Skip to main content

Origin, Taxonomy, and Distribution of Ancient Wheats in Turkey

  • Chapter
  • First Online:
Ancient Wheats

Abstract

Ancient wheats “einkorn (Triticum monococcum ssp. monococcum), emmer (T. turgidum ssp. dicoccum) and spelt (T. aestivum L. ssp. spelta),” which are diploid, tetraploid, and hexaploid wheats, respectively, are also known as “ancient wheat (also termed as farro).” Ancient wheats are not only a promising source of many important traits related with biotic and abiotic stresses for modern wheat improvement, but they are also attracting renewed interest for cultivation due to the global efforts in enhancing food diversity. The exploitation of ancient species is seen as a key factor to further drive genetic improvements in wheat breeding programs worldwide. Therefore, it is of utmost importance to have information about the taxonomy of the ancient wheats to design a breeding for tetraploid and hexaploid wheat for the growing population of the world. For designing the breeding program, we need to introgress favorable alleles from these precious ancient wheat genetic resources. Turkey, one of the most important diversity and domestication centers of wheat, harbors frequent distribution of the various diploid and tetraploid ancient wheat species. In this chapter, we tried to summarize the phylogenetic and taxonomic relationship of various ancient wheat species belonging to different ploidy levels and their distribution areas in Turkey.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbo, S., Pinhasi van-Oss, R., Gopher, A., Saranga, Y., Ofner, I., & Peleg, Z. (2014). Plant domestication versus crop evolution: A conceptual framework for cereals and grain legumes. Trends in Plant Science, 19(6), 351–360.

    Article  CAS  PubMed  Google Scholar 

  • Aktas, H. (2007). The morphological and molecular characterization of wild diploid wheat (T. monococcum ssp. boeoticum) originated from Turkey. Department of Field Crops Institute Of Natural And Applied Sciences University Of Çukurova. Master thesis, p. 67.

    Google Scholar 

  • Alsaleh, A., Baloch, F. S., Nachit, M., & Özkan, H. (2016). Phenotypic and genotypic intra-diversity among Anatolian durum wheat “Kunduru” landraces. Biochemical Systematics and Ecology, 65, 9–16.

    Article  CAS  Google Scholar 

  • Arzani, A., & Ashraf, M. (2017). Cultivated ancient wheats (Triticum spp.): A potential source of health-beneficial food products. Comprehensive Reviews in Food Science and Food Safety, 16, 477–488.

    Article  PubMed  Google Scholar 

  • Aslan, D., Zencirci, N., Etöz, M., Ordu, B., & Bataw, S. (2016). Bread wheat responds salt stress better than einkorn wheat does during germination. Turkish Journal of Agriculture and Forestry, 40, 783–794.

    Article  CAS  Google Scholar 

  • Baloch, F. S., Derya, M., Andeden, E. E., Alsaleh, A., Cömertpay, G., Kilian, B., & Özkan, H. (2015). Inter-primer binding site retrotransposon and inter-simple sequence repeat diversity among wild Lens species. Biochemical Systematics and Ecology, 58, 162–168.

    Article  CAS  Google Scholar 

  • Baloch, F. S., Alsaleh, A., Andeden, E. E., Hatipoğlu, R., Nachit, M., & Özkan, H. (2016). High levels of segregation distortion in the molecular linkage map of bread wheat representing the West Asia and North Africa region. Turkish Journal of Agriculture and Forestry, 40(3), 352–364.

    Article  CAS  Google Scholar 

  • Baloch, F. S., Alsaleh, A., Shahid, M. Q., Çiftçi, V., de Miera, L. E. S., Aasim, M., Nadeem, M. A., Aktaş, H., Özkan, H., & Hatipoğlu, R. (2017). A whole genome DArTseq and SNP analysis for genetic diversity assessment in durum wheat from central fertile crescent. PLoS One, 12(1), e0167821. https://doi.org/10.1371/journal.pone.0167821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilgic, H., Hakki, E. E., Pandey, A., Khan, M. K., & Akkaya, M. S. (2016). Ancient DNA from 8400 year-old Catalhoyuk wheat: Implications for the origin of Neolithic agriculture. PLoS One, 11, e0151974.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blatter, R. H. E., Jacomet, S., & Schlumbaum, A. (2002). Spelt-specific alleles in HMW glutenin genes from modern and historical European spelt (Triticum spelta L.). Theoretical and Applied Genetics, 104, 329–337.

