Skip to main content

Domestication and Evolution of Ancient Wheats

  • Chapter
  • First Online:
Ancient Wheats

Abstract

Wheat is a revolutionary staple crop plant that changed the human lifestyle from hunter-gatherer to sedentary, by its domestication about 10,000 years ago in the Middle East. Spontaneously, this revolution spread out all over the world in the form of agriculture. Archaeological remains have helped us to understand the domestication and evolution of wheat. Eight crop plants, including wheat, were domesticated in the Middle East; therefore, it is called the cradle of agriculture. A mutation event changed the brittle rachis of wild wheats (Triticum boeoticum and Triticum dicoccoides) to the non-brittle rachis of domesticated hulled wheats (Triticum monococcum ssp. monococcum and Triticum dicoccon Schrank, respectively), which were the first common crop plants of agriculture until the early Bronze Age. Other mutation events also occurred in the genes controlling the free-threshing trait of hulled wheats, giving rise to wheats (Triticum durum and Triticum spelta) with free-threshed higher-yield naked grains. Early farmers’ agricultural practices and natural selection have developed wheat landraces with high genetic diversity, high quality traits, and resistance to biotic and abiotic stress factors to be used to improve modern wheat varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaronsohn, A. (1909). Contribution à l’histoire des céréales, le blé, l’orge et le seigle à l’état sauvage. Bulletin de la Société botanique de France, 56, 196–203, 237–245, 251–258.

    Google Scholar 

  • Aaronsohn, A. (1910). Agricultural and botanical explorations in Palestine. Bulletin Plant Industry (U.S. Department of Agriculture, Washington, DC), 180, 1–63.

    Google Scholar 

  • Abbo, S., Lev-Yadun, S., & Galwey, N. (2002). Vernalisation response of wild chickpea. The New Phytologist, 154, 695–701.

    Article  CAS  PubMed  Google Scholar 

  • Bar-Yosef, O. (1998). On the nature of transitions: The middle to upper Paleolithic and the Neolithic revolution. Cambridge Archaeological Journal, 8, 141–163.

    Article  Google Scholar 

  • Brown, A. H. D. (2010). Variation under domestication in plants: 1859 and today. Philosophical Transactions of the Royal Society B, 365, 2523–2530.

    Article  Google Scholar 

  • Cao, W., Scoles, G. J., & Huc, P. (1997). The genetics of rachis fragility and glume tenacity in semi-wild wheat. Euphytica, 94, 119–124.

    Article  Google Scholar 

  • Caton-Thompson, G., & Gardner, E. V. (1934). The desert Fayum. The Royal Anthropological Institute of Great Britain and Ireland.

    Google Scholar 

  • Charme, G. (2011). Wheat domestication: Lessons for the future La domestication des blés: Lec¸ons pour l’avenir. Comptes Rendus Biologies, 334, 212–220.

    Article  Google Scholar 

  • Chen, Q.-F., Yen, C., & Yang, J.-L. (1998). Chromosome location of the gene for brittle rachis in the Tibetan weed race of common wheat. Genetic Resources and Crop Evolution, 45, 21–25.

    Google Scholar 

  • De Moulins, D. (2000). Abu Hureyra 2: Plant remains from the Neolithic. In A. M. T. Moore, G. C. Hillman, & A. J. Legge (Eds.), Village on the Euphrates (pp. 399–422). Oxford University Press.

    Google Scholar 

  • De Vartavan, C. (2010). Codex of ancient Egyptian plant remains (Temos). 2nd Revised, Enlarged Edition. SAIS.

    Google Scholar 

  • Dorofeev, V. F., Filatenko, A. A., Migushova, E. F., Udaczin, R. A., & Jakubziner, M. M. (1979). Wheat. In V. F. Dorofeev & O. N. Korovina (Eds.), Flora of cultivated plants (Vol. 1). Leningrad, Russia.

