute kidney injury. Crit Care Clin. 2011;27(2):379–89.

    Article  CAS  PubMed  Google Scholar 

  16. Ho J, Tangri N, Komenda P, et al. Urinary, plasma, and serum biomarkers' utility for predicting acute kidney injury associated with cardiac surgery in adults: a meta-analysis. Am J Kidney Dis. 2015;66(6):993–1005.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang A, Cai Y, Wang PF, et al. Diagnosis and prognosis of neutrophil gelatinase-associated lipocalin for acute kidney injury with sepsis: a systematic review and meta-analysis. Crit Care. 2016;20:41.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Allegretti AS, Parada XV, Endres P, Zhao S, Krinsky S, St Hillien SA, et al. Urinary NGAL as a diagnostic and prognostic marker for acute kidney injury in cirrhosis: A prospective study. Clin Transl Gastroenterol. 2021;12(5):e00359.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lumlertgul N, Amprai M, Tachaboon S, et al. Urine Neutrophil Gelatinase-associated Lipocalin (NGAL) for Prediction of Persistent AKI and Major Adverse Kidney Events. Sci Rep. 2020;10:8718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Klein SJ, Brandtner AK, Lehner GF, et al. Biomarkers for prediction of renal replacement therapy in acute kidney injury: a systematic review and meta-analysis. Intensive Care Med. 2018;44:323–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Srisawat N, Laoveeravat P, Limphunudom P, et al. The effect of early renal replacement therapy guided by plasma neutrophil gelatinase associated lipocalin on outcome of acute kidney injury: A feasibility study. J Crit Care. 2018;43:36–41.

    Article  CAS  PubMed  Google Scholar 

  22. Bonventre JV. Kidney injury molecule-1 (KIM-1): a urinary biomarker and much more. Nephrol Dial Transplant. 2009;24(11):3265–8.

    Article  CAS  PubMed  Google Scholar 

  23. Shao X, Tian L, Xu W, Zhang Z, Wang C, Qi C, Ni Z, Mou S. Diagnostic value of urinary kidney injury molecule 1 for acute kidney injury: a meta-analysis. PLoS One. 2014;9(1):e84131.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liangos O, Perianayagam MC, Vaidya VS, et al. Urinary N-acetyl-beta-(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure. J Am Soc Nephrol. 2007;18(3):904–12.

    Article  CAS  PubMed  Google Scholar 

  25. Coca SG, Garg AX, Thiessen-Philbrook H, et al. Urinary biomarkers of AKI and mortality 3 years after cardiac surgery. J Am Soc Nephrol. 2014;25(5):1063–71.

    Article  CAS  PubMed  Google Scholar 

  26. Wang G, Bonkovsky HL, de Lemos A, Burczynski FJ. Recent insights into the biological functions of liver fatty acid binding protein 1. J Lipid Res. 2015;56(12):2238–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Noiri E, Doi K, Negishi K, et al. Urinary fatty acid-binding protein 1: an early predictive biomarker of kidney injury. Am J Physiol Renal Physiol. 2009;296:669–79.

    Article  Google Scholar 

  28. Parr SK, Clark AJ, Bian A, et al. Urinary L-FABP predicts poor outcomes in critically ill patients with early acute kidney injury. Kidney Int. 2015;87(3):640–8.

    Article  CAS  PubMed  Google Scholar 

  29. Emlet DR, Pastor-Soler N, Marciszyn A, Wen X, Gomez H, Humphries WH 4th, et al. Insulin-like growth factor binding protein 7 and tissue inhibitor of metalloproteinases-2: differential expression and secretion in human kidney tubule cells. Am J Physiol Renal Physiol. 2017;312:F284–96.

    Article  CAS  PubMed  Google Scholar 

  30. Kellum JA, Chawla LS. Cell-cycle arrest and acute kidney injury: the light and the dark sides. Nephrol Dial Transplant. 2016;31(1):16–22.

    Article  CAS  PubMed  Google Scholar 

  31. Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw SM, Bell M, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care. 2013;17(1):R25.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hoste EAJ, McCullough PA, Kashani K, Chawla LS, Joannidis M, Shaw AD, et al. Derivation and validation of cutoffs for clinical use of cell cycle arrest biomarkers. Nephrol Dial Transplant. 2014;29(11):2054–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Su L-J, Li Y-M, Kellum JA, Peng Z-Y. Predictive value of cell cycle arrest biomarkers for cardiac surgery-associated acute kidney injury: a meta-analysis. Br J Anaesth. 2018;121(2):350–7.

    Article  PubMed  Google Scholar 

  34. Nalesso F, Cattarin L, Gobbi L, Fragasso A, Garzotto F, Calò LA. Evaluating nephrocheck® as a predictive tool for acute kidney injury. Int J Nephrol Renovasc Dis. 2020;13:85–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Titeca-Beauport D, Daubin D, Chelly J, et al. The urine biomarkers TIMP2 and IGFBP7 can identify patients who will experience severe acute kidney injury following a cardiac arrest: A prospective multicentre study. Resuscitation. 2019;141:104–10.