    Article  CAS  PubMed  Google Scholar 

  • Brandolini, A., Hidalgo, A., Plizzari, L., & Erba, D. (2011). Impact of genetic and environmental factors on einkorn wheat (Triticum monococcum L. subsp. monococcum) polysaccharides. Journal of Cereal Science, 53, 65–72.

    Article  CAS  Google Scholar 

  • Castagna, R., Borghi, B., Di Fonzo, N., Heun, M., & Salamini, F. (1995). Yield and related traits of Einkorn (T. monococcum subsp. monococcum) in different environments. European Journal of Agronomy, 3, 371–378.

    Article  Google Scholar 

  • Ciaffi, M., Dominici, L., Umana, E., Tanzarella, O. A., & Porceddu, E. (2000). Restriction Fragment Length Polymorphism (RFLP) for protein disulfide isomerase (PDI) gene sequences in Triticum and Aegilops species. Theoretical and Applied Genetics, 101, 220–226.

    Article  CAS  Google Scholar 

  • Colledge, S., & Conolly, J. (2010). Reassessing the evidence for the cultivation of wild crops during the Younger Dryas at Tell Abu Hureyra, Syria. Environmental Archaeology, 15, 124–138.

    Article  Google Scholar 

  • Cox, T. S., Harrell, L. G., Chen, P., & Gill, B. S. (1991). Reproductive behavior of hexaploid/diploid wheat hybrids. Plant Breeding, 107, 105–118.

    Article  Google Scholar 

  • Doebley, J. F., Gaut, B. S., & Smith, B. D. (2006). The molecular genetics of crop domestication. Cell, 127, 1309–1321.

    Article  CAS  PubMed  Google Scholar 

  • Dorofeev, V. F., & Migushova, E. F. (1979). Wheat. In D. D. Breshnev (Ed.), Flora of cultivated plants (Vol. I. [volume eds. V.F. Dorofeev and O.N. Korovina]). Kolos. 346 pp. [In Russian].

    Google Scholar 

  • Dvorak, J., & Luo, M. C. (2001). Evolution of free-threshing and hulled forms of Triticum aestivum: Old problems and new tools. In P. D. S. Caligari & P. E. Brandham (Eds.), Wheat taxonomy: The legacy of John Percival (pp. 127–136). Academic.

    Google Scholar 

  • Dvorak, J., Di Terlizzi, P., Zhang, H. B., & Resta, P. (1993). The evolution of polyploid wheats: identification of the A genome donor species. Genome, 36, 21–31.

    Article  CAS  PubMed  Google Scholar 

  • Ertekin, S. (2002). Karacadağ Bitki Çeşitliliği/Plant diversity In Karacadağ area (p. 150). Sürkan.

    Google Scholar 

  • FAO. (2016). Food and Agriculture Organizations of the United Nations. Food Outlook, biannual report on global food markets. ISSN. 0251-1959.

    Google Scholar 

  • Faris, J. D., Simons, K. J., Zhang, Z., & Gill, B. S. (2005). The wheat super domestication gene Q. Wheat Information Service, 100, 129–148.

    Google Scholar 

  • Feldman, M., & Kislev, M. E. (2007). Domestication of emmer wheat and evolution of free-threshing tetraploid wheat. Israel Journal of Plant Science, 55, 207–221.

    Article  Google Scholar 

  • Feldman, M., Lupton, F. G. H., & Miller, T. E. (1995). Wheats. Triticum spp. (Gramineae-Triticinae). In J. Smartt & N. W. Simmonds (Eds.), Evolution of crop plants (pp. 184–192). Longman Scientific & Technical Press.

    Google Scholar 

  • Feldman, M., Bonjean, A. P., & Angus, W. J. (2001). Origin of cultivated wheat. In The world wheat book (p. 56). Lavoisier Publishing.

    Google Scholar 

  • Flaksberger, K. A. (1935). Wheat. In Flora of cultivated plants. [in Russian].

    Google Scholar 

  • Gill, B. S., Li, W., Sood, S., Kuraparthy, V., Friebe, B. R., Simons, K. J., Zhang, Z., & Faris, J. D. (2007). Genetics and genomics of wheat domestication-driven evolution. Israel Journal of Plant Sciences, 55, 223–229.

    Article  Google Scholar 

  • Harlan, J. R., & Zohary, D. (1966). Distribution of wild emmer wheat and barley. Science, 153, 1074–1080.

    Article  CAS  PubMed  Google Scholar 

  • Heun, M., Scheafer-Pregl, R., Klawan, D., Castagna, R., Accerbi, M., Borghi, B., & Salamini, F. (1997). Site of einkorn wheat domestication identified by DNA fingerprinting. Science, 278, 1312–1314.

    Article  CAS  Google Scholar 

  • Jacobs, A. S., Pretorius, Z. A., Kloppers, F. J., & Cox, T. S. (1996). Mechanisms associated with wheat leaf rust resistance derived from Triticum monococcum. Phytopathology, 86, 588–595.

    Article  Google Scholar 

  • Jakubziner, M. M. (1958). New wheat species. In B. C. Jenkins (Ed.), Proceedings of the first international wheat genetics symposium, Winnipeg, pp. 207–220.

    Google Scholar 

  • Jing, H. C., Bayon, C., Kanyuka, K., Berry, S., Wenzl, P., Huttner, E., Kilian, A., & Hammond-Kosack, K. E. (2009). DArT markers: Diversity analyses, genomes comparison, mapping and integration with SSR markers in Triticum monococcum. BMC Genomics, 10, 458–465.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson, B. L. (1968). Electrophoretic evidence on the origin of Triticum zhukovskyi. In Proceedings of the third International Wheat Genetics Symposium, Canberra.

    Google Scholar 

  • Kaya, Ö. F. (2006). Karacadağ (Şanlıurfa/Diyarbakır)’ın Bitki Sosyolojisi ve Bitki Ekolojisi Yönünden Araştırılması 2004-2006 (HUBAK/Proje No:556).

    Google Scholar 

  • Kilian, B., Ozkan, H., & Deusch, O. (2007). Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Molecular Biology and Evolution, 24, 217–227.

    Article  CAS  PubMed  Google Scholar 

  • Kilian, B., Özkan, H., Pozzi, C., & Salamini, F. (2009). Domestication of the Triticeae in the fertile crescent. In C. Feuillet & J. M€uhlbauer (Eds.), Genetics and genomics of the Triticeae (Plant genetics and genomics: Crops and models 7, pp. 81–119). Springer.

    Google Scholar 

  • Knupffer, H. (2009). Triticeae genetic resources in ex situ gene bank collections. In C. Feuillet & G. Muehlbauer (Eds.), Genetics and genomics of the Triticeae (Plant genetics and genomics: Crops and models 7) (pp. 31–79). Springer.

    Chapter  Google Scholar 

  • Lev-Yadun, S., Gopher, A., & Abbo, S. (2000). The cradle of agriculture. Science, 288, 1602–1603.

    Article  CAS  PubMed  Google Scholar 

  • Longin, C. F., & Reif, J. C. (2014). Redesigning the exploitation of wheat genetic resources. Trends in Plant Science, 19, 631–636.

    Article  CAS  PubMed  Google Scholar 

  • Longin, C., & Wurschum, T. (2014). Genetic variability, heritability and correlation among agronomic and disease resistance traits in a diversity panel and elite breeding material of spelt wheat. Plant Breeding, 133, 459–464.

    Article  Google Scholar 

  • Longin, C. F., & Wurschum, T. (2016). Back to the future – Tapping into ancient grains for food diversity. Trends in Plant Science, 21, 731–737.

    Article  CAS  PubMed  Google Scholar 

  • Luo, M. C., Yang, Z. L., & Dvorak, J. (2000). The Q locus of Iranian and European spelt wheat. Theoretical and Applied Genetics, 100, 602–606.

    CAS  Google Scholar 

  • Miedaner, T., & Longin, C. F. H. (2016). Neglected cereals: From ancient grains to superfood. Agrimedia. 160 p, ISBN: 978-3-86263-123-0

    Google Scholar 

  • Mori, N., Liu, Y. G., & Tsunewaki, K. (1995). Wheat phylogeny determined by RFLP analysis of nuclear DNA. 2. Wild tetraploid wheats. Theoretical and Applied Genetics, 90, 129–134.

    Article  CAS  PubMed  Google Scholar 

  • Mujeeb-Kazi, A., Kazi, A. G., Dundas, I., Rasheed, A., Ogbonnaya, F., Kishii, M., Bonnett, D., Wang, R. R. C., Xu, S., Chen, P. D., Mahmood, T., Bux, H., & Farrakh, S. (2013). Genetic diversity for wheat improvement as a conduit to food security. Advances in Agronomy, 122, 179–257.

    Article  CAS  Google Scholar 

  • Nesbitt, M., & Samuel, D. (1996). From stable crop to extinction? The archaeology and history of the hulled wheats. In S. Padulosi, K. Hammer, & J. Heller (Eds.), Hulled wheats (pp. 41–100). International Plant Genetic Resources Institute.

    Google Scholar 

  • Nesbitt, M., Caligari, P. D. S., & Brandham, P. E. (2001). Wheat evolution: Integrating archaeological and biological evidence. In Wheat taxonomy: The legacy of John Percival (pp. 37–59). Academic.

    Google Scholar 

  • Nevo, E., Korol, A. B., Beiles, A., & Fahima, T. (2002). Evolution of wild emmer and wheat improvement: Population genetics, genetic resources, and genome organization of wheat’s progenitor, Triticum dicoccoides. Springer. 364 pp.

    Book  Google Scholar 

  • Özkan, H., Willcox, G., Graner, A., Salamini, F., & Kilian, B. (2011). Geo graphic distribution and domestication of wild emmer wheat (Triticum dicoccoides). Genetic Resources and Crop Evolution, 58, 11–53.

    Article  Google Scholar 

  • Peng, J. H., Ronin, Y., Fahima, T., Röder, M. S., Li, Y. C., Nevo, E., & Korol, A. (2003). Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proceedings of the National Academy of Sciences, 100, 2489–2494.

    Article  CAS  Google Scholar 

  • Purugganan, M. D., & Fuller, D. Q. (2009). The nature of selection during plant domestication. Nature, 457, 843–848.

    Article  CAS  PubMed  Google Scholar 

  • Rapp, M., Beck, H., Gütler, H., Heilig, W., Starck, N., Römer, P., Cuendet, C., Uhlig, F., Kurz, H., Würschum, T., & Longin, C. (2017). Spelt: Agronomy, quality, and flavor of its breads from 30 varieties tested across multiple environments. Crop Science, 57, 739–747.

    Article  CAS  Google Scholar 

  • Ren, J., Chen, L., Sun, D., You, F. M., Wang, J., Peng, Y., Nevo, E., Beiles, A., Sun, D., Luo, M. C., & Peng, J. (2013a). SNP-revealed genetic diversity in wild emmer wheat correlates with ecological factors. BMC Evolutionary Biology, 13, 169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren, J., Sun, D., Chen, L., You, F. M., Wang, J., Peng, Y., Nevo, E., Sun, D., Luo, M. C., & Peng, J. (2013b). Genetic diversity revealed by single nucleotide polymorphism markers in a worldwide germplasm collection of durum wheat. International Journal of Molecular Sciences, 14, 7061–7088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriquez, S., Maestra, B., Perera, E., Diez, M., & Naranjo, T. (2000). Pairing affinities of the B- and G- genome chromosomes of polyploid wheats with those of Aegilops speltoides. Genome, 43, 814–819.

    Article  Google Scholar 

  • Saintenac, C., Zhang, W. J., Salcedo, A., Rouse, M. N., Trick, H. N., Akhunov, E., & Dubcovsky, J. (2013). Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science, 341, 783–786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasanuma, T., Chabane, K., Endo, T. R., & Valkoun, J. (2002). Genetic diversity of wheat wild relatives in the near east detected by AFLP. Euphytica, 127, 81–93.

    Article  CAS  Google Scholar 

  • Sharma, H. C., & Waines, J. G. (1981). The relationship between male and female fertility and among taxa in diploid wheats. American Journal of Botany, 68, 449–451.

    Article  Google Scholar 

  • Simons, K. J., Fellers, J. P., Trick, H. N., Zhang, Z., Tai, Y. S., Gill, B. S., & Faris, J. D. (2006). Molecular characterization of the major wheat domestication gene Q. Genetics, 172, 547–555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sood, S., Kuraparthy, V., Bai, G., & Gill, B. S. (2009). The major threshability genes soft glume (sog) and tenacious glume (Tg), of diploid and polyploid wheat, trace their origin to independent mutations at non-orthologous loci. Theoretical and Applied Genetics, 119, 341–351.

    Article  PubMed  Google Scholar 

  • Takumi, S., Nasuda, S., Liu, Y. G., & Tsunewaki, K. (1993). Wheat phylogeny determined by RFLP analysis of nuclear DNA. 1. Einkorn wheat. Japan Journal of Genetics, 68, 73–79.

    Google Scholar 

  • Vavilov, N. I. (1935). The phytogeographical basis for plant breeding. In Theoretical basis for plant breeding (Vol. I, pp. 17–75). [in Russian].

    Google Scholar 

  • Würschum, T., Leiser, W. L., & Longin, C. (2017). Molecular genetic characterization and association mapping in spelt wheat. Plant Breeding, 136(2), 214–223.

    Article  CAS  Google Scholar 

  • Yediay, F. E., Baloch, F. S., Kilian, B., & Özkan, H. (2010). Testing of rye-specific markers located on 1RS chromosome and distribution of 1AL. RS and 1BL. RS translocations in Turkish wheat (Triticum aestivum L., T. durum Desf.) varieties and landraces. Genetic Resources and Crop Evolution, 57(1), 119–129.

    Article  CAS  Google Scholar 

  • Zaharieva, M., & Monneveux, P. (2014). Cultivated einkorn wheat (Triticum monococcum L. subsp. monococcum): The long life of a founder crop of agriculture. Genetic Resources and Crop Evolution, 61, 677–706.

    Article  CAS  Google Scholar 

  • Zaharieva, M., Ayana, N. G., Al Hakimi, A., Misra, S. C., & Monneveux, P. (2010). Cultivated emmer wheat (Triticum dicoccon Schrank), an old crop with promising future: A review. Genetic Resources and Crop Evolution, 57, 937–962.

    Article  Google Scholar 

  • Zhang, P., Friebe, B., & Gill, B. S. (2002). Variation in the distribution of A genome-specific DNA sequence on chromosomes reveals evolutionary relationships in the Triticum and Aegilops complex. Plant Systematics and Evolution, 235, 169–179.

    Article  CAS  Google Scholar 

  • Zhang, Z., Belcram, H., Gornicki, P., Charles, M., Just, J., Huneau, C., Magdelenat, G., Couloux, A., Samain, S., Gill, B. S., Rasmussen, J. B., Barbe, V., Faris, J. D., & Chalhoub, B. (2011). Duplication and partitioning in evolution and function of homoeologous Q loci governing domestication characters in polyploid wheat. Proceedings of the National Academy of Science, 108, 18737–18742.

    Article  CAS  Google Scholar 

  • Zhukovsky, P. M. (1933). La Turquie agricole. Selkhozgiz.

    Google Scholar 

  • Zohary, D., & Hopf, M. (2000). Domestication of plants in the Old World (3rd ed.). Clarendon Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baloch, F.S. et al. (2022). Origin, Taxonomy, and Distribution of Ancient Wheats in Turkey. In: Zencirci, N., Ulukan, H., Baloch, F.S., Mansoor, S., Rasheed, A. (eds) Ancient Wheats. Springer, Cham. https://doi.org/10.1007/978-3-031-07285-7_3

Download citation

Publish with us

Policies and ethics