    Google Scholar 

  • Dvořák, J., & Akhunov, E. (2005). Tempos of gene locus deletions and duplications and their relationship to recombination rate during diploid and polyploid evolution in the Aegilops-Triticum alliance. Genetics, 17, 323–332.

    Article  CAS  Google Scholar 

  • Dvořák, J., McGuire, P. E., & Cassidy, B. (1988). Apparent sources of the A genomes of wheats inferred from the polymorphism in abundance and restriction fragment length of repeated nucleotide sequences. Genome, 30, 680–689.

    Article  Google Scholar 

  • Faris, R. (2014). Wheat Domestication: Key to Agricultural Revolutions Past and Future. In: Tuberosa et al. (Eds.), Genomics of Plant Genetic Resources, (439). Springer Science + Business Media Dordrecht.

    Google Scholar 

  • Feldman, M., & Millet, E. (2001). The contribution of the discovery of wild emmer to an understanding of wheat evolution and domestication and to wheat improvement. The Israel Journal of Plant Sciences, 49, 25–36.

    Article  Google Scholar 

  • Feldman, M., & Kislev, M. E. (2007). Domestication of emmer wheat and evolution of free-threshing tetraploid wheat. The Israel Journal of Plant Sciences, 55(3–4), 207–221.

    Google Scholar 

  • Gandilian, P. A. (1972). On wild growing Triticum species of Armenian SSR. Botanicheskii Zhurnal, 57, 173–181.

    Google Scholar 

  • Germer, R. (1989). Die Pflanzenmaterialien aus dem Grab des Tutankhamun. Hildesheimer Agyptologio- sche Beitrage 28. Pelizaeus-Museum.

    Google Scholar 

  • Gill, B. S., Li, W., Sood, S., Kuraparthy, V., Friebe Simons, K. J., et al. (2007). Genetics and genomics of wheat domestication-driven evolution. The Israel Journal of Plant Sciences, 55, 223–229.

    Article  Google Scholar 

  • Gökgöl, M. (1955). Classification key for wheats (inTurkish). Ziraat Vekâleti, Neşriyat ve Haberleşme Müdürlüğü, No, 716, 172.

    Google Scholar 

  • Gopher, A., Abbo, S., & Lev-Yadun, S. (2002). The “when”, the “where” and the “why” of the Neolithic revolution in the Levant. Documenta Praehistorica, 28, 1–14.

    Google Scholar 

  • Gustafson, P., Raskina, O., Ma, X., & Nevo, E. (2009). Wheat evolution, domestication, and improvement. In B. F. Carver (Ed.), Wheat: Science and trade (pp. 5–30). Wiley.

    Google Scholar 

  • Hansen, J. M. (1992). The Palaeoethnobotany of Franchthi Cave. Excavations at Franchthi Cave, Greece. Paléorient, 18(1), 135–137.

    CAS  Google Scholar 

  • Harlan, J. R., & Zohary, D. (1966). Distribution of wild wheats and barley. Science, 153, 1074–1080.

    Article  CAS  PubMed  Google Scholar 

  • Harlan, J.R. (1998). Distributions of agricultural origins: A global perspective. In A.B. Damania, J. Valkoun, G. Willcox & C.O. Qualset, (Eds.). Origins of Agriculture and Crop Domestication (pp. 1–2). ICARDA, Aleppo, Syria.

    Google Scholar 

  • Hauptmann, H. (1984). Nevali Çori. Anatolian Studies, 34, 228.

    Google Scholar 

  • Hauptmann, H. (1987). Nevali Çori. Anatolian Studies, 3(7), 206–207.

    Google Scholar 

  • Hauptmann, H. (1988). Nevali Çori Architektur. Anatolica, 15, 99–110.

    Google Scholar 

  • Hauptmann, H. (1997). Nevah Nevali Çori. In The Oxford encyclopedia of archaeology in the near east (Vol. 4, pp. 131–134). Oxford University Press.

    Google Scholar 

  • Hepper, N. F. (1990). Pharaoh’s Flowers: The Botanical Treasures of Tutankhamun. London: HMSO. 1992, Illustrated Encyclopedia of Bible Plants, Leicester, IVP.

