Skip to main content

Imaging Methods for Pancreatic Neoplasms

  • Chapter
  • First Online:
Imaging and Pathology of Pancreatic Neoplasms

Abstract

Imaging of pancreatic neoplasms is complex and insidious, requiring a deep knowledge of radiological techniques but also a very thorough knowledge of pancreatic pathology, its management, its risk factors, and possible complications. Although the in-depth evaluation of pancreatic imaging is often reserved for a few reference centers, every radiologist should know the main imaging features of pancreatic diseases, being able to distinguish benign from malignant pathology, using the correct imaging methods, and directing the patient to the most correct diagnostic and therapeutic process. US is easy and fast to be performed, low-cost, but has a limited field of view and is limited by the interposition of gas and fat. Contrast-enhanced CT is the gold standard for the staging of solid pancreatic neoplasms, with its large scan volume, but employs ionizing radiation and is contraindicated in patients with renal failure or allergies to iodinated contrast. MRI is the gold standard for the characterization of cystic lesions and is the exam with the highest tissue contrast resolution, but is very expensive and requires excellent cooperation from the patient. This chapter provides a general overview of the main radiological methods used in pancreatic imaging, from the most consolidated and universally available to the most modern developments of these.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D’Onofrio M. Ultrasonography of the pancreas, I. Milano: Springer; 2012.

    Book  Google Scholar 

  2. D’Onofrio M, Malagò R, Zamboni G, et al. Contrast-enhanced ultrasonography better identifies pancreatic tumor vascularization than helical CT. Pancreatology. 2005;5:398–402. https://doi.org/10.1159/000086540.

    Article  PubMed  Google Scholar 

  3. D’Onofrio M, Mansueto G, Falconi M, Procacci C. Neuroendocrine pancreatic tumor: value of contrast enhanced ultrasonography. Abdom Imaging. 2004;29:246–58. https://doi.org/10.1007/s00261-003-0097-8.

    Article  PubMed  Google Scholar 

  4. D’Onofrio M, Barbi E, Dietrich CF, et al. Pancreatic multicenter ultrasound study (PAMUS). Eur J Radiol. 2012;81:630–8. https://doi.org/10.1016/j.ejrad.2011.01.053.

    Article  PubMed  Google Scholar 

  5. D’Onofrio M. Contrast-enhanced ultrasound of the pancreas. World J Radiol. 2010;2:97. https://doi.org/10.4329/wjr.v2.i3.97.

    Article  PubMed  PubMed Central  Google Scholar 

  6. D’Onofrio M, Zamboni G, Faccioli N, et al. Ultrasonography of the pancreas. 4. Contrast-enhanced imaging. Abdom Imaging. 2007;32:171–81. https://doi.org/10.1007/s00261-006-9010-6.

    Article  PubMed  Google Scholar 

  7. Rha SE, Jung SE, Lee KH, et al. CT and MR imaging findings of endocrine tumor of the pancreas according to WHO classification. Eur J Radiol. 2007;62:371–7. https://doi.org/10.1016/j.ejrad.2007.02.036.

    Article  PubMed  Google Scholar 

  8. Rockall AG, Reznek RH. Imaging of neuroendocrine tumours (CT/MR/US). Best Pract Res Clin Endocrinol Metab. 2007;21:43–68. https://doi.org/10.1016/j.beem.2007.01.003.

    Article  CAS  PubMed  Google Scholar 

  9. Dietrich CF, Hocke M. Elastography of the pancreas, current view. Clin Endosc. 2019;52:533–40. https://doi.org/10.5946/ce.2018.156.

    Article  PubMed  PubMed Central  Google Scholar 

  10. D’Onofrio M, Crosara S, De Robertis R, et al. Elastography of the pancreas. Eur J Radiol. 2014;83:415–9. https://doi.org/10.1016/j.ejrad.2013.04.020.

