Skip to main content
Log in

Treatment of mixed domestic–industrial wastewater using cyanobacteria

  • Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Alexandria Sanitary Drainage Company (ASDCO), Alexandria, Egypt has two primary treatment plants, the eastern and the western wastewater treatment plants (EWTP and WWTP) that receive mixed domestic–industrial influents and discharge into L. Mariut. The lake is subjected therefore to severe levels of pollution and dominated by members of cyanobacteria that can cope with the high pollution load in the lake water. Isolation and utilization of the locally generated cyanobacterial biomass for remediation processes of highly toxic pollutants offers a very efficient and cheap tool for governmental or private industrial activities in Alexandria and will generate a source of revenue in Egyptian localities. The main objective of the present study was to investigate the biodegradation and biosorption capacity of some potential cyanobacterial species dominating the lake ecosystem toward organic and inorganic contaminants polluting the primary-treated effluents of the EWTP and WWTP. The primary effluents were subjected to biological treatment using three axenic cyanobacterial strains (Anabaena oryzae, Anabaena variabilis and Tolypothrix ceytonica) as batch system for 7 days. Removal efficiencies (RE) of the different contaminants were evaluated and compared. Results confirmed the high efficiencies of the investigated species for the removal of the target contaminants which were species and contaminant-dependent. BOD5 and COD recorded 89.29 and 73.68% as maximum RE(s) achieved by Anabaena variabilis and Anabaena oryzae, respectively. The highest RE of the TSS recorded 64.37% achieved by Tolypothrix ceytonica, while 38.84% was recorded as the highest TSD RE achieved by Anabaena variabilis. Tolypothrix ceytonica also exhibited the highest RE for FOG recorded 93.75%. Concerning the contaminant metals, Tolypothrix ceytonica showed the highest biosorption capacity where 86.12 and 94.63% RE were achieved for Zn and Cu, respectively. In conclusion, results of the present study confirmed the advantageous potential of using the tested cyanobacterial species for the treatment of contaminated wastewater. Results also clearly showed the quality improvement of the discharged wastewater which in turn will eliminate or at least minimize the expected deterioration of the receiving environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abd Allah LS (2006) Metal-binding ability of cyanobacteria: the responsible genes and optimal applications in bioremediation of polluted water for agricultural use. Ph.D. Thesis, Department of Environmental Studies, Institute of Graduate Studies and research, Alexandria University, Alexandria, Egypt

  2. Al-Hasan RH, Al-Bader DA, Sorkhoh NA, Radwan SS (1998) Evidence for n-alkane consumption and oxidation by filamentous cyanobacteria from oil-contaminated coasts of the Arabian Gulf. Marine Biol 130:521–527

    Article  CAS  Google Scholar 

  3. Al-Hasan RH, Khanafer M, Eliyas M, Radwan SS (2001) Hydrocarbon accumulation by picocyanobacteria from the Arabian Gulf. J Appl Microbiol 91(3):533–540

    Article  PubMed  CAS  Google Scholar 

  4. Ash N, Jenkins M (2006) Biodiversity and poverty reduction: the importance of biodiversity for ecosystem services. Final report prepared by the United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC) (http://www.unep-wcmc.org) for the Department for International Development (DFID)

  5. Boshoff GA, Duncan JR, Rose PD (1996) An algal–bacterial integrated ponding system for the treatment of mine drainage waters. J Appl Phycol 8(4–5):442

    Google Scholar 

  6. Castenholz RW (2001) Phylum BX. Cyanobacteria. Oxygenic photosynthetic bacteria. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology. Springer, Berlin, pp 473–599

    Google Scholar 

  7. Castenholz RW, Waterbury JM (1989) Oxygenic photosynthetic bacteria. Group I. Cyanobacteria. In: Hensyl WR (ed) Bergy’s manual of systematic bacteriology. Williams and Wilkins, Baltimore, pp 1710–1727

    Google Scholar 

  8. Celesseri LS, Greenberg CG, Eaton AD (1999) Standard method for the examination of water and wastewater, 20th edn. American Public Health Association (APHA), USA. ISBN 0875532357

  9. Cerniglia CE, Van Baalen C, Gibson DT (1980) Metabolism of naphthalene by the cyanobacterium Oscillatoria sp. strain JCM. J Gen Microbiol 116:485–494

    CAS  Google Scholar 

  10. Cerniglia CE, Van Baalen C, Gibson DT (1980) Oxidation of naphthalene by cyanobacteria and microalgae. J Gen Microbiol 116:495–500

    CAS  Google Scholar 

  11. Chevalier P, Proulx D, Lessard P, Vincent WF, de la Noue J (2000) Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment. J Appl Phycol 12:105–112

    Article  CAS  Google Scholar 

  12. Cohen Y (2002) Bioremediation of oil by marine microbial mats. Int Microbiol 5:189–193

    Article  PubMed  CAS  Google Scholar 

  13. De Philippis R, Sili C, Paperi R, Vincenzini M (2001) Exopolysaccharide-producing cyanobacteria and their possible exploitation: a review. J Appl phycol 13(4):293–299. ISSN 0921–8971

    Google Scholar 

  14. De-Bashan LE, Hernández JP, Morey T, Bashan Y (2004) Microalgae growth-promoting bacteria as ‘‘helpers’’ for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Res 38:466–474

    Article  PubMed  CAS  Google Scholar 

  15. De-Bashana LE, Bashana Y (2004) Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Wat Res 38:4222–4246

    Article  CAS  Google Scholar 

  16. Dufresne A, Salanoubat M, Partensky F, Artiguenave F, Axmann IM, Barbe V, Duprat S, Galperin MY, Koonin EV, Le Gall F (2003) Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc Natl Acad Sci USA 100:10020–10025

    Article  PubMed  CAS  Google Scholar 

  17. Duma A, Lalibertk G, Lessard P, de la NoiieaV J (1998) Biotreatment of fish farm effluents using the cyanobacterium Phormidium bohneri. Aqua Eng 17:57–68

    Article  Google Scholar 

  18. El-Bestawy E (1993) Studies on the occurrence and distribution of pollutant metals in freshwater phytoplankton and bacteria in Lake Mariut, Alexandria, Egypt. Ph.D. Thesis, Department of Environmental Biology, Faculty of Sciences, Manchester University, Manchester

  19. El-Bestawy E (1999) Pollution in Lake Mariut. “Workshop on the Rehabilitation of Lake Mariut”, 13–14 March 1999 organized by The University of Alexandria and The University of London in cooperation with Alexandria British Council and AGOSD

  20. El-Bestawy E, Abd El-Salam AZ, Abd El-Rahman HM (2007) Potential use of environmental cyanobacterial species in bioremediation of Lindane-contaminated effluents. Int Biodeterior Biodegradation 59(3):180–192

    Article  CAS  Google Scholar 

  21. El-Bestawy E, Hussein H, Baghdadi H, El-Saka M (2005) Comparison between biological and chemical treatment of wastewater containing nitrogen and phosphorus. J Ind Microbiol Biotechnol 32:195–203

    Article  PubMed  CAS  Google Scholar 

  22. Ellis BE (1977) Degradation of phenolic compounds by freshwater algae. Plant Sci Lett 8:213–216

    Article  CAS  Google Scholar 

  23. Enrique Flores AH (2008) The cyanobateria: molecular biology, genomics and evolution. Horizon, 3. ISBN 1904455158

  24. Ernst A, Deicher M, Herman PMJ, Wollenzien UIA (2005) Nitrate and phosphate affect cultivability of cyanobacteria from environments with low nutrient levels. Appl Environ Microbiol 71(6):3379–3383

    Article  PubMed  CAS  Google Scholar 

  25. Fogg GE (1987) Marine planktonic cyanobacteria. In: Fay P, Van Baalen C (eds) The Cyanobacteria. Elsevier, Amsterdam, pp 393–413

    Google Scholar 

  26. Gazea KA, Kontopoulos A (1996) A review of passive systems for the treatment of acid mine drainage. Miner Eng 9(1):23–42

    Article  CAS  Google Scholar 

  27. Gibson CE, Smith RV (1982) Freshwater plankton. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. Blackwell, London, pp 463–489

    Google Scholar 

  28. Giller K, Mcgrath S (1989) Muck, metals and microbes: Issue 1689 of New Scientist magazine New Scientist Print Edition

  29. Herrero A, Flores E (ed) (2008) The cyanobateria: molecular biology, genomics and evolution, 1st edn. Caister Academic Press, UK. ISBN 978-1-190445515-8

  30. Hu Q, Westerhoff P, Vermaas W (2000) Removal of nitrate from groundwater by cyanobacteria: Quantitative assessment of factors influencing nitrate uptake. Appl Environ Microbiol 66(1):133–139

    Article  PubMed  CAS  Google Scholar 

  31. Kuritz T, Wolk CP (1995) Use of filamentous cyanobacteria for biodegradation of organic pollutants. Appl Environ Microbiol 61:234–238

    PubMed  CAS  Google Scholar 

  32. Kuyucak N, Volesky B (1988) Biosorbents for recovery of metals from industrial solutions. Biotechnol Lett 10(2):137–142

    Article  CAS  Google Scholar 

  33. Laliberte G, Lessard P, De La Noue J, Sylvestre S (1997) Effect of phosphorus addition on nutrient removal from wastewater with the cyanobacterium Phormidium bohneri. Bioresour Technol 59:227–233

    Article  CAS  Google Scholar 

  34. Lefebvre DD, Kelly D, Budd K (2007) Biotransformation of Hg(II) by cyanobacteria. Appl Environ Microbiol 73(1): 243–249. doi:10.1128/AEM.01794-06

    Google Scholar 

  35. Lem NW, Glck BR (1985) Biotechnological uses of cyanobacteria. Biotechnol Adv 3:195–208

    Article  PubMed  CAS  Google Scholar 

  36. Lincoln EP, Wilkie AC, French BT (1996) Cyanobacterial process for renovating dairy wastewater. Bioengineering 10:63–68

    CAS  Google Scholar 

  37. Mansy AH, El-Bestawy E (2002) Toxicity and biodegradation of fluometuron by selected members of cyanobacteria. World J Microbiol Biotechnol 18:125–131

    Article  CAS  Google Scholar 

  38. Maynard HE, Ouki SK, Williams SC (1999) Tertiary lagoons: a review of removal mechanisms and performances. Water Res 33:1–13

    Article  CAS  Google Scholar 

  39. McKnight DM, Morel FMM (1980) Copper complexation by siderophores from filamentous blue–green algae. Limnol Oceanogr 25(1):62–71

    Article  CAS  Google Scholar 

  40. Meeks JC, Elhai J, Thiel T, Potts M, Larimer F, Lamerdin J, Predki P, Atlas R (2001) An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynth Res 70:85–106

    Article  PubMed  CAS  Google Scholar 

  41. Megharaj M, Madhavi DR, Sreenivasulu C, Umamaheswari A, Venkateswarlu K (1994) Biodegradation of methyl parathion by soil isolates of microalgae and cyanobacteria. Bull Environ Contam Toxicol 53:292–297

    Article  PubMed  CAS  Google Scholar 

  42. Megharaj M, Venkateswarlu K, Rao AS (1987) Metabolism of monocrotophos and quinalphos by algae isolated from soil. Bull Environ Contam Toxicol 39:251–256

    Article  PubMed  CAS  Google Scholar 

  43. Michelou VK, Cottrell MT, Kirchman DL (2007) Light-stimulated bacterial production and amino acid assimilation by cyanobacteria and other microbes in the North Atlantic Ocean. Appl Environ Microbiol 73(17):5539–5546

    Article  PubMed  CAS  Google Scholar 

  44. Narro ML, Cerniglia CE, Van Baalen C, Gibson DT (1992) Metabolism of phenanthrene by the Marine cyanobacterium Agmenellum quadriplicatum PR-6. Appl Environ Microbiol 58:1351–1359

    PubMed  CAS  Google Scholar 

  45. Ogbonna JC, Yoshizawa H, Tanaka H (2000) Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms. J Appl Phycol 12:277–284

    Article  CAS  Google Scholar 

  46. Olguin EJ, Galicia S, Hernandez E (1996) Production of Spirulina sp. from pig waster: the effect of light intensity and nitrogen concentration. J App Phycol 8(4–5):452

    Google Scholar 

  47. Payne RA, van Hille RP, Duncan JR (1999) The effect of toxic heavy metals on the alga Spirulina sp. In: Proceedings of the Biannual Conference of the Water Institute of South Africa, Cape Town, South Africa

  48. Phang SM, Miah MS, Yeoh BG, Hashim MA (2000) Spirulina cultivation in digested sago starch factory wastewater. J Appl Phycol 12:395–400

    Article  Google Scholar 

  49. Podda F, Zuddas P, Minacci A, Pepi M, Baldi F (2000) Heavy metal coprecipitation with hydrozincite [Zn5(CO3)2(OH)6] from mine waters caused by photosynthetic microorganisms. Appl Environ Microbiol 66(11):5092–5098

    Article  PubMed  CAS  Google Scholar 

  50. Radwan SS, Al-Hasan RH (2001) Potential application of coastal biofilm-coated gravel particles for treating oily waste. AME 23:113–117

    Article  Google Scholar 

  51. Raghukumar C, Vipparty V, David JJ, Chandramohan D (2001) Degradation of crude oil by marine cyanobacteria. Appl Microbiol Biotechnol 57:433–436

    Article  PubMed  CAS  Google Scholar 

  52. Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, Arellano A, Coleman M, Hauser L, Hess WR, Johnson ZI, Land M, Lindell D, Post AF, Regala W, Shah M, Shaw SL, Steglich C, Sullivan MB, Ting CS, Tolonen A, Webb EA, Zinser ER, Chisholm SW (2003) Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424:1042–1047 

    Google Scholar 

  53. Sawayama S, Rao KK, Hall DO (1998) Nitrate and phosphate ion removal from water by Phormidium laminosum immobilized on hollow fibres in a photobioreactor. Appl Microbiol Biot 49:463–468

    Article  CAS  Google Scholar 

  54. Shashirekha S, Uma L, Subramanian G (1997) Phenol degradation by the marine cyanobacterium Phormidium valderianum BDU-30501. J Ind Microbiol Biotechnol 19:130–133

    Article  CAS  Google Scholar 

  55. Shiraiwa Y, Goyal A, Tolbert NE (1993) Alkalization of the medium by unicellular green algae during uptake of dissolved inorganic carbon. Plant Cell Physiol 34(5):649–657

    CAS  Google Scholar 

  56. Sorkhoh NA, Al-Hasan RH, Khanafer M, Radwan SS (1995) Establishment of oil-degrading bacteria associated with cyanobacteria in oil-polluted soil. J Appl Bacteriol 78:194–199

    PubMed  CAS  Google Scholar 

  57. Sorkhoh NA, Al-Hasan RH, Radwan SS, Hopner T (1992) Self cleaning of the Gulf. Nature (London) 359:109

    Article  Google Scholar 

  58. Tabei Y, Okada K, Tsuzuki M (2007) Sll1330 controls the expression of glycolytic genes in Synechocystis sp. PCC 6803. Biochem Biophys Res Commun 355(4):1045–1050

    Article  PubMed  CAS  Google Scholar 

  59. Volesky B (ed) (1990) Bio-sorption of heavy metals, CRC Press, Boca Raton

  60. Zubkov MV, Fuchs BM, Tarran GA, Burkill PH, Amann R (2003) High rate of uptake of organic nitrogen compounds by Prochlorococcus cyanobacteria as a key to their dominance in oligotrophic oceanic waters. Appl Environ Microbiol 69:1299–1304

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebtesam El-Bestawy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Bestawy, E. Treatment of mixed domestic–industrial wastewater using cyanobacteria. J Ind Microbiol Biotechnol 35, 1503–1516 (2008). https://doi.org/10.1007/s10295-008-0452-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-008-0452-4

Keywords

Navigation