    Google Scholar 

  • Heun, M., Schäfer-Pregl, R., Klawan, D., Castagna, R., Accerbi, M., Borghi, B., & Salamini, F. (1997). Site of einkorn wheat domestication identified by DNA fingerprinting. Science, 278, 1312–1314.

    Article  CAS  Google Scholar 

  • Hillman, G. C. (2000). The plant food economy of Abu Hureyra 1 and 2. In A. M. T. Moore, G. C. Hillman, & A. J. Legge (Eds.), Village on the Euphrates: From foraging to farming at Abu Hureyra (pp. 327–422). Oxford University Press.

    Google Scholar 

  • Hopf, M. (1962). Bericht über die Untersuchungen von Samen und Holzkohlresten von der Argissa-Magula aus den pra¨keramischen bis mittelbronze-zeitlichen Schichten. In V. Milojcic, J. Boessneck, & M. Hopf (Eds.), Diedeutschen Ausgrabungen auf der Argissa-Magula in Thessalien (Das pra¨keramische Neolithikum sowie die Tierund Pflanzenreste) (Vol. 1, pp. 101–110). Habelt.

    Google Scholar 

  • Hovsepyan, R., & Willcox, G. (2008). The earliest finds of cultivated plants in Armenia: Evidence from charred remains and crop processing residues in pise from the Neolithic settlements of Aratashen and Aknashen. Vegetation History and Archaeobotany, 17(1), 63–71.

    Article  Google Scholar 

  • Jaaska, V. (1974). The origin of tetraploid wheats on the basis of electrophoretic studies of enzymes. Eesti NSV Teaduste Akadeemia toimetised. Bioloogia, 23, 201–220. [in Russian].

    CAS  Google Scholar 

  • Jantasuriyarat, C., Vales, M. I., Watson, C. J. W., & Riera-Lizarazu, O. (2004). Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 108, 261–273.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, B. L. (1975). Identification of the apparent B-genome donor of wheat. Canadian Journal of Genetics and Cytology, 17, 21–39.

    Article  Google Scholar 

  • Johnson, B. L., & Dhaliwal, H. S. (1976). Reproductive isolation of Triticum boeoticum and Triticum urartu and the origin of the tetraploid wheats. American Journal of Botany, 63, 1088–1094.

    Article  Google Scholar 

  • Kapucu, B. (2015). Tanrıdan Gelen Armağan: Ekmek. 31 Mart 2015. Available from http://www.kolektomani.com/tanridan-gelen-armagan-ekmek/

  • Kerber, E. R., & Dyck, P. L. (1969). Inheritance in hexaploid wheat of leaf rust resistance and other characters derived from Aegilops squarrosa. Canadian Journal of Genetics and Cytology, 11, 639–647.

    Article  Google Scholar 

  • Kilian, B., Özkan, H., Walther, A., Kohl, J., Dagan, T., Salamini, F., & Martin, W. (2007). Molecular diversity at 18 loci in 321 wild and 92 domesticate lines reveal no reduction of nucleotide diversity during Triticum monococcum (einkorn) domestication: Implications for the origin of agriculture. Molecular Biology and Evolution, 24, 2657–2668.

    Article  CAS  PubMed  Google Scholar 

  • Kimber, G., & Feldman, M. (1987). Wild wheats: An introduction (Special Report 353) (pp. 1–142). College of Agriculture.

    Google Scholar 

  • Kislev, M. E. (1980). Triticum parvicoccum sp. nov., the oldest naked wheat. Israel Journal of Botany, 28, 95–107.

    Google Scholar 

  • Kroll, H. (1981). Thessalische Kulturpflanzen. Zeitschrift für Archaölogie, 15, 97–103. (in German).

    Google Scholar 

  • Kunter, M. (2011). Ekmeğin Tarihi. Standart Ekonomik ve Teknik Dergi. Ağustos, 2013, 41–45. (in Turkish).