    Article  PubMed  Google Scholar 

  11. D’Onofrio M, Megibow AJ, Faccioli N, et al. Comparison of contrast-enhanced sonography and MRI in displaying anatomic features of cystic pancreatic masses. Am J Roentgenol. 2007;189:1435–42. https://doi.org/10.2214/AJR.07.2032.

    Article  Google Scholar 

  12. D’Onofrio M, Caffarri S, Zamboni G, et al. Contrast-enhanced ultrasonography in the characterization of pancreatic mucinous cystadenoma. J Ultrasound Med. 2004;23:1125–9. https://doi.org/10.7863/jum.2004.23.8.1125.

    Article  PubMed  Google Scholar 

  13. Beyer-Enke SA, Hocke M, Ignee A, et al. Contrast enhanced transabdominal ultrasound in the characterisation of pancreatic lesions with cystic appearance. JOP. 2010;11:427–33.

    PubMed  Google Scholar 

  14. Tanaka M, Fernández-Del Castillo C, Adsay V, et al International consensus guidelines 2012 for the management of IPMN and MCN of the pancreas. In: Pancreatology. Pancreatology; 2012. pp. 183–197.

    Google Scholar 

  15. Khashab MA, Kim K, Lennon AM, et al. Should we do EUS/FNA on patients with pancreatic cysts? The incremental diagnostic yield of EUS over CT/MRI for prediction of cystic neoplasms. Pancreas. 2013;42:717–21. https://doi.org/10.1097/MPA.0b013e3182883a91.

    Article  PubMed  Google Scholar 

  16. Cizginer S, Turner B, Bilge AR, et al. Cyst fluid carcinoembryonic antigen is an accurate diagnostic marker of pancreatic mucinous cysts. Pancreas. 2011;40:1024–8. https://doi.org/10.1097/MPA.0b013e31821bd62f.

    Article  CAS  PubMed  Google Scholar 

  17. D’Onofrio M, Beleù A, De Robertis R. Ultrasound-guided percutaneous procedures in pancreatic diseases: new techniques and applications. Eur Radiol Exp. 2019;3:2. https://doi.org/10.1186/s41747-018-0081-2.

    Article  PubMed  PubMed Central  Google Scholar 

  18. D’Onofrio M, Beleù A, Sarno A, et al. US-guided percutaneous radiofrequency ablation of locally advanced pancreatic adenocarcinoma: a 5-year high-volume center experience. Ultraschall der Medizin. 2020; https://doi.org/10.1055/a-1178-0474.

  19. Sarno A, Beleù A, De Robertis R, et al. Radiofrequency ablation of pancreatic cancer. Dig Dis Interv. 2019;03:133–7.

    Article  Google Scholar 

  20. European Society of Radiology (ESR). Abdominal applications of ultrasound fusion imaging technique: liver, kidney, and pancreas. Insights Imaging. 2019;10:6. https://doi.org/10.1186/s13244-019-0692-z.

    Article  Google Scholar 

  21. Beleù A, Drudi A, Giaretta A, et al. Operator evaluation of ultrasound fusion imaging usefulness in the percutaneous ablation of hepatic malignancies: a prospective study. Ultrasound Med Biol. 2021;47:3159–69.

    Article  PubMed  Google Scholar 

  22. Sumi H, Itoh A, Kawashima H, et al. Preliminary study on evaluation of the pancreatic tail observable limit of transabdominal ultrasonography using a position sensor and CT-fusion image. Eur J Radiol. 2014;83:1324–31. https://doi.org/10.1016/j.ejrad.2014.05.009.

    Article  PubMed  Google Scholar 

  23. Tunaci M. Multidetector row CT of the pancreas. Eur J Radiol. 2004;52:18–30. https://doi.org/10.1016/j.ejrad.2004.03.030.

    Article  PubMed  Google Scholar 

  24. Lu DSK, Vedantham S, Krasny RM, et al. Two-phase helical CT for pancreatic tumors: pancreatic versus hepatic phase enhancement of tumor, pancreas, and vascular structures. Radiology. 1996;199:697–701. https://doi.org/10.1148/radiology.199.3.8637990.

    Article  CAS  PubMed  Google Scholar 

  25. Sahani DV, Shah ZK, Catalano OA, et al. Radiology of pancreatic adenocarcinoma: current status of imaging. J Gastroenterol Hepatol. 2008;23:23–33.

    Article  PubMed  Google Scholar 

  26. Jeffrey RB. Pancreatic cancer: radiologic imaging. Gastroenterol Clin N Am. 2012;41:159–77.

    Article  Google Scholar 

  27. Fletcher JG, Wiersema MJ, Farrell MA, et al. Pancreatic malignancy: value of arterial, pancreatic, and hepatic phase imaging with multi-detector row CT. Radiology. 2003;229:81–90. https://doi.org/10.1148/radiol.2291020582.

    Article  PubMed  Google Scholar 

  28. Ros PR, Mortelé KJ. Imaging features of pancreatic neoplasms. JBR-BTR. 2001;84:239–49.

    CAS  PubMed  Google Scholar 

  29. Kim JH, Park SH, Yu ES, et al. Visually isoattenuating pancreatic adenocarcinoma at dynamic-enhanced CT: frequency, clinical and pathologic characteristics, and diagnosis at imaging examinations. Radiology. 2010;257:87–96. https://doi.org/10.1148/radiol.10100015.

    Article  PubMed  Google Scholar 

  30. Prokesch RW, Chow LC, Beaulieu CF, et al. Isoattenuating pancreatic adenocarcinoma at multi-detector row CT: secondary signs. Radiology. 2002;224:764–8. https://doi.org/10.1148/radiol.2243011284.

    Article  PubMed  Google Scholar 

  31. Yoon SH, Lee JM, Cho JY, et al. Small (≤20 mm) pancreatic adenocarcinomas: analysis of enhancement patterns and secondary signs with multiphasic multidetector CT. Radiology. 2011;259:442–52. https://doi.org/10.1148/radiol.11101133.

    Article  PubMed  Google Scholar 

  32. Dietrich CF, Hocke M, Gallotti ADM. Solid pancreatic tumors. In: Ultrasonography of the pancreas. Italia: Springer; 2012. p. 93–110.

    Chapter  Google Scholar 

  33. Beleù A, Calabrese A, Rizzo G, et al. Preoperative imaging evaluation after downstaging of pancreatic ductal adenocarcinoma: a multi-center study. Cancers (Basel). 2019;11:267. https://doi.org/10.3390/cancers11020267.

    Article  CAS  Google Scholar 

  34. Coursey CA, Nelson RC, Boll DT, et al. Dual-energy multidetector CT: how does it work, what can it tell us, and when can we use it in abdominopelvic imaging? Radiographics. 2010;30:1037–55. https://doi.org/10.1148/rg.304095175.

    Article  PubMed  Google Scholar 

  35. George E, Wortman JR, Fulwadhva UP, et al. Dual energy CT applications in pancreatic pathologies. Br J Radiol. 2017;90:20170411. https://doi.org/10.1259/bjr.20170411.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Morgan DE. Dual-energy CT of the abdomen. Abdom Imaging. 2014;39:108–34. https://doi.org/10.1007/s00261-013-0033-5.

    Article  PubMed  Google Scholar 

  37. Frellesen C, Fessler F, Hardie AD, et al. Dual-energy CT of the pancreas: improved carcinoma-to-pancreas contrast with a noise-optimized monoenergetic reconstruction algorithm. Eur J Radiol. 2015;84:2052–8. https://doi.org/10.1016/j.ejrad.2015.07.020.

    Article  PubMed  Google Scholar 

  38. Mastrodicasa D, Delli Pizzi A, Patel BN. Dual-energy CT of the pancreas. Semin Ultrasound CT MR. 2019;40:509–14. https://doi.org/10.1053/j.sult.2019.05.002.

    Article  PubMed  Google Scholar 

  39. Klauss M, Stiller W, Pahn G, et al. Dual-energy perfusion-CT of pancreatic adenocarcinoma. Eur J Radiol. 2013;82:208–14. https://doi.org/10.1016/j.ejrad.2012.09.012.

    Article  CAS  PubMed  Google Scholar 

  40. Baliyan V, Das CJ, Sharma R, Gupta AK. Diffusion weighted imaging: technique and applications. World J Radiol. 2016;8:785–98. https://doi.org/10.4329/wjr.v8.i9.785.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Donato H, França M, Candelária I, Caseiro-Alves F. Liver MRI: from basic protocol to advanced techniques. Eur J Radiol. 2017;93:30–9. https://doi.org/10.1016/j.ejrad.2017.05.028.

    Article  PubMed  Google Scholar 

  42. Lincke T, Zech CJ. Liver metastases: detection and staging. Eur J Radiol. 2017;97:76–82. https://doi.org/10.1016/j.ejrad.2017.10.016.

    Article  PubMed  Google Scholar 

  43. Bhayana R, Baliyan V, Kordbacheh H, Kambadakone A. Hepatobiliary phase enhancement of liver metastases on gadoxetic acid MRI: assessment of frequency and patterns. Eur Radiol. 2021;31:1359–66. https://doi.org/10.1007/s00330-020-07228-3.

    Article  PubMed  Google Scholar 

  44. Yao X-Z, Kuang T, Wu L, et al. Comparison of diffusion-weighted MRI acquisition techniques for normal pancreas at 3.0 tesla. Diagn Interv Radiol. 2014;20:368–73. https://doi.org/10.5152/dir.2014.13454.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Marion-Audibert A-M, Vullierme M-P, Ronot M, et al. Routine MRI with DWI sequences to detect liver metastases in patients with potentially resectable pancreatic ductal carcinoma and normal liver CT: a prospective multicenter study. AJR Am J Roentgenol. 2018;211:W217–25. https://doi.org/10.2214/AJR.18.19640.

    Article  PubMed  Google Scholar 

  46. Hayoz R, Vietti-Violi N, Duran R, et al. The combination of hepatobiliary phase with Gd-EOB-DTPA and DWI is highly accurate for the detection and characterization of liver metastases from neuroendocrine tumor. Eur Radiol. 2020;30:6593–602. https://doi.org/10.1007/s00330-020-06930-6.

    Article  CAS  PubMed  Google Scholar 

  47. Kang KM, Lee JM, Yoon JH, et al. Intravoxel incoherent motion diffusion-weighted MR imaging for characterization of focal pancreatic lesions. Radiology. 2014;270:444–53. https://doi.org/10.1148/radiol.13122712.

    Article  PubMed  Google Scholar 

  48. Inan N, Arslan A, Akansel G, et al. Diffusion-weighted imaging in the differential diagnosis of cystic lesions of the pancreas. Am J Roentgenol. 2008;191:1115–21. https://doi.org/10.2214/AJR.07.3754.

    Article  Google Scholar 

  49. Klauß M, Maier-Hein K, Tjaden C, et al. IVIM DW-MRI of autoimmune pancreatitis: therapy monitoring and differentiation from pancreatic cancer. Eur Radiol. 2016;26:2099–106. https://doi.org/10.1007/s00330-015-4041-4.

    Article  PubMed  Google Scholar 

  50. Del Chiaro M, Verbeke C, Salvia R, et al. European experts consensus statement on cystic tumours of the pancreas. Dig Liver Dis. 2013;45:703–11. https://doi.org/10.1016/j.dld.2013.01.010.

    Article  PubMed  Google Scholar 

  51. Manfredi R, Brizi MG, Tancioni V, et al. Magnetic resonance pancreatography (MRP): morphology and function. Rays. 2001;26:127–33.

    CAS  PubMed  Google Scholar 

  52. Lewin M, Hoeffel C, Azizi L, et al. Imagerie des lésions kystiques du pancréas de découverte fortuite. J Radiol. 2008;89:197–207. https://doi.org/10.1016/S0221-0363(08)70395-0.

    Article  CAS  PubMed  Google Scholar 

  53. Buetow PC, Rao P, Thompson LDR. From the archives of the AFIP: mucinous cystic neoplasms of the pancreas: radiologic-pathologic correlation. Radiographics. 1998;18:433–49. https://doi.org/10.1148/radiographics.18.2.9536488.

    Article  CAS  PubMed  Google Scholar 

  54. Dewhurst CE, Mortele KJ. Cystic tumors of the pancreas: imaging and management. Radiol Clin N Am. 2012;50:467–86.

    Article  PubMed  Google Scholar 

  55. Zhong N, Zhang L, Takahashi N, et al. Histologic and imaging features of mural nodules in mucinous pancreatic cysts. Clin Gastroenterol Hepatol. 2012;10:192–8, 198.e1-2. https://doi.org/10.1016/j.cgh.2011.09.029.

    Article  PubMed  Google Scholar 

  56. Sainani NI, Saokar A, Deshpande V, et al. Comparative performance of MDCT and MRI with MR cholangiopancreatography in characterizing small pancreatic cysts. Am J Roentgenol. 2009;193:722–31. https://doi.org/10.2214/AJR.08.1253.

    Article  Google Scholar 

  57. Kim JH, Eun HW, Park HJ, et al. Diagnostic performance of MRI and EUS in the differentiation of benign from malignant pancreatic cyst and cyst communication with the main duct. Eur J Radiol. 2012;81:2927–35. https://doi.org/10.1016/j.ejrad.2011.12.019.

    Article  PubMed  Google Scholar 

  58. Sahani DV, Sainani NI, Blake MA, et al. Prospective evaluation of reader performance on MDCT in characterization of cystic pancreatic lesions and prediction of cyst biologic aggressiveness. Am J Roentgenol. 2011;197:W53–61. https://doi.org/10.2214/AJR.10.5866.

    Article  Google Scholar 

  59. de Jong K, Nio CY, Hermans JJ, et al. High prevalence of pancreatic cysts detected by screening magnetic resonance imaging examinations. Clin Gastroenterol Hepatol. 2010;8:806–11. https://doi.org/10.1016/j.cgh.2010.05.017.

    Article  PubMed  Google Scholar 

  60. Zhang HM, Yao F, Liu GF, et al. The differences in imaging features of malignant and benign branch duct type of intraductal papillary mucinous tumor. Eur J Radiol. 2011;80:744–8. https://doi.org/10.1016/j.ejrad.2010.09.033.

    Article  PubMed  Google Scholar 

  61. Sakorafas GH, Smyrniotis V, Reid-Lombardo KM, Sarr MG. Primary pancreatic cystic neoplasms revisited. Part III. Intraductal papillary mucinous neoplasms. Surg Oncol. 2011:20, e109–e118.

    Google Scholar 

  62. D’Onofrio M, Tedesco G, Cardobi N, et al. Magnetic resonance (MR) for mural nodule detection studying intraductal papillary mucinous neoplasms (IPMN) of pancreas: imaging-pathologic correlation. Pancreatol Off J Int Assoc Pancreatol. 2021;21:180–+. https://doi.org/10.1016/j.pan.2020.11.024.

    Article  Google Scholar 

  63. Kim YC, Choi JY, Chung YE, et al. Comparison of MRI and endoscopic ultrasound in the characterization of pancreatic cystic lesions. Am J Roentgenol. 2010;195:947–52. https://doi.org/10.2214/AJR.09.3985.

    Article  Google Scholar 

  64. Kawamoto S, Lawler LP, Horton KM, et al. MDCT of intraductal papillary mucinous neoplasm of the pancreas: evaluation of features predictive of invasive carcinoma. Am J Roentgenol. 2006;186:687–95. https://doi.org/10.2214/AJR.04.1820.

    Article  Google Scholar 

  65. Su JS, Jeong ML, Young JK, et al. Differentiation of intraductal papillary mucinous neoplasms from other pancreatic cystic masses: comparison of multirow-detector CT and MR imaging using ROC analysis. J Magn Reson Imaging. 2007;26:86–93. https://doi.org/10.1002/jmri.21001.

    Article  Google Scholar 

  66. Sahani DV, Kadavigere R, Blake M, et al. Intraductal papillary mucinous neoplasm of pancreas: multi-detector row CT with 2D curved reformations-correlation with MRCP. Radiology. 2006;238:560–9. https://doi.org/10.1148/radiol.2382041463.

    Article  PubMed  Google Scholar 

  67. De Robertis R, Beleù A, Cardobi N, et al. Correlation of MR features and histogram-derived parameters with aggressiveness and outcomes after resection in pancreatic ductal adenocarcinoma. Abdom Radiol (New York). 2020;45:3809–18. https://doi.org/10.1007/s00261-020-02509-3.

    Article  Google Scholar 

  68. Beleù A, Rizzo G, De Robertis R, et al. Liver tumor burden in pancreatic neuroendocrine tumors: CT features and texture analysis in the prediction of tumor grade and (18)F-FDG uptake. Cancers (Basel). 2020;12:1486. https://doi.org/10.3390/cancers12061486.

    Article  CAS  Google Scholar 

  69. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278:563–77. https://doi.org/10.1148/radiol.2015151169.

    Article  PubMed  Google Scholar 

  70. Lubner MG, Smith AD, Sandrasegaran K, et al. CT texture analysis: definitions, applications, biologic correlates, and challenges. Radiographics. 2017;37:1483–503.

    Article  PubMed  Google Scholar 

  71. Mackin D, Fave X, Zhang L, et al. Measuring CT scanner variability of radiomics features HHS public access. Investig Radiol. 2015;50:757–65. https://doi.org/10.1097/RLI.0000000000000180.

    Article  Google Scholar 

  72. Orlhac F, Frouin F, Nioche C, et al. Validation of a method to compensate multicenter effects affecting CT radiomics. Radiology. 2019;291:53–9. https://doi.org/10.1148/radiol.2019182023.

    Article  PubMed  Google Scholar 

  73. Cardobi N, Dal Palù A, Pedrini F, et al. An overview of artificial intelligence applications in liver and pancreatic imaging. Cancers (Basel). 2021;13:2162. https://doi.org/10.3390/cancers13092162.

    Article  Google Scholar 

  74. Virarkar M, Wong VK, Morani AC, et al. Update on quantitative radiomics of pancreatic tumors. Abdom Radiol (New York). 2021; https://doi.org/10.1007/s00261-021-03216-3.

  75. van Timmeren JE, Cester D, Tanadini-Lang S, et al. Radiomics in medical imaging-“how-to” guide and critical reflection. Insights Imaging. 2020;11:91. https://doi.org/10.1186/s13244-020-00887-2.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Mayerhoefer ME, Materka A, Langs G, et al. Introduction to radiomics. J Nucl Med. 2020;61:488–95. https://doi.org/10.2967/jnumed.118.222893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rizzo S, Botta F, Raimondi S, et al. Radiomics: the facts and the challenges of image analysis. Eur Radiol Exp. 2018;2:36. https://doi.org/10.1186/s41747-018-0068-z.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Abunahel BM, Pontre B, Kumar H, Petrov MS. Pancreas image mining: a systematic review of radiomics. Eur Radiol. 2021;31:3447–67. https://doi.org/10.1007/s00330-020-07376-6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Beleù .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beleù, A. et al. (2022). Imaging Methods for Pancreatic Neoplasms. In: D'Onofrio, M., Capelli, P., Pederzoli, P. (eds) Imaging and Pathology of Pancreatic Neoplasms. Springer, Cham. https://doi.org/10.1007/978-3-031-09831-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09831-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09830-7

  • Online ISBN: 978-3-031-09831-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics