Skip to main content
Log in

Hexavalent Chromium Reduction from Pollutant Samples by Achromobacter xylosoxidans SHB 204 and its Kinetics Study

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Cr(VI) is most toxic heavy metal and second most widespread hazardous metal compound worldwide. Present work focused on Cr(VI) reduction from synthetic solutions and polluted samples by Achromobacter xylosoxidans SHB 204. It could tolerate Cr(VI) up to 1600 ppm and reduce 500 ppm with 4.5 chromium reductase enzyme units (U) having protein size 30 kDa. Changes in morphology of cells on interaction with Cr(VI) metal ion was also studied using SEM–EDX and FTIR. Microcosm studies in pollutant samples for Cr(VI) reduction and adsorption isotherm with biomass of bacterium was best fitted with Langmuir model along with kinetic studies. This study focuses on significance of Cr reduction from synthetic solutions and polluted samples by A. xylosoxidans SHB 204 and its potential for bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gibb HJ, Lees PS, Pinsky PF, Rooney BC (2000) Lung cancer among workers in chromium chemical production. Am J Ind Med 38:115–126. doi:10.1002/1097-0274(200008)38:23.3

    Article  CAS  PubMed  Google Scholar 

  2. Zhu W, Chai L, Ma Z, Wang Y, Xiao H, Zhao K (2008) Anaerobic reduction of hexavalent chromium by bacterial cells of Achromobacter sp. strain Ch1. Microbiol Res 163:616–623

    Article  CAS  PubMed  Google Scholar 

  3. Talapatra S, Banerjee S (2007) Detection of micronucleus and abnormal nucleus in erythrocytes from the gill and kidney of Labeo bata cultivated in sewage-fed fish farms. FCT 45:210–215. doi:10.1016/j.fct.2006.07.022

    CAS  Google Scholar 

  4. Zouboulis A, Loukidou M, Matis K (2004) Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem 39:909–916. doi:10.1016/S0032-9592(03)00200-0

    Article  CAS  Google Scholar 

  5. Khan MY, Swapna TH, Hameeda B, Reddy G (2015) Bioremediation of heavy metals using biosurfactants. Adv Biodegrad Bioremediat Ind Waste. doi:10.3389/fmicb.2015.01555

    Google Scholar 

  6. Poguberović SS, Krčmar DM, Maletić SP, Kónya Z, Pilipović DDT, Kerkez DV, Rončević SD (2016) Removal of As (III) and Cr(VI) from aqueous solutions using “green” zero-valent iron nanoparticles produced by oak, mulberry and cherry leaf extracts. Ecol Eng 90:42–49. doi:10.1016/jecoleng2016.01.083

    Article  Google Scholar 

  7. Knauer K, Behra R, Sigg L (1997) Adsorption and uptake of copper by the green alga scenedesmus subspicatus (chlorophyta) 1. J Phycol 33:596–601. doi:10.1111/j.0022-3646.1997.00596

    Article  CAS  Google Scholar 

  8. Swapna TH, Narendra Kumar P, YahyaKhan M, Gopal reddy M, Hameeda B (2016) Bioreduction of Cr(VI) by biosurfactant producing marine bacterium Bacillus subtilis SHB 13. jsir 75:432–438. http://nopr.niscair.res.in/handle/123456789/34708

  9. Hossain MA, Ngo HH, Guo W (2013) Introductory of Microsoft Excel SOLVER function-spreadsheet method for isotherm and kinetics modelling of metals biosorption in water and wastewater. J Water Sustain 3:223–237. doi:10.11912/jws.3.4.223-237

    CAS  Google Scholar 

  10. Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams & Wilkins, Baltimore. doi:10.1002/9781118960608

    Google Scholar 

  11. Jayabarath J, Shyam S, Arulmurugan R, Giridhar R (2009) Bioremediation of heavy metals using biosurfactants. Int J Biotechnol Appl 1:50–54. doi:10.9735/0975-2943.1.2.50-54

    Article  Google Scholar 

  12. Mala JGS, Sujatha D, Rose C (2015) Inducible chromate reductase exhibiting extracellular activity in Bacillus methylotrophicus for chromium bioremediation. Microbiol Res 170:235–241. doi:10.1016/j.micres.2014.06.001

    Article  Google Scholar 

  13. Sallau AB, Inuwa HM, Ibrahim S, Nok AJ (2014) Isolation and properties of chromate reductase from Aspergillus niger. Int J Mod Cell Mol Biol 3:10–21

    Google Scholar 

  14. Laemmli VK (1970) Cleavage of structural proteins cooling water of an electricity generating station. J Nat 277:680–685

    Article  Google Scholar 

  15. Damodaran D, Raj MB, Vidya KS (2013) The uptake mechanism of Cd (II), Cr(VI), Cu (II), Pb(II), and Zn (II) by mycelia and fruiting bodies of Galerina vittiformis. Biomed Res Int. doi:10.1155/2013/149120

    PubMed  PubMed Central  Google Scholar 

  16. Maria Antonieta G, Maria Cristina M (2012) Purification of peptides from Bacillus strains with biological activity, chromatography and its applications. ISBN 978-953- 51- 0357-8

  17. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. doi:10.1021/ja02242a004