    Google Scholar 

  • Lev-Yadun, S., Gopher, A., & Abbo, S. (2000). The cradle of agriculture. Science, 288, 1602–1603.

    Article  CAS  PubMed  Google Scholar 

  • Li, W., & Gill, B. S. (2006). Multiple genetic pathways for seed shattering in the grasses. Functional & Integrative Genomics, 6, 300–309.

    Article  CAS  Google Scholar 

  • Morgounov, A., Keser, M., Kan, M., Küçükçongar, M., Özdemir, F., Gummadov, N., et al. (2016). Wheat landraces currently grown in Turkey: Distribution, diversity, and use. Crop Science, 56, 3112–3124.

    Article  Google Scholar 

  • Mori, N., Ishi, T., Ishido, T., et al. (2003). Origins of domesticated emmer and common wheat inferred from chloroplast DNA fingerprinting. In N. E. Pogna, M. Romano, E. A. Pogna, & G. Galterio (Eds.), Proceedings of the 10th international wheat genetics symposium, Paestum, Italy (pp. 25–28). Istituto Sperimentale per la Cerealicoltura.

    Google Scholar 

  • Much, M. (1908). Vorgeschichtliche Nähr-Nutzpflanzen Europas, ihr kulturhistorisches Alter und ihre Herkunft (Vol. 38). Mitt Anthropol Ges. (in German).

    Google Scholar 

  • Muramatsu, M. (1963). Dosage effect of the spelta gene q of hexaploid wheat. Genetics, 48, 469–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nalam, V. J., Vales, M. I., Watson, C. J. W., et al. (2006). Map-based analysis of genes affecting the brittle rachis character in tetraploid wheat (Triticum turgidum L.). Theoretical and Applied Genetics, 112, 373–381.

    Article  CAS  PubMed  Google Scholar 

  • Nesbitt, M. (2002). Wheat evolution: Integrating archaeological and biological evidence. In P. D. S. Caligari & P. E. Brandham (Eds.), Wheat taxonomy: The legacy of John Percival (Linnean special issue 3) (pp. 37–59). Linnean Society.

    Google Scholar 

  • Nesbitt, M., & Samuel, D. (1995). From staple crop to extinction? The archaeology and history of hulled wheats. In S. Padulosi, K. Hammer, & J. Heller (Eds.), Proceedings of the first international workshop on hulled wheats, 21–22 July 1995. Castelvecchio Pascoli, Tuscany.

    Google Scholar 

  • Nevo, E., & Beiles, A. (1989). Genetic diversity of wild emmer wheat in Israel and Turkey: Structure, evolution and application in breeding. Theoretical and Applied Genetics, 77, 421–455.

    Article  CAS  PubMed  Google Scholar 

  • Nevo, E., & Beiles, A. (1989). Genetic diversity of wild emmer wheat in Israel and Turkey: Structure, evolution and application in breeding. Theor Appl Genet, 77, 421–455.

    Google Scholar 

  • Nevo, E., Korol, A. B., Beiles, A., & Fahima, T. (2002). Evolution of wild emmer and wheat improvement: Population genetics, genetic resources, and genome organization of wheat’s progenitor (p. 364). Springer.

    Book  Google Scholar 

  • Ozbek, O., Millet, E., Anikster, Y., Arslan, O., & Feldman, M. (2007a). Comparison of genetic variation in populations of wild Emmer wheat, Triticum turgidum ssp. dicoccoides, from Ammiad, Israel and Diyarbakir, Turkey Revealed by AFLP Analysis. Genetic Resources and Crop Evolution, 54(7), 1587–1598.

    Article  CAS  Google Scholar 

  • Ozbek, O., Millet, E., Anikster, Y., Arslan, O., & Feldman, M. (2007b). Spatio-temporal genetic variation in populations of wild Emmer wheat, Triticum turgidum ssp. dicoccoides, as revealed by AFLP analysis. Theoretical and Applied Genetics, 115(1), 19–26.

