Skip to main content

Opioid Dependence, Tolerance, and Withdrawal

  • Chapter
  • First Online:
Opioids

Abstract

This chapter describes the main adaptive changes occurring after repeated opioid administration at different levels: behavioral, pharmacological, cellular, and molecular. The first part provides an overview of opioid dependence characteristics and tools for its diagnosis in humans. It also defines the concepts of tolerance, physical dependence, and withdrawal and explains some animal models to study opioid dependence. The second section includes updated information about brain regions involved in addiction, the development of tolerance and withdrawal, and the associated adaptive changes at the intracellular level. The chapter also reviews other mechanisms involved in the long-term effects of opioids, such as neuroplasticity, changes in neurotransmitter release, activation of anti-opioid systems, and neuroinflammation. Finally, it presents clinical and preclinical strategies to reduce the undesirable side effects of opioids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Serdarevic M, Striley CW, Cottler LB. Sex differences in prescription opioid use. Curr Opin Psychiatry. 2017;30:238–46. https://doi.org/10.1097/YCO.0000000000000337.

    Article  PubMed  PubMed Central  Google Scholar 

  2. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. American Psychiatric Association; 2013. https://doi.org/10.1176/appi.books.9780890425596.

    Book  Google Scholar 

  3. Panlilio LV, Goldberg SR. Self-administration of drugs in animals and humans as a model and an investigative tool. Addiction. 2007;102:1863–70. https://doi.org/10.1111/j.1360-0443.2007.02011.x.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry. 2016;3:760–73. https://doi.org/10.1016/S2215-0366(16)00104-8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hayhurst CJ, Durieux ME. Differential opioid tolerance and opioid-induced hyperalgesia: a clinical reality. Anesthesiology. 2016;124:483–8. https://doi.org/10.1097/ALN.0000000000000963.

    Article  PubMed  Google Scholar 

  6. Voon P, Karamouzian M, Kerr T. Chronic pain and opioid misuse: a review of reviews. Subst Abuse Treat Prev Policy. 2017;12:36. https://doi.org/10.1186/s13011-017-0120-7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cruz SL, Granados-Soto V. Opioids and opiates: pharmacology, abuse, and addiction. In: Pfaff DW, Volkow ND, editors. Neuroscience in the 21st century. New York: Springer; 2016. p. 3625–57. https://doi.org/10.1007/978-1-4939-3474-4_156.

    Chapter  Google Scholar 

  8. Chevlen E. Opioids: a review. Curr Pain Headache Rep. 2003;7:15–23. https://doi.org/10.1007/s11916-003-0005-5.

    Article  PubMed  Google Scholar 

  9. Koob GF. A role for brain stress systems in addiction. Neuron. 2008;59:11–34. https://doi.org/10.1016/j.neuron.2008.06.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wesson DR, Ling W. The clinical opiate withdrawal scale (COWS). J Psychoactive Drugs. 2003;35:253–9. https://doi.org/10.1080/02791072.2003.10400007.

    Article  PubMed  Google Scholar 

  11. Harter K. Opioid use disorder in pregnancy. Ment Health Clin. 2019;9:359–72. https://doi.org/10.9740/mhc.2019.11.359.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Center for Substance Abuse Treatment. Protracted withdrawal. Subst Abus Treat. 2010;9:1–8.

    Google Scholar 

  13. Finnegan LP, Connaughton JF, Kron RE, Emich JP. Neonatal abstinence syndrome: assessment and management. Addict Dis. 1975;2:141–58.

    CAS  PubMed  Google Scholar 

  14. Anbalagan S, Mendez MD. Neonatal abstinence syndrome. In: StatPearls [Internet]. StatPearls Publishing; 2021. https://www.ncbi.nlm.nih.gov/books/NBK551498/.

    Google Scholar 

  15. Jones HE, Dengler E, Garrison A, O’Grady KE, Seashore C, Horton E, et al. Neonatal outcomes and their relationship to maternal buprenorphine dose during pregnancy. Drug Alcohol Depend. 2014;134:414–7. https://doi.org/10.1016/j.drugalcdep.2013.11.006.

    Article  CAS  PubMed  Google Scholar 

  16. Kuhn BN, Kalivas PW, Bobadilla A-C. Understanding addiction using animal models. Front Behav Neurosci. 2019;13:262. https://doi.org/10.3389/fnbeh.2019.00262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stoops WW. Reinforcing effects of stimulants in humans: sensitivity of progressive-ratio schedules. Exp Clin Psychopharmacol. 2008;16:503–12. https://doi.org/10.1037/a0013657.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Young R. Drug discrimination. In: Buccafusco JJ, editor. Methods of behavior analysis in neuroscience. 2nd ed. Boca Raton: CRC Press/Taylor & Francis; 2009.

    Google Scholar 

  19. Sun Y, Chen G, Zhou K, Zhu Y. A conditioned place preference protocol for measuring incubation of craving in rats. J Vis Exp. 2018;6(141):e58384. https://doi.org/10.3791/58384.

    Article  CAS  Google Scholar 

  20. McKendrick G, Graziane NM. Drug-induced conditioned place preference and its practical use in substance use disorder research. Front Behav Neurosci. 2020;14:582147. https://doi.org/10.3389/fnbeh.2020.582147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun H, Maze I, Dietz DM, Scobie KN, Kennedy PJ, Damez-Werno D, et al. Morphine epigenomically regulates behavior through alterations in histone H3 lysine 9 dimethylation in the nucleus accumbens. J Neurosci. 2012;32:17454–64. https://doi.org/10.1523/JNEUROSCI.1357-12.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McEwen BS. Stressed or stressed out: what is the difference? J Psychiatry Neurosci. 2005;30:315–8.

    PubMed  PubMed Central  Google Scholar 

  23. Gintzler AR, Chakrabarti S. Chronic morphine-induced plasticity among signalling molecules. Novartis Found Symp. 2004;261:167–76; discussion 176–80, 191–3

    CAS  PubMed  Google Scholar 

  24. Mercadante S, Arcuri E, Santoni A. Opioid-induced tolerance and hyperalgesia. CNS Drugs. 2019;33:943–55. https://doi.org/10.1007/s40263-019-00660-0.

    Article  CAS  PubMed  Google Scholar 

  25. Zhou J, Ma R, Jin Y, Fang J, Du J, Shao X, et al. Molecular mechanisms of opioid tolerance: from opioid receptors to inflammatory mediators (review). Exp Ther Med. 2021;22:1004. https://doi.org/10.3892/etm.2021.10437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. King T, Ossipov MH, Vanderah TW, Porreca F, Lai J. Is paradoxical pain induced by sustained opioid exposure an underlying mechanism of opioid antinociceptive tolerance? Neurosignals. 2005;14:194–205. https://doi.org/10.1159/000087658.

    Article  CAS  PubMed  Google Scholar 

  27. Listos J, Łupina M, Talarek S, Mazur A, Orzelska-Górka J, Kotlińska J. The mechanisms involved in morphine addiction: an overview. Int J Mol Sci. 2019;20:4302. https://doi.org/10.3390/ijms20174302.

    Article  CAS  PubMed Central  Google Scholar 

  28. Gledhill LJ, Babey AM. Synthesis of the mechanisms of opioid tolerance: do we still say no? Cell Mol Neurobiol. 2021;41:927–48. https://doi.org/10.1007/s10571-021-01065-8.

    Article  CAS  PubMed  Google Scholar 

  29. Wang Y, Sun J, Tao Y, Xu X, Chi Z, Liu J. Paradoxical relationship between RAVE (relative activity versus endocytosis) values of several opioid receptor agonists and their liability to cause dependence. Acta Pharmacol Sin. 2010;31:393–8. https://doi.org/10.1038/aps.2010.19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cruz SL, Villarreal JE, Volkow ND. Further evidence that naloxone acts as an inverse opiate agonist: implications for drug dependence and withdrawal. Life Sci. 1996;58:PL381–9. https://doi.org/10.1016/0024-3205(96)00250-0.

    Article  CAS  PubMed  Google Scholar 

  31. Lueptow LM, Fakira AK, Bobeck EN. The contribution of the descending pain modulatory pathway in opioid tolerance. Front Neurosci. 2018;12:886. https://doi.org/10.3389/fnins.2018.00886.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Serafini RA, Pryce KD, Zachariou V. The mesolimbic dopamine system in chronic pain and associated affective comorbidities. Biol Psychiatry. 2020;87:64–73. https://doi.org/10.1016/j.biopsych.2019.10.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang Y, Loh HH, Law P-Y. Effect of opioid on adult hippocampal neurogenesis. Sci World J. 2016;2016:1–7. https://doi.org/10.1155/2016/2601264.

    Article  CAS  Google Scholar 

  34. Beltrán-Campos V, Silva-Vera M, García-Campos ML, Díaz-Cintra S. Effects of morphine on brain plasticity. Neurologia (Barcelona, Spain). 2015;30:176–80. https://doi.org/10.1016/j.nrl.2014.08.004.

    Article  Google Scholar 

  35. Cai Y, Yang L, Hu G, Chen X, Niu F, Yuan L, et al. Regulation of morphine-induced synaptic alterations: role of oxidative stress, ER stress, and autophagy. J Cell Biol. 2016;215:245–58. https://doi.org/10.1083/jcb.201605065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bajic D, Commons KG, Soriano SG. Morphine-enhanced apoptosis in selective brain regions of neonatal rats. Int J Dev Neurosci. 2013;31:258–66. https://doi.org/10.1016/j.ijdevneu.2013.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Carranza-Aguilar CJ, Hernández-Mendoza A, Mejias-Aponte C, Rice KC, Morales M, González-Espinosa C, et al. Morphine and fentanyl repeated administration induces different levels of NLRP3-dependent pyroptosis in the dorsal raphe nucleus of male rats via cell-specific activation of TLR4 and opioid receptors. Cell Mol Neurobiol. 2020;42(3):677–94. https://doi.org/10.1007/s10571-020-00957-5.

    Article  CAS  PubMed  Google Scholar 

  38. Mehrabadi S, Karimiyan SM. Morphine tolerance effects on neurotransmitters and related receptors: definition, overview and update. Int J Pharm Res. 2018;23:1–11. https://doi.org/10.9734/JPRI/2018/41936.

    Article  Google Scholar 

  39. Ozdemir E, Gursoy S, Bagcivan I. The effects of serotonin/norepinephrine reuptake inhibitors and serotonin receptor agonist on morphine analgesia and tolerance in rats. J Physiol Sci. 2012;62:317–23. https://doi.org/10.1007/s12576-012-0207-x.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang L, Zhang J, Hang L, Liu T. Mu opioid receptor heterodimers emerge as novel therapeutic targets: recent progress and future perspective. Front Pharmacol. 2020;11:1–11. https://doi.org/10.3389/fphar.2020.01078.

    Article  CAS  Google Scholar 

  41. Elhabazi K, Trigo J, Mollereau C, Moulédous L, Zajac J-M, Bihel F, et al. Involvement of neuropeptide FF receptors in neuroadaptive responses to acute and chronic opiate treatments. Br J Pharmacol. 2012;165:424–35. https://doi.org/10.1111/j.1476-5381.2011.01563.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Eidson LN, Murphy AZ. Inflammatory mediators of opioid tolerance: implications for dependency and addiction. Peptides. 2019;115:51–8. https://doi.org/10.1016/j.peptides.2019.01.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Varrassi G, Fusco M, Skaper SD, Battelli D, Zis P, Coaccioli S, et al. A pharmacological rationale to reduce the incidence of opioid induced tolerance and hyperalgesia: a review. Pain Ther. 2018;7:59–75. https://doi.org/10.1007/s40122-018-0094-9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Harada S, Nakamoto K, Tokuyama S. The involvement of midbrain astrocyte in the development of morphine tolerance. Life Sci. 2013;93:573–8. https://doi.org/10.1016/j.lfs.2013.08.009.

    Article  CAS  PubMed  Google Scholar 

  45. Fukagawa H, Koyama T, Kakuyama M, Fukuda K. Microglial activation involved in morphine tolerance is not mediated by toll-like receptor 4. J Anesth. 2013;27:93–7. https://doi.org/10.1007/s00540-012-1469-4.

    Article  PubMed  Google Scholar 

  46. Horvath RJ, Romero-Sandoval AE, De Leo JA. Inhibition of microglial P2X4 receptors attenuates morphine tolerance, Iba1, GFAP and μ opioid receptor protein expression while enhancing perivascular microglial ED2. Pain. 2010;150:401–13. https://doi.org/10.1016/j.pain.2010.02.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Leduc-Pessah H, Weilinger NL, Fan CY, Burma NE, Thompson RJ, Trang T. Site-specific regulation of P2X7 receptor function in microglia gates morphine analgesic tolerance. J Neurosci. 2017;37:10154–72. https://doi.org/10.1523/JNEUROSCI.0852-17.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Browne CJ, Godino A, Salery M, Nestler EJ. Epigenetic mechanisms of opioid addiction. Biol Psychiatry. 2020;87:22–33. https://doi.org/10.1016/j.biopsych.2019.06.027.

    Article  CAS  PubMed  Google Scholar 

  49. Chao Y-C, Xie F, Li X, Guo R, Yang N, Zhang C, et al. Demethylation regulation of BDNF gene expression in dorsal root ganglion neurons is implicated in opioid-induced pain hypersensitivity in rats. Neurochem Int. 2016;97:91–8. https://doi.org/10.1016/j.neuint.2016.03.007.

    Article  CAS  PubMed  Google Scholar 

  50. Liang D-Y, Li X, Clark JD. Epigenetic regulation of opioid-induced hyperalgesia, dependence, and tolerance in mice. J Pain. 2013;14:36–47. https://doi.org/10.1016/j.jpain.2012.10.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang Z, Tao W, Hou Y-Y, Wang W, Kenny PJ, Pan ZZ. MeCP2 repression of G9a in regulation of pain and morphine reward. J Neurosci. 2014;34:9076–87. https://doi.org/10.1523/JNEUROSCI.4194-13.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gerra MC, Dallabona C, Arendt-Nielsen L. Epigenetic alterations in prescription opioid misuse: new strategies for precision pain management. Genes (Basel). 2021;12:1226. https://doi.org/10.3390/genes12081226.

    Article  CAS  Google Scholar 

  53. Bennett MI. Effectiveness of antiepileptic or antidepressant drugs when added to opioids for cancer pain: systematic review. Palliat Med. 2011;25:553–9. https://doi.org/10.1177/0269216310378546.

    Article  PubMed  Google Scholar 

  54. Perananthan V, Buckley N. Opioids and antidepressants: which combinations to avoid. Aust Prescr. 2021;44:41–4. https://doi.org/10.18773/austprescr.2021.004.

    Article  Google Scholar 

  55. Srivastava AB, Mariani JJ, Levin FR. New directions in the treatment of opioid withdrawal. Lancet. 2020;395:1938–48. https://doi.org/10.1016/S0140-6736(20)30852-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Belgrade M, Hall S. Dexmedetomidine infusion for the management of opioid-induced hyperalgesia. Pain Med. 2010;11:1819–26. https://doi.org/10.1111/j.1526-4637.2010.00973.x.

    Article  PubMed  Google Scholar 

  57. Wiese B, Wilson-Poe AR. Emerging evidence for cannabis’ role in opioid use disorder. Cannabis Cannabinoid Res. 2018;3:179–89. https://doi.org/10.1089/can.2018.0022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. MacCallum CA, Eadie L, Barr AM, Boivin M, Lu S. Practical strategies using medical cannabis to reduce harms associated with long term opioid use in chronic pain. Front Pharmacol. 2021;12:633168. https://doi.org/10.3389/fphar.2021.633168.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Stoicea N, Russell D, Weidner G, Durda M, Joseph NC, Yu J, et al. Opioid-induced hyperalgesia in chronic pain patients and the mitigating effects of gabapentin. Front Pharmacol. 2015;6:104. https://doi.org/10.3389/fphar.2015.00104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lyndon A, Audrey S, Wells C, Burnell ES, Ingle S, Hill R, et al. Risk to heroin users of polydrug use of pregabalin or gabapentin. Addiction. 2017;112:1580–9. https://doi.org/10.1111/add.13843.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Deer TR, Pope JE, Hanes MC, McDowell GC. Intrathecal therapy for chronic pain: a review of morphine and ziconotide as firstline options. Pain Med. 2019;20:784–98. https://doi.org/10.1093/pm/pny132.

    Article  PubMed  Google Scholar 

  62. Oliveto A, Mancino M, Sanders N, Cargile C, Benjamin Guise J, Bickel W, et al. Effects of prototypic calcium channel blockers in methadone-maintained humans responding under a naloxone discrimination procedure. Eur J Pharmacol. 2013;715:424–35. https://doi.org/10.1016/j.ejphar.2013.03.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sveticic G, Eichenberger U, Curatolo M. Safety of mixture of morphine with ketamine for postoperative patient-controlled analgesia: an audit with 1026 patients. Acta Anaesthesiol Scand. 2005;49:870–5. https://doi.org/10.1111/j.1399-6576.2005.00740.x.

    Article  CAS  PubMed  Google Scholar 

  64. Neunhoeffer F, Hanser A, Esslinger M, Icheva V, Kumpf M, Gerbig I, et al. Ketamine infusion as a counter measure for opioid tolerance in mechanically ventilated children: a pilot study. Pediatr Drugs. 2017;19:259–65. https://doi.org/10.1007/s40272-017-0218-4.

    Article  Google Scholar 

  65. McCleane G. Cholecystokinin antagonists a new way to improve the analgesia from old analgesics? Curr Pharm Des. 2004;10:303–14. https://doi.org/10.2174/1381612043386419.

    Article  CAS  PubMed  Google Scholar 

  66. Wiesenfeld-Hallin Z, Xu X-J, Hökfelt T. The role of spinal cholecystokinin in chronic pain states. Pharmacol Toxicol. 2002;91:398–403. https://doi.org/10.1034/j.1600-0773.2002.910619.x.

    Article  CAS  PubMed  Google Scholar 

  67. Silva-Moreno A, Gonzalez-Espinosa C, León-Olea M, Cruz SL. Synergistic antinociceptive actions and tolerance development produced by morphine-fentanyl coadministration: correlation with μ-opioid receptor internalization. Eur J Pharmacol. 2012;674:239–47. https://doi.org/10.1016/j.ejphar.2011.10.034.

    Article  CAS  PubMed  Google Scholar 

  68. Mercadante S. Opioid combination: rationale and possible clinical applications. Ann Palliat Med. 2013;2:189–96. https://doi.org/10.3978/j.issn.2224-5820.2013.09.04.

    Article  PubMed  Google Scholar 

  69. Athanasos P, Ling W, Bochner F, White JM, Somogyi AA. Buprenorphine maintenance subjects are hyperalgesic and have no antinociceptive response to a very high morphine dose. Pain Med. 2019;20:119–28. https://doi.org/10.1093/pm/pny025.

    Article  PubMed  Google Scholar 

  70. Bairaktari A, Al Harbi M, Dimitriou V. Combined use of strong opioids for pain relief in cancer patients-a prospective randomized comparative study. Middle East J Anesthesiol. 2018;25:31–6.

    Google Scholar 

  71. Varrassi G, Yeam CT, Rekatsina M, Pergolizzi JV, Zis P, Paladini A. The expanding role of the COX inhibitor/opioid receptor agonist combination in the management of pain. Drugs. 2020;80:1443–53. https://doi.org/10.1007/s40265-020-01369-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hernández-Delgadillo GP, Cruz SL. Endogenous opioids are involved in morphine and dipyrone analgesic potentiation in the tail flick test in rats. Eur J Pharmacol. 2006;546:54–9. https://doi.org/10.1016/j.ejphar.2006.07.027.

    Article  CAS  PubMed  Google Scholar 

  73. Lu C-H, Chao P-C, Borel CO, Yang C-P, Yeh C-C, Wong C-S, et al. Preincisional intravenous pentoxifylline attenuating perioperative cytokine response, reducing morphine consumption, and improving recovery of bowel function in patients undergoing colorectal cancer surgery. Anesth Analg. 2004;99(5):1465–71. https://doi.org/10.1213/01.ANE.0000132974.32249.C8.

    Article  CAS  PubMed  Google Scholar 

  74. Mogali S, Askalsky P, Madera G, Jones JD, Comer SD. Minocycline attenuates oxycodone-induced positive subjective responses in non-dependent, recreational opioid users. Pharmacol Biochem Behav. 2021;209:173241. https://doi.org/10.1016/j.pbb.2021.173241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Arout CA, Waters AJ, MacLean RR, Compton P, Sofuoglu M. Minocycline does not affect experimental pain or addiction-related outcomes in opioid maintained patients. Psychopharmacology. 2019;236:2857–66. https://doi.org/10.1007/s00213-018-5146-7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia L. Cruz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carranza-Aguilar, C.J., Rivera-García, M.T., Cruz, S.L. (2022). Opioid Dependence, Tolerance, and Withdrawal. In: Cruz, S.L. (eds) Opioids. Springer, Cham. https://doi.org/10.1007/978-3-031-09936-6_13

Download citation

Publish with us

Policies and ethics