    Article  CAS  Google Scholar 

  18. Rathinam A, Maharshi B, Janardhanan SK, Jonnalagadda RR, Nair BU (2010) Biosorption of cadmium metal ion from simulated wastewaters using Hypnea valentiae biomass: a kinetic and thermodynamic study. Bioresour Technol 101:1466–1470. doi:10.1021/ja02242a004

    Article  CAS  PubMed  Google Scholar 

  19. Kafilzadeh F, Saberifard S (2016) Isolation and identification of chromium (VI)-resistant bacteria From Soltan Abad river sediments (Shiraz-Iran). Jundishapur J Health Sci. doi:10.17795/jjhs-33576

    Google Scholar 

  20. Sinha SN, Biswas M, Paul D, Rahaman S (2011) Biodegradation potential of bacterial isolates from tannery effluent with special reference to hexavalent chromium. Biotechnol Bioinform Bioeng 1:381–386. doi:10.6084/m9.figshare.1279416

    Google Scholar 

  21. Pal A, Paul A (2004) Aerobic chromate reduction by chromium-resistant bacteria isolated from serpentine soil. Microbiol Res 159:347–354. doi:10.1016/j.micres.2004.08.001

    Article  CAS  PubMed  Google Scholar 

  22. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pramono A, Retno Rosariastuti MMA, Ngadiman N, Prijambada ID (2013) Bacterial Cr(VI) reduction and its impact in bioremediation. J Ilmu Lingkung 11:120–131. doi:10.13140/2.1.3961.4086

    Article  Google Scholar 

  24. Munawaroh HSH, Gumilar GG, Nandiyanto ABD, Kartikasari S, Kusumawaty D, Hasanah L (2017) Microbial reduction of Cr(VI) into Cr(III) by locally isolated Pseudomonas aeruginosa. Mater Sci Eng. doi:10.1088/1757-899X/180/1/012296

    Google Scholar 

  25. Pattanapipitpaisal P, Brown NL, Macaskie LE (2001) Chromate reduction and 16S rRNA identification of bacteria isolated from a Cr(VI) contaminated site. Appl Microbiol Biotechnol 57:257–261

    Article  CAS  PubMed  Google Scholar 

  26. Amoozegar MA, Ghasemi A, Razavi MR, Naddaf S (2007) Evaluation of Hexavalent chromium reduction by chromate resistant moderate halophile Nesterenkonia sp. strain MF2. Process Biochem 42:1475–1479. doi:10.1016/j.procbio.2007.07.001

    Article  CAS  Google Scholar 

  27. Thacker U, Madamwar D (2005) Reduction of toxic chromium and partial localization of chromium reductase activity in bacterial isolate DM1. W J Microbiol Biotechnol 21:891–899. doi:10.1007/s11274-004-6557-7

    Article  CAS  Google Scholar 

  28. Camargo F, Okeke B, Bento F, Frankenberger W (2003) In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES 29 stimulated by Cu2+. Appl Microbiol Biotechnol 62:569–573. doi:10.1007/s00253-003-1291-x

    Article  CAS  PubMed  Google Scholar 

  29. Deng K, Tian H, Zhang P, Ren X, Zhong H (2009) Synthesis and characterization of a novel temperature-pH responsive copolymer of 2-hydroxypropyl acrylate and aminoethyl methacrylate hydrochloric salt. Express Polym Lett 3:97–104. doi:10.3144/expresspolymlett.2009.13

    Article  CAS  Google Scholar 

  30. Abyar H, Safahieh A, Zolgharnein H, Zamani I (2012) Isolation and identification of achromobacter denitrificans and evaluation of its capacity in cadmium removal. Pol J Environ Stud 21:1523–1527

    CAS  Google Scholar 

  31. Abbas SZ, Rafatullah M, Ismail N, Lalung J (2014) Isolation, identification, characterization, and evaluation of cadmium removal capacity of Enterobacter species. J Basic Microbiol 54:1279–1287. doi:10.1002/jobm.201400157

    Article  CAS  PubMed  Google Scholar 

  32. Bhattacharya A, Gupta A (2013) Evaluation of Acinetobacter sp. B9 for Cr(VI) resistance and detoxification with potential application in bioremediation of heavy-metals-rich industrial wastewater. Environ Sci Pollut Res 20:6628–6637. doi:10.1007/s11356-013-1728-4

    Article  CAS  Google Scholar 

  33. Jain M, Garg VK, Kadirvelu K (2013) Chromium removal from aqueous system and industrial wastewater by agricultural wastes. Bioremediat J 17:30–39. doi:10.1080/10889868.2012.731450

    Article  CAS  Google Scholar 

  34. Abdel-Ghani NT, El-Chaghaby GA (2014) Biosorption for metal ions removal from aqueous solutions: a review of recent studies. Int J Latest Res Sci Technol 3:24–42

    Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support and fellowship to THS by OU-DST PURSE and SERB Govt. of India (SR/FT/LS-17/2011) to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hameeda Bee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1730 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tadishetty Hanumanth Rao, S., Papathoti, N.K., Gundeboina, R. et al. Hexavalent Chromium Reduction from Pollutant Samples by Achromobacter xylosoxidans SHB 204 and its Kinetics Study. Indian J Microbiol 57, 292–298 (2017). https://doi.org/10.1007/s12088-017-0654-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-017-0654-4

Keywords

Navigation