    Article  CAS  PubMed  Google Scholar 

  • Özkan, H., Brandolini, A., Schafer-Pregl, R., & Salamini, F. (2002). AFLP analysis of a collection of tetraploid wheats indicates the origin of emmer and hard wheat domestication in Southeast Turkey. Molecular Biology and Evolution, 19, 1797–1801.

    Article  PubMed  Google Scholar 

  • Özkan, H., Brandolini, A., Pozzi, C., et al. (2005). A reconsideration of the domestication geography of tetraploid wheats. Theoretical and Applied Genetics, 110, 1052–1060.

    Article  PubMed  Google Scholar 

  • Özkan, H., Willcox, G., Graner, A., Salamini, F., & Kilian, B. (2011). Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides). Genetic Resources and Crop Evolution, 58, 11–53.

    Article  Google Scholar 

  • Pasternak, R. (1998). Investigations of botanical remains from Nevali Çori PPNB, Turkey. In: Damania, A., Valkoun, J., Willcox, G., Qualset, C. (eds). The origins of agriculture and crop domestication (pp 170–177) ICARDA, Aleppo.

    Google Scholar 

  • Peleg, Z., Fahima, T., Abbo, S., Krugman, T., Nevo, E., Yakır, D., & Saranga, Y. (2005). Genetic diversity for drought resistance in wild emmer wheat and its ecogeographical associations. Plant, Cell and Environment, 28, 176–191.

    Article  Google Scholar 

  • Peng, J. H., Ronin, Y., Fahima, T., Röder, M. S., Li, Y. C., Nevo, E., & Korol, A. (2003). Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proceedings of the National Academy of Sciences of the United States of America, 100, 2489–2494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, J. H., Zadeh, H., Lazo, G. R., Gustafson, J. P., Chao, S., et al. (2004). Chromosome bin map of expressed sequence tags in homoeologous group 1 of hexaploid wheat and homoeology with rice and Arabidopsis. Genetics, 168, 609–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng, J. H., Sun, D., & Nevo, E. (2011). Domestication evolution, genetics and genomics in wheat. Molecular Breeding, 28, 281–301.

    Article  CAS  Google Scholar 

  • Rao, P. S., & Smith, L. E. (1968). Studies with Israel and Turkish accessions of Triticum L. emend. var. dicoccoides (Korn) Bowden. Wheat Information Service, 26, 6–7.

    Google Scholar 

  • Renfrew, J. M. (1979a). In: Skovmand BRJ (1992) Evaluation of emmer wheat and other Triticeae for resistance to Russian wheat aphid. Genetic Resources and Crop Evolution, 39, 159–163.

    Google Scholar 

  • Renfrew, J. M. (1979b). The first farmers in South East Europe. Archaeo-Physika, 8, 243–265.

    Google Scholar 

  • Renny-Byfield, S., & Wendel, J. F. (2014). Doubling down on genomes: Polyploidy and crop plants. American Journal of Botany, 101(10), 1711–1725.

    Article  PubMed  Google Scholar 

  • Sachs, L. (1953). Chromosome behaviour in species hybrids with Triticum timopheevii. Heredity, 7, 49–58.

    Article  Google Scholar 

  • Salamini, F., Özkan, H., Brandolini, A., Schäfer-Pregl, R., & Martin, W. (2002). Genetics and geography of wild cereal domestication in the Near East. Nature Reviews. Genetics, 3, 429–441.

    Article  CAS  PubMed  Google Scholar 

  • Salamini, F., Heun, M., Brandolini, A., Ozkan, H., & Wunder, J. (2004). Comment on AFLP data and the origins of domesticated crops. Genome, 47, 615–620.

    Article  CAS  PubMed  Google Scholar 

  • Sang, T. (2009). Genes and mutations underlying domestication transitions in grasses. Plant Physiology, 149, 63–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarpaki, A. (2009). Knossos, Crete: Invaders, “sea- goers”, or previously “invisible”, the Neolithic plant economy appears fully-fledged in 9000 BP. In A. Fairburn & E. Weiss (Eds.), From foragers to farmers (pp. 220–234). Oxbow.

    Google Scholar 

  • Schweinfurth, G. (1908). Über die von, A. Aaronsohn. Ausgeführten Nachforschungen nach dem wilden Emmer (Triticum dicoccoides Kcke.). Berichte der Deutschen Botanischen Gesellschaft, 26, 309–324.

    Google Scholar 

  • Sharma, H., & Waynes, J. (1980). Inheritance of tough rachis in crosses of Triticum monococcum and Triticum boeoticum. The Journal of Heredity, 7, 214–216.

    Article  Google Scholar 

  • Simonetti, M. C., Bellomo, M. P., Laghetti, G., Perrino, P., Simeone, R., & Blanco, A. (1999). Quantitative trait loci affecting free-threshing habit in tetraploid wheats. Genetic Resources and Crop Evolution, 46, 267–271.

    Article  Google Scholar 

  • Simons, K., Fellers, J. P., Trik, H. N., Zhang, Z., Tai, Y. S., Gill, B. S., et al. (2006). Molecular characterization of the major wheat domestication gene Q. Genetics, 172, 547–555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solms-Laubach. (1899). Weizen und Tulpe und deren Geschichte. A. Felix.

    Google Scholar 

  • Soltis, D. E., Victor, A. A., Leebens-Mack, J., Charles, D. B., Andrew, H. P., Chunfang, Z., et al. (2009). Polyploidy and angiosperm diversification. American Journal of Botany, 96(1), 336–348.

    Article  PubMed  Google Scholar 

  • Sood, S. (2009). The major threshability genes soft glume (sog) and tenacious glume (Tg), of diploid and polyploid wheat, trace their origin to independent mutations at non-orthologous loci. Theoretical and Applied Genetics, 119, 341–351.

    Article  PubMed  Google Scholar 

  • Stebbins, G. L. (1950). Variation and evolution in plants. Columbia University Press.

    Book  Google Scholar 

  • Stebbins, G. L. (1971). Chromosomal evolution in higher plants. Addison Wesley.

    Google Scholar 

  • Stewart, R. T. (1974). Palaeobotanic investigation: 1972 season. In L. E. Stager, A. Walker, & G. E. Wright (Eds.), American expedition to Idalion, Cyprus. First preliminary report: Seasons of 1971 and 1972 (pp. 123–129). The American School of Oriental Research.

    Google Scholar 

  • Szabó, T. A., & Hammer, K. (1996). Notes on the taxonomy of farro: Triticum monococcum, T. dicoccon and T. spelta. In S. Padulosi, K. Hammer, & J. Heller (Eds.), Hulled wheats, promoting the conservation and uses of underutilized and neglected crops (pp. 2–40). IPGRI.

    Google Scholar 

  • Täckholm, V. (1976). Ancient Egypt, landscape, Flora and agriculture. In J. Rzóska (Ed.), The Nile, biology of an ancient river. Springer.

    Google Scholar 

  • Taenzler, B., Esposti, R. F., Vaccino, P., et al. (2002). Molecular linkage map of einkorn wheat: Mapping of storage-protein and soft-glume genes and bread-making quality QTLs. Genetical Research, 80, 131–143.

    Article  CAS  PubMed  Google Scholar 

  • Teklu, Y., Hammer, K., & Röder, M. S. (2007). Simple sequence repeats marker polymorphism in emmer wheat (Triticum dicoccon Schrank): Analysis of genetic diversity and differentiation. Genetic Resources and Crop Evolution, 54, 543–554.

    Article  CAS  Google Scholar 

  • Terence, A. B., Martin, K. J., Wayne, P., & Robin, G. A. (2008). The complex origins of domesticated crops in the fertile crescent. Trends in Ecology & Evolution, 24(2), 103–109.

    Google Scholar 

  • Valkoun, J., Waines, J. G., & Konopka, J. (1998). Current geographical distribution and habitat of wild wheats and barley. In CO (Ed.), The origins of agriculture and crop domestication. Proceedings Harlan symposium, Aleppo, Syria, 10–14 May 1997 (pp. 293–299). Published jointly by ICARDA, IPGRI, FAO, and UC/GRCP.

    Google Scholar 

  • Van Zeist, W. (1981). In Un site Néolithique Précéramique en Chypre: Cap Andreas-Kastros. 5. Recherche sur lesGrandes Civilisations (ed. Le Brun, A.) Appendix VI, 95–100 (Editions ADPF, Paris, 1981).

    Google Scholar 

  • Van Zeist, W., & Bakker-heeres, J. A. H. (1982). Archaeobotanical studies in the Levant 1: Neolithic sites in the Damascus Basin—Aswad, Ghoraife, and Ramad. Palaeohistoria, 24, 165–256.

    Google Scholar 

  • Van Zeist, W., & de Roller, G. J. (1991/1992). The plant husbandry of aceramic Qayfnii, SE Turkey. Palaeohistoria, 33(34), 65–96. (published 1994).

    Google Scholar 

  • Wasylikowa, K., Cârciumaru, M., Hajnalová, E., Hartyányi, P., Pashkevich, G., & Yanushevich, Z. (1991). East-Central Europe. In W. van Zeist, K. Wasylikowa, & K.-E. Behre (Eds.), Progress in old world palaeoethnobotany (pp. 207–239). Balkema.

    Google Scholar 

  • Watanabe, N. (2005). The occurrence and inheritance of a brittle rachis phenotype in Italian durum wheat cultivars. Euphytica, 142, 247–251.

    Article  Google Scholar 

  • Watanabe, N., & Ikebata, N. (2000). The effects of homoeologous group 3 chromosomes on grain colour dependent seed dormancy and brittle rachis in tetraploid wheat. Euphytica,115, 215–220.

    Google Scholar 

  • Watanabe, N., Sogiyama, K., Yamagashi, Y., & Skata, Y. (2002). Comparative telosomic mapping of homoeologous genes for brittle rachis in tetraploid and hexaploid wheats. Hereditas, 137, 180–185.

    Article  Google Scholar 

  • Weiss, E., & Zohary, D. (2011). The Neolithic southwest Asian founder crops their biology and Archaeobotany. Current Anthropology, 52(4), 237–254.

    Article  Google Scholar 

  • Wetterstrom, W. (1993). Foraging and farming in Egypt: The transition from hunting and gathering to horticulture in the Nile valley. In T. Shaw, P. Sinclair, B. Andah, & A. Okpoko (Eds.), The archaeology of Africa. Food, metals and towns (pp. 165–226). Routledge.

    Google Scholar 

  • Willcox, G. (2005). The distribution, natural habitats and availability of wild cereals in relation to their domestication in the Near East: Multiple events, multiple centres. Vegetation History and Archaeobotany, 14, 534–541.

    Article  Google Scholar 

  • Zhang, Z., Belcram, H., Gornicki, P., Charles, M., Just, J., Huneau, C., et al. (2011). Duplication and partitioning in evolution and function of homoeologous Q loci governing domestication characters in polyploid wheat. Proceedings of the National Academy of Sciences of the United States of America, 108, 18737–18742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zohary, D. (1973). The origin of cultivated cereals and pulses in the Near East. Chromosome Today, 4, 307–320.

    Google Scholar 

  • Zohary, D., & Hopf, M. (2000). Domestication of plants in the old world. Oxford University Press.

    Google Scholar 

  • Zohary, D., Hopf, M., & Weiss, E. (2012). Domestication of plants in the old world (4th ed.). Oxford University Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özlem Özbek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Özbek, Ö. (2022). Domestication and Evolution of Ancient Wheats. In: Zencirci, N., Ulukan, H., Baloch, F.S., Mansoor, S., Rasheed, A. (eds) Ancient Wheats. Springer, Cham. https://doi.org/10.1007/978-3-031-07285-7_2

Download citation

Publish with us

Policies and ethics