    Article  PubMed  Google Scholar 

  36. Meersch M, Schmidt C, Hoffmeier A, et al. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med. 2017;43(11):1551–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Göcze I, Jauch D, Götz M, et al. Biomarker-guided Intervention to Prevent Acute Kidney Injury After Major Surgery: The Prospective Randomized BigpAK Study. Ann Surg. 2018;267(6):1013–20.

    Article  PubMed  Google Scholar 

  38. Talabani B, Zouwail S, Pyart RD, Meran S, Riley SG, Phillips AO. Epidemiology and outcome of community-acquired acute kidney injury. Nephrology (Carlton). 2014;19(5):282–7.

    Article  Google Scholar 

  39. Stucker F, Ponte B, De la Fuente V, Alves C, Rutschmann O, Carballo S, et al. Risk factors for community-acquired acute kidney injury in patients with and without chronic kidney injury and impact of its initial management on prognosis: a prospective observational study. BMC Nephrol. 2017;18(1):380.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wilson FP, Greenberg JH. Acute kidney injury in real time: prediction, alerts, and clinical decision support. Nephron. 2018;140(2):116–9.

    Article  CAS  PubMed  Google Scholar 

  41. Park S, Baek SH, Ahn S, Lee KH, Hwang H, Ryu J, et al. Impact of electronic acute kidney injury (AKI) alerts with automated nephrologist consultation on detection and severity of AKI: A Quality Improvement Study. Am J Kidney Dis. 2018;71(1):9–19.

    Article  PubMed  Google Scholar 

  42. Labrador Gomez PJ, Gonzalez Sanchidrian S, Labrador Gomez J, Gomez-Martino Arroyo JR, Jimenez Herrero MC, Polanco Candelario SJA, et al. The role of an electronic alert system to detect acute kidney injury in hospitalized patients: DETECT-H Project. Nefrologia (Engl Ed). 2019;39(4):379–87.

    Article  Google Scholar 

  43. Al-Jaghbeer M, Dealmeida D, Bilderback A, Ambrosino R, Kellum JA. Clinical decision support for in-hospital AKI. J Am Soc Nephrol. 2018;29(2):654–60.

    Article  PubMed  Google Scholar 

  44. Baird D, De Souza N, Logan R, Walker H, Guthrie B, Bell S. Impact of electronic alerts for acute kidney injury on patient outcomes: interrupted time-series analysis of population cohort data. Clin Kidney J. 2021;14(2):639–46.

    Article  PubMed  Google Scholar 

  45. Wilson FP, Martin M, Yamamoto Y, Partridge C, Moreira E, Arora T, et al. Electronic health record alerts for acute kidney injury: multicenter, randomized clinical trial. BMJ. 2021;372:m4786.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41(8):1411–23.

    Article  PubMed  Google Scholar 

  47. Wilson FP, Shashaty M, Testani J, Aqeel I, Borovskiy Y, Ellenberg SS, et al. Automated, electronic alerts for acute kidney injury: a single-blind, parallel-group, randomised controlled trial. Lancet. 2015;385(9981):1966–74.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kolhe NV, Staples D, Reilly T, Merrison D, McIntyre CW, Fluck RJ, et al. Impact of compliance with a care bundle on acute kidney injury outcomes: a prospective observational study. PLoS One. 2015;10(7):e0132279.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Selby NM, Casula A, Lamming L, Stoves J, Samarasinghe Y, Lewington AJ, et al. An organizational-level program of intervention for AKI: A pragmatic stepped wedge cluster randomized trial. J Am Soc Nephrol. 2019;30(3):505–15.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Selby NM, Korrodi-Gregorio L, Casula A, Kolhe NV, Arbones DR, Bukieda KD, et al. Randomized controlled trial evidence of cost-effectiveness of a multifaceted AKI intervention approach. Kidney Int Rep. 2021;6(3):636–44.

    Article  PubMed  Google Scholar 

  51. Hodgson LE, Roderick PJ, Venn RM, Yao GL, Dimitrov BD, Forni LG. The ICE-AKI study: Impact analysis of a Clinical prediction rule and Electronic AKI alert in general medical patients. PLoS One. 2018;13(8):e0200584.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Goldstein SL, Dahale D, Kirkendall ES, Mottes T, Kaplan H, Muething S, et al. A prospective multi-center quality improvement initiative (NINJA) indicates a reduction in nephrotoxic acute kidney injury in hospitalized children. Kidney Int. 2020;97(3):580–8.

    Article  CAS  PubMed  Google Scholar 

  53. Zhao Y, Zheng X, Wang J, Xu D, Li S, Lv J, et al. Effect of clinical decision support systems on clinical outcome for acute kidney injury: a systematic review and meta-analysis. BMC Nephrol. 2021;22(1):271.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sawhney S, Fluck N, Marks A, Prescott G, Simpson W, Tomlinson L, et al. Acute kidney injury-how does automated detection perform? Nephrol Dial Transplant. 2015;30(11):1853–61.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Coca SG, Singanamala S, Parikh CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81(5):442–8.

    Article  PubMed  Google Scholar 

  56. Hsu C, Chinchilli VM, Coca S, Devarajan P, Ghahramani N, Go AS, et al. Post–Acute Kidney Injury Proteinuria and Subsequent Kidney Disease Progression: The Assessment, Serial Evaluation, and Subsequent Sequelae in Acute Kidney Injury (ASSESS-AKI) Study. JAMA Intern Med. 2020;180(3):402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bansal N, Matheny ME, Greevy RA, Eden SK, Perkins AM, Parr SK, et al. Acute kidney injury and risk of incident heart failure among US veterans. Am J Kidney Dis. 2018;71(2):236–45.

    Article  PubMed  Google Scholar 

  58. Kashani K, Rosner MH, Haase M, Lewington AJP, O’Donoghue DJ, Wilson FP, et al. Quality improvement goals for acute kidney injury. Clin J Am Soc Nephrol. 2019;14(6):941–53.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Harel Z, Wald R, Bargman JM, Mamdani M, Etchells E, Garg AX, et al. Nephrologist follow-up improves all-cause mortality of severe acute kidney injury survivors. Kidney Int. 2013;83(5):901–8.

    Article  PubMed  Google Scholar 

  60. Silver SA, Adhikari NK, Bell CM, Chan CT, Harel Z, Kitchlu A, et al. Nephrologist follow-up versus usual care after an acute kidney injury hospitalization (FUSION): a randomized controlled trial. Clin J Am Soc Nephrol. 2021;16(7):1005.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Thanapongsatorn P, Chaikomon K, Lumlertgul N, Yimsangyad K, Leewongworasingh A, Kulvichit W, et al. Comprehensive versus standard care in post-severe acute kidney injury survivors, a randomized controlled trial. Crit Care. 2021;25(1):322.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Abe T, Kato K, Fujioka T, Akizawa T. The blood compatibilities of blood purification membranes and other materials developed in Japan. Int J Biomater. 2011;2011:375390.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Cruz DN, Antonelli M, Fumagalli R, Foltran F, Brienza N, Donati A, et al. Early use of polymyxin B hemoperfusion in abdominal septic shock: the EUPHAS randomized controlled trial. JAMA. 2009;301(23):2445–52.

    Article  CAS  PubMed  Google Scholar 

  64. Payen DM, Guilhot J, Launey Y, Lukaszewicz AC, Kaaki M, Veber B, ABDOMIX Group, et al. Early use of polymyxin B hemoperfusion in patients with septic shock due to peritonitis: a multicenter randomized control trial. Intensive Care Med. 2015;41(6):975–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dellinger RP, Bagshaw SM, Antonelli M, Foster DM, Klein DJ, Marshall JC, EUPHRATES Trial Investigators, et al. Effect of targeted Polymyxin B hemoperfusion on 28-day mortality in patients with septic shock and elevated endotoxin level: the EUPHRATES Randomized Clinical Trial. JAMA. 2018;320(14):1455–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Klein DJ, Foster D, Walker PM, Bagshaw SM, Mekonnen H, Antonelli M. Polymyxin B hemoperfusion in endotoxemic septic shock patients without extreme endotoxemia: a post hoc analysis of the EUPHRATES trial. Intensive Care Med. 2018;44(12):2205–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Srisawat N, Tungsanga S, Lumlertgul N, Komaenthammasophon C, Peerapornratana S, Thamrongsat N, et al. The effect of polymyxin B hemoperfusion on modulation of human leukocyte antigen DR in severe sepsis patients. Crit Care. 2018;22(1):279.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Chang T, Tu YK, Lee CT, Chao A, Huang CH, Wang MJ, et al. Effects of Polymyxin B hemoperfusion on mortality in patients with severe sepsis and septic shock: a systemic review, meta-analysis update, and disease severity subgroup meta-analysis. Crit Care Med. 2017;45(8):e858–e64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Poli EC, Rimmele T, Schneider AG. Hemoadsorption with CytoSorb((R)). Intensive Care Med. 2019;45(2):236–9.

    Article  PubMed  Google Scholar 

  70. Kogelmann K, Jarczak D, Scheller M, Druner M. Hemoadsorption by CytoSorb in septic patients: a case series. Crit Care. 2017;21(1):74.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Schadler D, Pausch C, Heise D, Meier-Hellmann A, Brederlau J, Weiler N, et al. The effect of a novel extracorporeal cytokine hemoadsorption device on IL-6 elimination in septic patients: A randomized controlled trial. PLoS One. 2017;12(10):e0187015.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hawchar F, Laszlo I, Oveges N, Trasy D, Ondrik Z, Molnar Z. Extracorporeal cytokine adsorption in septic shock: A proof of concept randomized, controlled pilot study. J Crit Care. 2019;49:172–8.

    Article  CAS  PubMed  Google Scholar 

  73. Bernardi MH, Rinoesl H, Dragosits K, Ristl R, Hoffelner F, Opfermann P, et al. Effect of hemoadsorption during cardiopulmonary bypass surgery—a blinded, randomized, controlled pilot study using a novel adsorbent. Crit Care. 2016;20:96.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Huber W, Algul H, Lahmer T, Mayr U, Lehmann M, Schmid RM, et al. Pancreatitis cytosorbents (CytoSorb) inflammatory cytokine removal: A Prospective Study (PACIFIC). Medicine (Baltimore). 2019;98(4):e13044.

    Article  Google Scholar 

  75. Friesecke S, Trager K, Schittek GA, Molnar Z, Bach F, Kogelmann K, et al. International registry on the use of the CytoSorb(R) adsorber in ICU patients : Study protocol and preliminary results. Med Klin Intensivmed Notfmed. 2019;114(8):699–707.

    Article  CAS  PubMed  Google Scholar 

  76. Malard B, Lambert C, Kellum JA. In vitro comparison of the adsorption of inflammatory mediators by blood purification devices. Intensive Care Med Exp. 2018;6(1):12.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Turani F, Barchetta R, Falco M, Busatti S, Weltert L. Continuous renal replacement therapy with the adsorbing filter oXiris in septic patients: a case series. Blood Purif. 2019;47(Suppl 3):1–5.

    PubMed  Google Scholar 

  78. Broman ME, Hansson F, Vincent JL, Bodelsson M. Endotoxin and cytokine reducing properties of the oXiris membrane in patients with septic shock: A randomized crossover double-blind study. PLoS One. 2019;14(8):e0220444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang L, Yan Tang GK, Liu S, Cai J, Chan WM, Yang Y, et al. Hemofilter with Adsorptive Capacities: Case Report Series. Blood Purif. 2019;47(Suppl 3):1–6.

    PubMed  Google Scholar 

  80. Lumlertgul N, Srisawat N. The haemodynamic effects of oXiris haemofilter in septic shock patients requiring renal support: A single-centre experience. Int J Artif Organs. 2021;44(1):17–24.

    Article  CAS  PubMed  Google Scholar 

  81. Schwindenhammer V, Girardot T, Chaulier K, Gregoire A, Monard C, Huriaux L, et al. oXiris(R) Use in Septic Shock: Experience of Two French Centres. Blood Purif. 2019;47(Suppl 3):1–7.

    PubMed  Google Scholar 

  82. Pickkers P, Vassiliou T, Liguts V, Prato F, Tissieres P, Kloesel S, et al. Sepsis management with a blood purification membrane: european experience. Blood Purif. 2019;47(Suppl 3):1–9.

    PubMed  Google Scholar 

  83. Huang Z, Wang SR, Yang ZL, Liu JY. Effect on extrapulmonary sepsis-induced acute lung injury by hemoperfusion with neutral microporous resin column. Ther Apher Dial. 2013;17(4):454–61.

    Article  CAS  PubMed  Google Scholar 

  84. Xu X, Jia C, Luo S, Li Y, Xiao F, Dai H, et al. Effect of HA330 resin-directed hemoadsorption on a porcine acute respiratory distress syndrome model. Ann Intensive Care. 2017;7(1):84.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Livigni S, Bertolini G, Rossi C, Ferrari F, Giardino M, Pozzato M, et al. Efficacy of coupled plasma filtration adsorption (CPFA) in patients with septic shock: a multicenter randomised controlled clinical trial. BMJ Open. 2014;4(1):e003536.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Gimenez-Esparza C, Portillo-Requena C, Colomina-Climent F, Allegue-Gallego JM, Galindo-Martinez M, Molla-Jimenez C, et al. The premature closure of ROMPA clinical trial: mortality reduction in septic shock by plasma adsorption. BMJ Open. 2019;9(12):e030139.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nattachai Srisawat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kusirisin, P., Kaewdoungtien, P., Thanapongsatorn, P., Peerapornratana, S., Srisawat, N. (2022). Innovations in Intensive Care Nephrology. In: Bezerra da Silva Junior, G., Nangaku, M. (eds) Innovations in Nephrology. Springer, Cham. https://doi.org/10.1007/978-3-031-11570-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-11570-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-11569-1

  • Online ISBN: 978-3-031-11570-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics